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ABSTRACT

OpenStreetMap (OSM), a collaborative, crowdsourcedWebmap, is a
unique source of openly available worldwide map data, increasingly
adopted in Web applications. Vandalism detection is a critical task
to support trust and maintain OSM transparency. This task is re-
markably challenging due to the large scale of the dataset, the sheer
number of contributors, various vandalism forms, and the lack of
annotated data. This paper presents Ovid - a novel attention-based
method for vandalism detection in OSM. Ovid relies on a novel
neural architecture that adopts a multi-head attention mechanism
to summarize information indicating vandalism from OSM change-
sets effectively. To facilitate automated vandalism detection, we
introduce a set of original features that capture changeset, user, and
edit information. Furthermore, we extract a dataset of real-world
vandalism incidents from the OSM edit history for the first time
and provide this dataset as open data. Our evaluation conducted on
real-world vandalism data demonstrates the effectiveness of Ovid.

CCS CONCEPTS

• Information systems → Geographic information systems;
Trust; • Computing methodologies→ Neural networks.
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1 INTRODUCTION

OpenStreetMap1 (OSM) is a collaborative, crowdsourced Web map
that evolved as the critical source of openly available volunteered
geographic information [2, 6, 23]. Like Wikipedia aiming to create
an open Web encyclopedia, the OSM project aims to create a free
and editable online map. The amount of geospatial information in
OSM is continuously growing. For instance, the number of nodes
in OSM increased from 5.9 · 109 in March 2020 to 6.7 · 109 in March
2021. With the OSM growth, quality assurance becomes essential to
maintain the trustworthiness and accountability of OSM. In OSM,
contributors voluntarily provide geographic information and can
add, modify or delete any objects captured by OSM. This openness
makes the data particularly susceptible to vandalism. Recently, the
problem of vandalism detection in OSM has attracted interest of
researchers [15, 16, 24, 25] and OSM contributors2. For example, the
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OSM community identified several vandalism cases in the context
of the location-based game Pokémon Go [12], in which users added
wrong information to the map to gain a game advantage. Today,
OSM provides data for various real-world applications, including
knowledge graph refinement [5, 22] and geographic information
systems (GIS). Detecting and removing vandalism is essential to
mitigate spam and preserve the credibility and trust in OSM data.

Vandalism detection in OSM is particularly challenging due to
the large dataset scale, the high number of contributors (over 7.6
million in June 2021), the variety of vandalism forms, and the lack
of available annotated data. Figure 1 presents four real-world van-
dalism examples. The vandalism forms in OSM include arbitrary
deletion of map regions, creating non-existing cities, drawing texts
using geometric shapes, and overwriting street names with adver-
tisements and offensive content. Vandalism detection methods need
to consider various aspects such as the geographic context, user
behavior, and content semantics to identify potentially malicious
edits effectively. The diversity of vandalism appearances constitutes
a significant challenge for automated vandalism detection.

The existing literature has considered OSM vandalism previously,
but only a few automated approaches for vandalism detection in
OSM exist. An early approach proposed in [18] adopts a rule-based
method to identify suspicious edits. However, configuring the rules
manually is tedious and error-prone. In [24], the authors proposed
a random forest-based method that detects vandalized buildings.
This approach is limited to the building domain and does not detect
vandalism on other OSM objects. Furthermore, due to the shortage
of benchmark datasets, existing studies typically utilize synthetic
data and lack evaluation in real-world settings.

In this paper, we present the Ovid (OpenStreetMap Vandalism
Detection) model - a novel supervised machine learning approach
to detect vandalism in OSM effectively. We propose a novel neural
network architecture that adopts multi-head attention to select
the most relevant edits within an individual changeset, i.e., a set
of edits performed by a user within one session. Furthermore, we
propose an original feature set that captures different aspects of
OSM vandalism, such as user experience and contribution content.
We train and evaluate Ovid on real-world vandalism occurrences
in OSM, manually identified by the OSM community.

To enable the training of supervised machine learning models,
we create a new dataset, OSM-Reverts, by extracting and analyzing
reverted entries from the OSM edit history. OSM-Reverts includes
over 18 thousand real-world vandalism examples created by over
eight thousand users during a 5-years-period on a world scale.

Although reverts indicating vandalism are available in OSM,
identifying specific geographic entities affected by vandalism from
reverts is not trivial as OSM does not specify which exact changeset
is being corrected by the revert as well as due to OSM’s large
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(a) Deletion of large fractions of

Munich

(b) A fake town within the ocean (c) “Graffiti” on the map (d) Road name replaced by an ad-

vertisement

Figure 1: Real-world examples of different vandalism forms in OSM. Map data: ©OpenStreetMap contributors, ODbL.

scale. To tackle this problem, we developed a dedicated procedure
extracting vandalism occurrences accurately at scale.

In summary, the main contributions of this paper are as follows:

• WepresentOvid – a novel supervised attention-basedmethod
for vandalism detection in OpenStreetMap.

• We propose a set of original features that capture changeset,
user and edit information to detect vandalism effectively.

• We create OSM-Reverts, the first large open dataset captur-
ing real-world vandalism from the OSM edit history.

Our evaluation results on two real-world datasets demonstrate
thatOvid outperforms existing approaches by 8.14 percent points in
F1 score and 5.41 percent points in terms of accuracy on average. In
this paper, we focus on vandalism detection in OSM. The approach
is transferrable to other collaborative knowledge bases in the geo-
graphic domain, such as geographic entities in Wikidata, providing
the proposed features and annotated vandalism examples.

2 BACKGROUND & PROBLEM DEFINITION

OpenStreetMap categorizes the geographic objects into three types.
Nodes represent geographic points (e.g., mountain peaks) with the
position specified by latitude and longitude.Ways represent lines
(e.g., roads) composed of a node sequence. Relations are composed
of nodes and ways and describe more complex objects, e.g., national
borders. An OSM object may exhibit an arbitrary number of tags,
i.e., key-value pairs, describing the object semantics. For instance,
the tag place=city indicates that the OSM object represents a city.

Formally, an OSM object is defined as 𝑜 = ⟨𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑙𝑜𝑐, 𝑡𝑎𝑔𝑠, 𝑣𝑒𝑟 ⟩.
𝑖𝑑 is an object identifier. 𝑡𝑦𝑝𝑒 ∈ {Node, Way, Relation} is the
object type. 𝑙𝑜𝑐 is the geographic location of the object. The location
can either be a point (Node), a line (Way), or a set of points and lines
(Relation). 𝑡𝑎𝑔𝑠 is a set of tags describing object characteristics. Each
tag ⟨𝑘, 𝑣⟩ ∈ 𝑡𝑎𝑔𝑠 is represented as a key-value pair with the key 𝑘
and a value 𝑣 . 𝑣𝑒𝑟 is the object version number corresponding to the
number of the revisions of 𝑜 . An OSM object 𝑜 can be distinguished
by its identifier 𝑜.𝑖𝑑 together with its type 𝑜.𝑡𝑦𝑝𝑒 .

OSM allows for updates in the form of edits of the OSM objects.
An edit can either create new or modify or delete existing objects.
More formally, an edit is defined as 𝑒 = ⟨𝑜, 𝑜𝑝, 𝑣𝑒𝑟, 𝑡⟩, where: 𝑜 is
an OpenStreetMap object, 𝑜𝑝 ∈ {create, modify, delete} is the
operation performed on the object 𝑜 , 𝑣𝑒𝑟 is the new version number
(𝑜.𝑣𝑒𝑟 + 1) after the edit, and 𝑡 is the edit time.

Edits are submitted to OSM as changesets. Changesets bundle
multiple edits created by a single user during a short time period. A
changeset is defined as 𝑐 = ⟨𝐸, 𝑡,𝑢, 𝑐𝑜⟩, where: 𝐸 is a set of OSM edits

that belong to the changeset, 𝑡 is the changeset commit time,𝑢 is the
user who committed the changeset, and 𝑐𝑜 is a comment describing
the changeset contents. We denote the set of all changesets by 𝐶 .

In this paper, we target the problem of identifying vandalism
changesets in OSM, i.e., the changesets containing wrong or pro-
hibited (e.g., discriminating or offensive) content. We follow es-
tablished vandalism detection definitions from other domains, i.e.,
Wikidata [9], and model vandalism detection in OSM as a binary
classification problem. We leave the fine-grained discrimination
between various vandalism types for future work. We assume that
an adversary has all OSM user capabilities, i.e., she/he can freely
submit changesets to OSM. Currently, OSM does not implement
automatic mechanisms for vandalism detection. Therefore, we do
not assume that an adversary takes any specific measures to over-
come the vandalism detection or creates false positive vandalism
entries to mislead such mechanisms. Formally, vandalism detection
is the task of identifying changesets that constitute vandalism by
either deleting correct information or adding wrong or prohibited
information. We aim to learn a function 𝑦 : 𝐶 ↦→ {True, False} that
assigns binary vandalism labels to changesets.

3 THE OVID MODEL

This section presents theOvid (OpenStreetMapVandalismDetection)
model. Ovid is a supervised binary classification model that dis-
criminates between regular and vandalism OSM changesets. The
model consists of a supervised artificial neural network, including
three main components: Feature Extraction, Feature Refinement
& Aggregation, and Prediction. Figure 2 provides an overview of
the Ovid model architecture. We adopt features in three categories.
First, changeset features capture meta-information of the individual
changesets, e.g., the editor software. Second, user features provide
information regarding previous editing activities of the changeset
author, e.g., the number of prior contributions. Third, edit features
encode the individual changes within the changeset, e.g., if an ob-
ject was added, modified, or deleted. Since a single changeset may
consist of multiple edits, Ovid relies on a multi-head attention me-
chanism to aggregate the edits and identify information relevant
for vandalism detection. Finally, the prediction layers integrate the
features and facilitate vandalism detection.

3.1 Feature Extraction

This section describes the extraction of the individual features.
2



Feature Refinement & Aggregation Prediction

Xp'

Feature Extraction

K

V

ME

XcChangeset
 Features

XuUser
Features

XEMulti-Head
Attention

FCNormFC
Xp

FC

Q

Xc,uNormConcat

Xc'FC

Xu'
FC

FC
XE'Norm

Contents

Metadata

Author

Changeset

Changeset Metadata

User

Edits

<osm version="0.6" generator="CGImap 0.8
(3609302 " copyright=
"OpenStreetMap and contributors"
<changeset id="2306" created_at="2014-06-
21T19:56:55Z" closed_at="2014-06-21T19:
<tag k="created_by" v="JOSM/1.5  id)"/>

</changeset>
</osm>

FC
...

 npred

FC
Edit 

Features

NormConcat

Figure 2: Ovid model architecture. The changeset and user feature refinement part, as well as the prediction layers, are com-

posed of fully connected (FC), normalization (Norm), and concatenation (Concat) layers. Multi-head attention layers aggregate

the features frommultiple edits in a changeset into a single feature vector. We describe changeset features (𝑋𝑐 ) in Section 3.1.1,

user features (𝑋𝑢 ) in Section 3.1.2, and edit features (𝑀𝑒 ) in Section 3.1.3. Map images: ©OpenStreetMap contributors, ODbL

3.1.1 Changeset Features. The changeset feature vector 𝑋𝑐 pro-
vides information regarding the changeset metadata. For a change-
set 𝑐 , the feature vector consists of the following features.

No. creates [11], modifications [11], deletes [11], edits [11].
We capture the changeset size by the number of created, modified,
and deleted objects and the total number of edits in the change-
set |𝑐.𝐸 |. Atypical patterns, e.g., numerous deletions, can indicate
vandalism.

Min/max latitude/longitude, bounding box size. We cap-
ture the changeset’s geographic extent by considering the minimum
and maximum latitude and longitude among the changeset entries.
We also include the size of the overall geographic bounding box of
the changeset. A large geographic extent may indicate vandalism.

Editor application. Several editor applications can create OSM
changesets. Basic editors are easy to use and, therefore, more likely
to be used for vandalism. We include the editor application as a
categorical feature using 1-hot encoding.

Has imagery used. OSM contributors may specify whether
they used aerial images for a changeset, which intuitively can make
it more trustworthy. We include this information as a binary vari-
able.

Comment length [9]. Contributors can provide a comment
𝑐.𝑐𝑜 to document the changeset. Intuitively, a long description may
indicate trustworthy changes. We use the number of characters in
a comment as a feature.

Finally, we concatenate all changeset features to obtain the
changeset feature vector 𝑋𝑐 ∈ R𝑑𝑐 . 𝑑𝑐 denotes the dimension of 𝑋𝑐 .

3.1.2 User Features. We utilize user features to capture the pre-
vious activity of the changeset author 𝑐.𝑢, as a more experienced
user may be more trustworthy than a new user. Given a changeset
𝑐 and its author 𝑐.𝑢, we denote the user feature vector by 𝑋𝑢 .

No. past creates [18], past modifications, past deletes. User
experience plays a vital role in quantifying user credibility [18].
We quantify user experience as the number of previously created,
modified, and deleted objects and add these numbers as features.

No. contributions [9, 24]. We count the overall number of ob-
jects contributed by the user and include this number as a feature.

No. top-12 keys used [18]. Following [18], we use the top-12
most frequent OSM keys and determine how often the user added

one of these keys to an entry. As of May 2020, the top-12 most
frequent keys are building, source, highway, name, natural, surface,
landuse, power, waterway, amenity, service, and oneway. An absence
of the top-12 most essential keys in the user history might indicate
harmful behavior. We include the number of top-12 keys previously
utilized by the user as a feature.

Account creation date [9], no. active weeks [24]. To quantify
the temporal scope of user experience, we consider the timestamp
of the user account creation and the number of weeks in which the
user has contributed at least one changeset.

We concatenate all features to obtain the user feature vector
𝑋𝑢 ∈ R𝑑𝑢 , where 𝑑𝑢 denotes the dimension of 𝑋𝑢 .

3.1.3 Edit Features. The edit features capture information regard-
ing the individual edits contained in a changeset. As a single change-
set 𝑐 may contain several edits, we first extract the features for every
edit 𝑒 ∈ 𝑐.𝐸. We extract the following features from each edit 𝑒:

Object type [18], edit operation [18]. The object type 𝑒.𝑜 .𝑡𝑦𝑝𝑒 ∈
{Node, Way, Relation} and the edit operation 𝑒.𝑜𝑝 ∈ {create,
modify, delete} provide basic information about the type of the
edited object and the editing operation. Some object types might be
easier to vandalize. For example, it is easier to move the single node
representing the South Pole than the complex relation representing
Antarctica. We use one-hot encoding to represent both features.

Object version number, no. previous authors [9, 24]. If the
edit changes an existing object, we capture the object edit history
by considering the version number 𝑒.𝑣𝑒𝑟 and the number of distinct
previous authors. A high version number might indicate controver-
sial objects that are a subject of so-called edit wars3. For instance,
the country affiliation of some regions might be controversial4.

Time to the previous version [18, 24]. We measure the time
between the current and the last object versions as their timestamp
difference. For new objects, we set this feature to zero.

No. tags [24]. Tags provide semantic information about OSM
objects. A high number of tags may indicate an established object.
Therefore, we include the total number of tags |𝑒.𝑜 .𝑡𝑎𝑔𝑠 |, the num-
ber of added tags, and the number of tags deleted in the edit as
features.

3https://wiki.openstreetmap.org/wiki/Disputes
4https://wiki.openstreetmap.org/wiki/Disputed_territories
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No valid tags [18], no. previous valid tags [18]. The Open-
StreetMap Wiki provides a description of established key-value
pairs as so-called map feature list5. Following [18], we count the
number of tags that appear in the map feature list as the number
of valid tags. We assume that using a valid key-value combination
indicates proper editing behavior. Likewise, we determine the num-
ber of valid tags in the previous version of the edited object if a
previous version exists. Otherwise, we set this feature to zero.

Name changed. Vandalizing object names is an effective way to
create visible fake information in OSM. We create a binary feature
indicating whether the object name has changed. For unnamed or
new objects, we set this feature to 0.

For each edit 𝑒 ∈ 𝑐.𝐸, we concatenate the features into the edit
feature vector 𝑋𝑒 ∈ R𝑑𝑒 , where 𝑑𝑒 denotes the dimension of 𝑋𝑒 .
Further, we aggregate the individual features of all edits in the same
changeset. We combine the feature vectors 𝑋𝑒 for each 𝑒 ∈ 𝑐.𝐸 into
the edit feature matrix𝑀𝑒 ∈ R𝑑𝑒×|𝑐.𝐸 | .

3.1.4 Limitations & Adversarial Robustness. Limitations in vandal-
ism detection arise from the robustness of the proposed feature set
in adversarial settings. Bypassing our system requires manipulating
the above-described features. The manipulation of user features,
e.g., no. active weeks, requires a high effort, such as creating and
maintaining a fake account for a long time. These features have a
substantial impact on the model performance, as we will discuss
later in Section 6.2. The attacking of other features, such as change-
set and edit features, e.g., the no. valid tags, is more straightforward
but requires knowledge of our model. Since Ovid relies on a com-
bination of user, changeset, and edit features, manipulating single
features is not sufficient to bypass our system.

3.2 Feature Refinement & Aggregation

In this step, we refine the changeset and user features and aggregate
the edit features to obtain a feature vector for each changeset.

We refine the changeset and user feature vectors by passing them
to the fully connected layers 𝑋𝑐′ = 𝐹𝐶𝑑ℎ (𝑋𝑐 ) and 𝑋𝑢′ = 𝐹𝐶𝑑ℎ (𝑋𝑢 )
with: 𝐹𝐶𝑑ℎ (𝑋𝑖 ) = 𝑅𝑒𝐿𝑈 (𝑋𝑖𝑊𝑖 + 𝑏𝑖 ), where𝑊𝑖 ∈ R𝑑𝑖×𝑑ℎ denotes a
weight matrix, 𝑏𝑖 ∈ R𝑑ℎ a bias vector, 𝑑ℎ is the hidden layer size,
and 𝑅𝑒𝐿𝑈 denotes the Rectified Linear Unit activation function [7].
We concatenate the changeset and user features and apply a fully
connected layer with normalization: 𝑋𝑐,𝑢 = 𝑛𝑜𝑟𝑚(𝐹𝐶 ( [𝑋𝑐′, 𝑋𝑢′])) .
𝑛𝑜𝑟𝑚(·) denotes layer normalization [3] that scales the layer output
based on the mean and the standard deviation of neuron activations.

Ovid selects the edits most relevant to identify vandalism in the
corresponding changeset using an attention mechanism. First, we
apply the same fully connected layer to each edit𝑀𝑒′ = 𝐹𝐶𝑑ℎ (𝑀𝑒 )
to obtain the refined edit features𝑀𝑒′ . Then, to aggregate the fea-
tures of the individual edits into a single feature vector, we adopt
the multi-head attention mechanism, initially proposed by [26]. In-
tuitively, the multi-head attention mechanism computes a weighted
sum of the edit features, where the model learns the so-called at-
tention weights representing the importance of specific edits.

Formally, the attentionmechanism distinguishes between a query
𝑄 , keys 𝐾 and values 𝑉 . Attention selects the most relevant va-
lues 𝑉 for the query 𝑄 based on the similarity between 𝑄 and the

5https://wiki.openstreetmap.org/wiki/Map_features

keys 𝐾 . As we aim at selecting the edits most relevant to iden-
tify vandalism in the corresponding changeset, we represent the
refined changeset and user features as the query in the attention
model and the refined edit features as keys and values: 𝑄 = 𝑋𝑐,𝑢 ,
𝐾 = 𝑀𝑒′ , and 𝑉 = 𝑀𝑒′ . The Attention function is defined as:
Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾

𝑇

√
𝑑𝑘

)𝑉 , where 𝑄 denotes a query
vector, 𝐾 a key matrix, 𝑉 a value matrix, and 𝑑𝑘 is the dimension
of one row (one key) of the key matrix. The term 𝑄𝐾𝑇 computes
the similarity between the query vector 𝑄 and the individual keys
in the key matrix 𝐾 . Then, the softmax function transforms the
similarities to a probability distribution representing the attention
weights. The scaling factor

√︁
𝑑𝑘 prevents the softmax from having

extremely small gradients during back propagation [26]. Finally,
the multiplication of the attention weights with the value matrix 𝑉
yields the weighted sum of the values.

Multi-Head attention extends attention by using multiple (𝑛ℎ𝑒𝑎𝑑 )
attention heads. Each head learns to focus on different edit feature
combinations, e.g., the object type and the tags’ semantic descrip-
tion. Formally, each head computes its own attention
function:Multi-Head(𝑄,𝐾,𝑉 ) = [head1, ..., head𝑛ℎ𝑒𝑎𝑑 ]𝑊 𝑜 , head𝑖 =
Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖
,𝑉𝑊𝑉

𝑖
), with the projection matrices𝑊𝑄

𝑖
∈

R𝑑ℎ×𝑑ℎ ,𝑊𝐾
𝑖

∈ R𝑑ℎ×𝑑ℎ ,𝑊𝑉
𝑖

∈ R𝑑ℎ×𝑑ℎ , and𝑊𝑂 ∈ R𝑛ℎ𝑒𝑎𝑑 ·𝑑ℎ×𝑑ℎ .
We compute an aggregated edit feature vector using multi-head

attention: 𝑋𝐸 = Multi-Head(𝑋𝑐,𝑢 , 𝑀𝑒′, 𝑀𝑒′). Finally, we refine the
edit feature vector using a fully connected layer with the layer
normalization 𝑋𝐸′ = 𝑛𝑜𝑟𝑚(𝐹𝐶𝑑ℎ (𝑋𝐸 )).

Some changesets, e.g., automatic imports, may contain a high
number of edits (up to 50,000 in our datasets) such that the contribu-
tion of an individual edit is negligible. Therefore, we introduce an
upper threshold 𝑡ℎ𝑒,𝑚𝑎𝑥 for the maximum number of edits within
a changeset. If the number of edits exceeds 𝑡ℎ𝑒,𝑚𝑎𝑥 , we set 𝑋𝐸′ = 0
and rely on the user and changeset features.

3.3 Prediction

We facilitate the detection of vandalism changesets by combin-
ing the refined changeset and user features with the aggregated
edit features into a single feature vector 𝑋𝑝 = [𝑋𝑐,𝑢 , 𝑋𝐸′]. We re-
peat fully connected layers with layer normalization 𝑛𝑝𝑟𝑒𝑑 times
and use a final fully connected layer with a single output dimen-
sion and sigmoid activation function to make predictions of the
binary vandalism label: 𝑋𝑝′ = 𝑛𝑜𝑟𝑚(𝐹𝐶𝑑ℎ (𝑋𝑝 ))

𝑛𝑝𝑟𝑒𝑑 , and 𝑦𝑝𝑟𝑒𝑑 =

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑋𝑝′𝑊𝑝′ + 𝑏𝑝′), with𝑊𝑝′ ∈ R1×𝑑ℎ and 𝑏𝑝′ ∈ R. We de-
termine the prediction function 𝑦 by considering a changeset as
vandalism if 𝑦𝑝𝑟𝑒𝑑 exceeds the classification threshold: 𝑦𝑝𝑟𝑒𝑑 >

𝑡ℎ𝑐𝑙𝑎𝑠𝑠 . We use an established threshold for the sigmoid function
𝑡ℎ𝑐𝑙𝑎𝑠𝑠 = 0.5 [7]. We investigate the influence of 𝑡ℎ𝑐𝑙𝑎𝑠𝑠 on the
precision and recall later in the evaluation in Section 6.3.

4 DATASETS

We construct a novel ground truth dataset (“OSM-Reverts”) includ-
ing over 9 thousand real-world vandalism incidents extracted from
the world-scale OSM edit history. We add non-vandalism change-
sets resulting in a dataset of over 18 thousand training examples
allowing for training of supervised machine learning models. We
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make OSM-Reverts available as open data to facilitate reproduci-
bility and further research.6 Furthermore, we consider a second
smaller dataset (“OSM-Manual”) for our experiments. Table 1 sum-
marizes selected dataset statistics.

OSM-Reverts.We create a ground truth dataset by considering
the changesets reverting vandalism in the OSM history from 2014
to 2019. The correctness of the ground truth is essential for training
of supervised models. Therefore, we aim at high precision in the
ground truth extraction process.

Determining specific vandalism changesets repaired by the re-
verts is not trivial. Reverts are structured as changesets and only
provide a textual description of the corrections they make. Whereas
some reverts mention the corresponding changesets in the com-
ment explicitly, others simply delete, update or insert geographic
objects to repair the vandalism. The revert comments are highly
heterogeneous and do not always specify the vandalism changeset.

The extraction process consists of the following steps: First, we
extract the revert changesets that fix vandalism changesets. We only
consider changesets that mention “vandalism” in their comments.
Second, we determine the vandalism changesets corrected by the
revert. If a revert changeset explicitly mentions a specific changeset
ID, we consider the mentioned changeset as vandalism. Otherwise,
we review the objects that are the subject of the revert. If the revert
deletes an object and only one user contributed to the object, we
consider changesets contributing to this object to be vandalism. It
is hard to attribute a revert to a specific changeset in other cases.
As we aim at high precision, we do not include such underspecified
cases in OSM-Reverts.

To create negative examples (i.e., changesets that do not repre-
sent vandalism), we remove the identified vandalism changesets
and the reverts from the OSM changeset history. We obtain nega-
tive examples by randomly sampling changesets from the filtered
OSM history. We randomly sample the same number of changesets
as the vandalism changesets from the reduced changeset history to
create negative examples and obtain a balanced dataset. As a result,
we obtain a dataset with 18,276 training examples.

Possible limitations in the ground truth quality can include the
occasional occurrence of false positive and false negative examples.
False positives, i.e. legitimate changesets labelled as vandalism, can
result from malicious reverts. Following our adversarial model de-
scribed in Section 2, we assume that malicious reverts are currently
not part of our dataset. False negatives are changesets containing
vandalism but not labelled as such. Following prior studies on van-
dalism on crowdsourced knowledge bases [8], the overall fraction of
the vandalism changesets is small compared to all OSM changesets.
Therefore, we assume that the overall fraction of false negatives in
our datasets is neglectable.

We split the dataset into training (70%), validation (10%), and test
(20%) sets. We ensure that the training, validation, and test sets are
disjunct concerning OSM users to avoid bias towards individual
OSM users. We train the models on the training and validation set
and evaluate the results on the test set.

OSM-Manual. In 2018, the OSM community manually identi-
fied approximately one thousand vandalism incidents, including

6The OSM-Reverts dataset is available at: https://github.com/NicolasTe/Ovid.

Table 1: Dataset statistics for OSM-Reverts andOSM-Manual

Dataset property OSM-Reverts OSM-Manual

No. changesets 18,276 2,018
No. distinct users 8,768 1,686
Median create operations per changeset 5 3
Median modify operations per changeset 1 1
Median delete operations per changeset 1 1
Median nodes per changeset 6 4
Median ways per changeset 2 2
Median relations per changeset 1 1
Median edits per changeset 10 8
Median edits/vandalism changeset 10 4
Median edits/negative changeset 10 11
Timespan 2014-2019 2014-2019

spam and forbidden imports.7 We use these changesets as posi-
tive examples. We create negative examples by random sampling
changesets from the filtered OSM history. In total, the OSM-Manual
dataset includes 2,018 examples. The number of examples in the
OSM-Manual dataset is too small to train supervised models. Thus,
we use OSM-Manual only as a test set. We use OSM-Manual for eva-
luation by training the models on the entire OSM-Reverts dataset
and then using OSM-Manual as a test set.

5 EVALUATION SETUP

This section describes the baselines, metrics, and hyperparameter
optimization used in the evaluation.

5.1 Baselines

We compare our model with the following baselines:
Random. This naïve baseline chooses a random vandalism label.
OSMPatrol. This model is an early rule-based approach to de-

tect OSM vandalism at the edit level [18]. OSMPatrol computes
a vandalism score for each edit based on a rule combination con-
sidering user and edit features, e.g., the object version number.
We consider a changeset 𝑐 as vandalism if the baseline detects at
least one vandalism edit 𝑒 ∈ 𝑐.𝐸 in this changeset. We apply an
exhaustive grid search to find the optimal thresholds.

OSMWatchman. This model was recently proposed to detect
vandalism on buildings in OSM [24]. OSMWatchman uses a ran-
dom forest classifier that utilizes content features (e.g., number of
tags), context features (e.g., time to the previous version), and user
features (e.g., number of contributions).

WDVD. The Wikidata Vandalism Model was proposed to detect
vandalism in the Wikidata knowledge graph [9]. This baseline uses
a random forest classifier with text-based features, e.g., the ratio
of upper case letters in comments, and user features. We use all
features applicable to OSM.

GloVe+CNN. This baseline [11] transforms OSM changesets
into pseudo-natural language sentences describing the changeset
contents. It then uses pre-trained GloVe word embeddings [19] as
an input for a convolutional neural network.

We optimize the hyperparameters of OSMWatchman,WDVD,
and GloVe+CNN using random search.

7OSM-Manual data: https://github.com/jremillard/osm-changeset-classification
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Table 2: Hyperparameter search space of Ovid

Parameter Description Search Space

𝑡ℎ𝑒,𝑚𝑎𝑥
Maximum number of edits
per changeset {10, 20, 30}

𝑛𝑝𝑟𝑒𝑑 Number of prediction layers {1, 2, 3, 4, 5}
𝑛ℎ𝑒𝑎𝑑 Number of attention heads {5, 10, 15, 20}
𝑑ℎ Hidden layer size {12, 24, 36, 48}
𝛿 Dropout rate {0.4, 0.5, 0.6, 0.7}
𝜆 Regularization weight {0.005, 0.01, 0.02}

5.2 Metrics

We use the following metrics for the performance evaluation:
Precision. The fraction of correctly classified vandalism instances
among all instances classified as vandalism.
Recall. The fraction of correctly classified vandalism instances
among all vandalism instances.
F1 score. The harmonic mean of recall and precision.
Accuracy. The fraction of correctly classified instances.
We consider F1 score and accuracy as most relevant for this study.

5.3 Hyperparameter Tuning & Training

We normalize all features and optimize hyperparameters of Ovid
using random search. Table 2 summarizes the hyperparameter space.
We train Ovid using the ADAM optimizer [13] and dropout layers.
We use 100 epochs and apply the early stopping strategy [7].

6 EVALUATION

The evaluation aims to assess the effectiveness of the proposed
Ovid approach for vandalism detection. Furthermore, we analyze
the contribution of the feature categories in an ablation study and
investigate the capability to customize our approach concerning
the trade-off between precision and recall.

6.1 Vandalism Detection Performance

Table 3 summarizes the overall vandalism detection performance of
theRandom,OSMPatrol,OSMWatchman,WDVD, andGloVe+CNN
baselines as well as our proposed Ovid approach.

Overall, we observe that in terms of F1 score and accuracy, Ovid
achieves the best performance on both datasets. On average, Ovid
achieves improvements of 8.14 percent points F1 score and 5.41
percent points accuracy compared to the best performing baseline.

Exclusively optimizing only one of precision and recall is insuf-
ficient for effective vandalism detection. Consider the OSMPatrol
baseline that only achieves precision scores close to 50% but re-
call scores higher than 90%. The scores reveal that OSMPatrol
assigns almost all changesets to the vandalism class, resulting in
low average accuracy of 55.47%. Although recall and precision help
understanding the model behavior, they should only be consulted
jointly with accuracy in our settings. The low accuracy of the base-
line indicates that supervised machine learning models like Ovid
can better detect vandalism than rule-based OSMPatrol.

WDVD achieves a high precision but only reaches low recall.
WDVD mainly relies on user features. The high precision indicates
that user features can effectively identify a fraction of the malicious

changesets. However, the low recall score indicates that user fea-
tures are insufficient to capture all vandalism incidents. Low recall
means that many vandalism cases will remain undetected when
using this baseline. In contrast, Ovid that considers user, changeset,
and edit features, achieves 83.02% recall on OSM-Reverts.

GloVe+CNN achieves the best precision on OSM-Manual but
only achieves a recall score of 19.62% resulting in a relatively
low F1 score of 31.68%. GloVe+CNN does not consider user in-
formation. Comparing GloVe+CNN to WDVD, we observe that
WDVD achieves higher recall and F1 scores on OSM-Manual than
GloVe+CNN. This result indicates the importance of the user fea-
tures for the OSM-Manual dataset. Ovid that combines user and
content features achieves a high recall (70.76%) on OSM-Manual
while maintaining a comparably high precision (69.86%).

OSMWatchman shows a moderate performance considering all
metrics on OSM-Reverts but fails to maintain the performance level
on OSM-Manual. OSMWatchman uses a combination of user and
content features. The low F1 score on OSM-Manual of 41.27% indi-
cates that the feature set of OSMWatchman does not generalize.

Comparing the performance across the datasets, we generally
observe higher scores on OSM-Reverts than on OSM-Manual. As
OSM-Manual is too small to train supervised machine learning
models, we trained all models on OSM-Reverts for both datasets, as
described in Section 4. The difference in the performance indicates
that the datasets exhibit slightly different underlying distributions.
We observe the best performance when we train and evaluate the
models on the train and test datasets with the same distribution,
i.e., OSM-Reverts. The difference in distributions, also indicated by
Table 1, can result from the possible presence of false negatives and
false positives in OSM-Reverts as discussed in Section 4. These false
examples in the training data can potentially lead to the difference
in performance between OSM-Reverts and OSM-Manual. However,
Ovid’s good performance on OSM-Manual indicates the usefulness
of OSM-Reverts as a training dataset andOvid’s ability to generalize
to unseen data.

TheGloVe+CNN baseline, achieving the second-best F1 score on
OSM-Reverts, fails to generalize to OSM-Manual and only achieves
an F1 score of 31.68%. In contrast,Ovid achieves higher than 70% F1
score and accuracy. This observation indicates that Ovid’s features
and architecture better generalize to unseen data than the baselines.

6.2 Ablation Study

We conduct an ablation study to assess the contribution of Ovid’s
feature categories. To this end, we remove individual parts of our
model and measure the vandalism detection performance on the
OSM-Reverts and OSM-Manual datasets. We consider the following
configurations for the ablation study:
Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 : We remove 𝑋𝑐′ , i.e., the changeset features and
the corresponding refinement layer.
Ovid−𝑈𝑠𝑒𝑟 : We remove 𝑋𝑢′ , i.e., the user features and the corre-
sponding refinement layer.
Ovid−𝐸𝑑𝑖𝑡𝑠 : We remove 𝑋𝐸′ , i.e., the edit features and the corre-
sponding multi-head attention and refinement layers.
Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡,𝐸𝑑𝑖𝑡𝑠 : We remove 𝑋𝑐′ and 𝑋𝐸′ , i.e., the changeset
and edit features and the corresponding layers.
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Table 3: Vandalism detection performance regarding precision, recall, F1 score and accuracy [%]. Best scores are marked bold.

Approach
OSM-Reverts OSM-Manual Average

Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Random 49.89 50.27 50.08 49.92 49.46 49.95 49.70 49.45 49.68 50.11 49.89 49.69
OSMPatrol 53.94 96.29 69.15 57.06 52.20 91.77 66.55 53.87 53.07 94.03 67.85 55.47
OSMWatchman 77.60 70.74 74.01 75.18 57.75 32.11 41.27 54.31 67.68 51.43 57.64 64.74
WDVD 81.52 64.79 72.20 75.07 74.88 46.98 57.73 65.61 78.20 55.88 64.97 70.34
GloVe+CNN 81.46 72.93 76.96 78.18 82.16 19.62 31.68 57.68 81.81 46.27 54.32 67.93

Ovid 80.35 83.02 81.66 81.37 69.86 70.76 70.31 70.12 75.11 76.89 75.99 75.75

Table 4: Vandalism detection performance of Ovidwhen re-

moving individual components. Best scores are bold.

(a) OSM-Reverts

Model Precision Recall F1 Accuracy

Ovid 80.35 83.02 81.66 81.37

Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 78.42 81.33 79.85 79.49
Ovid−𝑈𝑠𝑒𝑟 67.46 86.24 75.71 72.34
Ovid−𝐸𝑑𝑖𝑡𝑠 78.68 78.98 78.83 78.81
Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡,𝐸𝑑𝑖𝑡𝑠 75.69 81.22 78.36 77.58
Ovid−𝑈𝑠𝑒𝑟,𝐸𝑑𝑖𝑡𝑠 59.54 72.38 65.34 61.62

(b) OSM-Manual

Model Precision Recall F1 Accuracy

Ovid 69.86 70.76 70.31 70.12

Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 59.03 49.55 53.88 57.58
Ovid−𝑈𝑠𝑒𝑟 53.83 62.74 57.94 54.46
Ovid−𝐸𝑑𝑖𝑡𝑠 73.70 67.49 70.46 71.70

Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡,𝐸𝑑𝑖𝑡𝑠 66.94 55.80 60.86 64.12
Ovid−𝑈𝑠𝑒𝑟,𝐸𝑑𝑖𝑡𝑠 56.02 62.24 58.97 56.69

Ovid−𝑈𝑠𝑒𝑟,𝐸𝑑𝑖𝑡𝑠 : We remove 𝑋𝑢′ and 𝑋𝐸′ , i.e., the user and edit
features and the corresponding layers.

We do not remove 𝑋𝑐′ and 𝑋𝑢′ simultaneously, since the edit
features aggregation component requires at least one of 𝑋𝑐′ or 𝑋𝑢′
to provide the query vectors for the multi-head attention. Table 4a
and 4b present the results on OSM-Reverts and OSM-Manual.

On the OSM-Reverts dataset, we cannot remove any feature cat-
egory without reducing the vandalism detection performance. In
other words, every feature category of our model contributes to
the vandalism detection performance. Considering configurations
removing only one feature category, we observe the highest dif-
ference in accuracy for Ovid−𝑈𝑠𝑒𝑟 . This configuration leads to a
slight increase in recall (3.22 percent points) but a higher decrease in
precision (12.89 percent points), which signals that the user features
are especially beneficial for precision. For Ovid−𝐸𝑑𝑖𝑡𝑠 , we observe
moderate losses on both recall and precision. We obtain similar
results for the Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 scores, i.e., a moderate difference in
precision and recall of approximately 1.8 percent points. The loss on
all metrics indicates the general usefulness of the edit and change-
set information. Removing two feature categories simultaneously

further reduces the accuracy compared to removing only one cate-
gory, indicating that the categories capture different aspects of the
changesets and complement each other. ForOvid−𝑈𝑠𝑒𝑟,𝐸𝑑𝑖𝑡𝑠 , we ob-
serve the lowest accuracy scores of 61.62%, whereas we still obtain
77.58% accuracy for Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡,𝐸𝑑𝑖𝑡𝑠 . The moderate accuracy
of Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡,𝐸𝑑𝑖𝑡𝑠 highlights the user features’ importance,
since this configuration solely relies on user information.

On the OSM-Manual dataset, we obtain patterns similar to OSM-
Reverts for the Ovid−𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 and Ovid−𝑈𝑠𝑒𝑟 . For Ovid−𝑈𝑠𝑒𝑟 ,
we observe a performance drop, especially regarding precision. In
contrast to OSM-Reverts, Ovid−𝐸𝑑𝑖𝑡𝑠 achieves an increased classi-
fication accuracy of 1.58 percent points. As discussed in Section 6.1,
we expect that the underlying distributions of OSM-Reverts and
OSM-Manual datasets can slightly differ. In particular, the median
number of edits per vandalism changeset in OSM-Reverts is ten,
while this number in OSM-Manual is only four, as shown in Table 1.
Consequently, Ovid cannot use the edit features to their full advan-
tage on OSM-Manual, where less edit information is available. As a
result, the edit features slightly negatively impact the vandalism
detection performance on the OSM-Manual dataset. Nevertheless,
Ovid still achieves the best performance in F1 score and accuracy
compared to the baselines.

In summary, the changeset and user features provide valuable
contributions for the vandalism detection task. The edit features
and their corresponding layers 𝑋𝐸′ are beneficial for the datasets
with a higher number of edits per changeset, like OSM-Reverts.

6.3 Precison/Recall Trade-off

Figure 3 presents Ovid’s precision/recall diagram created by vary-
ing the classification threshold 𝑡ℎ𝑐𝑙𝑎𝑠𝑠 ∈ [0, 1] on the OSM-Reverts
and OSM-Manual datasets. At the most left, all changesets are clas-
sified as non-vandalism, such that Ovid achieves 100% precision
but 0% recall. At the most right, all changesets are classified as van-
dalism, resulting in 50% precision and 100% recall. The precision
does not drop to 0% due to the class balance within the datasets.

We generally observe higher precision and recall scores on OSM-
Reverts than on OSM-Manual. On OSM-Reverts, Ovid can obtain
very high precision of 97% at the cost of only achieving 20% recall.
Similarly, we obtain 92% precision at 20% recall for OSM-Manual.
A high-precision configuration can potentially be used to run a
fully automated vandalism detection system that blocks detected
changesets directly. Lowering precision leads to a rapid increase
in recall on OSM-Reverts. At 80% precision, Ovid already achieves
83% recall. For OSM-Manual, Ovid maintains approximately 70%
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Figure 3: Precision/recall diagram of Ovid.

precision at 70% recall. High recall of vandalism cases may be
favourable to maintain high data quality in OSM but may lead to
accidental blocking of correct changesets (false positives). A high-
recall configuration of Ovid can be used to generate vandalism
candidates in a human-in-the-loop approach, in which vandalism
candidates are verified manually by the OSM community.

7 RELATEDWORK

This section discusses related work in vandalism detection in crowd-
sourced knowledge bases and vandalism characterization in OSM.

The existing literature investigated vandalism detection in crowd-
sourced knowledge bases such as OpenStreetMap in several studies.
Neis et al. early proposed OSMPatrol [18], a rule-based system
to detect vandalism in OpenStreetMap. OSMPatrol determines a
vandalism score for each edit. The score includes features such as
user reputation, object type, and the number of established tags in
the edit. While OSMPatrol aims at classifying individual edits, we
classify entire changesets. In this paper, we use OSMPatrol as a
baseline. Our experimental results confirm that Ovid outperforms
this baseline regarding precision, F1 score, and accuracy.

More recently, another line of research has investigated the vali-
dation of building shapes within OpenStreetMap. Xie et al. develo-
ped a convolutional neural network that extracts building shapes
from remote sensing imagery. The authors then compare the ex-
tracted shapes with shapes from OSM [27] to validate the buildings
in OSM. The OSMWatchman approach uses a supervised ran-
dom forest model for the detection of vandalism on buildings in
OSM [24]. However, the authors evaluated OSMWatchman on
synthetically created vandalism incidents only. Li et al. exploited
user profiles for the detection of name vandalism on OSM objects
[15, 16]. Whereas the approach for shape verification and name
vandalism identification presented in [15, 16, 27] are too specific
for our experimental setting, we compare Ovid to OSMWatchman
as a baseline. Our evaluation demonstrates that Ovid outperforms
OSMWatchman concerning all considered metrics.

Heindorf et al. investigated the problem of vandalism detection
in the Wikidata knowledge graph [8–10]. They developed theWiki-
data Vandalism Detection (WDVD) model that uses a random forest
classification model together with user-based features (e.g., number
of previous contributions) and text-based content features (e.g.,
the ratio of uppercase letters). We compare to WDVD as a base-
line and show that our proposed Ovid model outperforms WDVD
concerning F1 score and accuracy.

Another class of approaches aims at detecting vandalism of tex-
tual knowledge bases such as Wikipedia [14, 20]. These approaches
use Wikipedia-specific features (e.g., edits of meta-pages) and fea-
tures tailored to natural language texts (e.g., the fraction of pro-
nouns in a text). In contrast, OSM provides object descriptions as
key-value pairs that do not usually contain long natural language
texts, such that this type of models does not apply to OSM data.

Previous research has investigated the characteristics of vandal-
ism in OSM. Antoniou et al. identified vandalism as a threat to the
OSM data quality in a recent survey [1]. Quin et al. analyzed OSM
user bans and further specified several threat categories such as
nefariousness, obstinance, ignorance, and mechanical problems [21].
Similarly, Ballatore et al. coined the term “carto-vandalism” [4].
They categorize vandalism incidents in the types play, ideological,
fantasy, artistic, industrial, and spam carto-vandalism. The authors
point out the potential use of automated tools such as machine
learning for vandalism detection. Mooney et al. analyzed high fre-
quently edited objects and found so-called “edit wars” in OSM [17].
Edit wars are disputes of two or more contributors in which the
contributors repeatedly revert each other’s contributions. Edit wars
are considered vandalism or bad-editing by the OSM community8.

These studies highlight the importance of mitigating vandalism
in OpenStreetMap. Our proposed Ovid model can lower the effort
required for vandalism detection in OSM in the future.

8 CONCLUSION

In this paper, we proposed the Ovid (OpenStreetMap Vandalism
Detection) model, a novel supervised attention-based approach for
vandalism detection in OpenStreetMap. Ovid relies on the original
changeset, user, and edit features and a novel multi-head attention
architecture to effectively identify vandalism changesets in OSM.
We systematically analyzed vandalism-related reverts in the Open-
StreetMap history and extracted a new open ground truth dataset
for vandalism detection in OSM. Our experiments on real-world
datasets demonstrate that Ovid can effectively detect OSM vandal-
ism. Ovid achieves an F1 score of 75.99% and an accuracy of 75.75%
on average, which corresponds to 8.14 percent points increase in F1
score and a 5.41 percent point increase in accuracy compared to the
best performing baselines. In future work, we would like to build
upon our vandalism detection model to create novel applications.
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