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Attention Based Vehicle Trajectory Prediction

Kaouther Messaoud1, Itheri Yahiaoui2, Anne Verroust-Blondet1 and Fawzi Nashashibi1

Abstract—Self-driving vehicles need to continuously analyse
the driving scene, understand the behavior of other road users
and predict their future trajectories in order to plan a safe motion
and reduce their reaction time. Motivated by this idea, this
paper addresses the problem of vehicle trajectory prediction over
an extended horizon. On highways, human drivers continuously
adapt their speed and paths according to the behavior of their
neighboring vehicles. Therefore, vehicles’ trajectories are very
correlated and considering vehicle interactions makes motion
prediction possible even before the start of a clear maneuver
pattern. To this end, we introduce and analyze trajectory predic-
tion methods based on how they model the vehicles interactions.
Inspired by human reasoning, we use an attention mechanism
that explicitly highlights the importance of neighboring vehicles
with respect to their future states. We go beyond pairwise vehicle
interactions and model higher order interactions. Moreover,
the existence of different goals and driving behaviors induces
multiple potential futures. We exploit a combination of global
and partial attention paid to surrounding vehicles to generate
different possible trajectory. Experiments on highway datasets
show that the proposed model outperforms the state-of-the-art
performances.

Index Terms—trajectory prediction, vehicles interactions, re-
current networks, multi-head attention, multi-modality.

I. INTRODUCTION

IN order to navigate, self-driving vehicles need to under-

stand the behavior of other traffic participants. As com-

munications are not always possible, self-driving vehicles

must perceive and anticipate the intentions of surrounding

vehicles in order to plan comfortable proactive motions and

avoid urgent reactive decisions and conflicts with others. In

fact, motion prediction helps self-driving vehicles understand

possible future situations and decide about a future behavior

that minimizes the possible risks accordingly.

Motion behavior may be inferred by considering the features

that characterises it. Vehicles’ past states give relevant infor-

mation about the dynamics, the direction and the speed of the

performed maneuver. However, the trajectory taken by each

vehicle in the future is not only dependent on its own state

history: even the vehicle class impacts the motion pattern.

In addition, the presence and actions of the neighboring

vehicles have a great influence on a vehicle’s behavior as well.

Therefore, in this work, we propose to model the interactions

between all the neighboring vehicles to represent the most

relevant information about the social context with a focus on

learning to capture long-range relations. In our approach, we

attempt to mimic human reasoning, which pays a selective

attention to a subset of surrounding vehicles in order to extract
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the elements that most influence the target vehicle’s future

trajectories while paying less attention to other vehicles. For

example, a vehicle performing a lane change maneuver will

pay more attention to the vehicles in the target lane than those

in the other lanes. Consequently, its future behavior could be

more dependent on distant vehicles in the target lane than the

close ones in the other lanes.

This study is an extension of our previous work [1], which

focuses on deploying multi-head attention in the task of trajec-

tory prediction. We adopt the attention mechanism to derive

the relative importance of surrounding vehicles with respect

to their future motion: it selectively aggregates the features

that model the interaction between the vehicles by a weighted

sum of the features representing all the surrounding vehicles’

trajectories and thus directly relates vehicles based on their

correlation without regard to their distance. We also use multi-

head attention in order to extract different types of interactions

and combine them to capture higher order relationships. This

provides a better understanding of the scene.

Drivers’ behaviors are not deterministic. In similar driving

situations, they can perform different maneuvers or even when

doing the same maneuver, the execution can be different in

terms of speed and pattern. Therefore, we propose a method

that is able to predict a multi-modal finite set of trajectories

that correspond to predicted trajectories conditioned on the

degree of attention paid to the surrounding vehicles.

Quantitative and qualitative experiments are conducted to

show the contribution of the model, and quantitative compar-

isons with recent approaches show that the proposed approach

outperforms state-of-the-art accuracy in highway driving tra-

jectory prediction.

II. RELATED RESEARCH

The task of vehicle motion forecasting has been addressed in

the literature from different perspectives. Therefore, numerous

vehicle motion prediction methods have recently been pro-

posed. Here, we give an overview of the deployed methods,

focusing on deep learning pattern based methods.

A. Overall Motion Prediction Module

We follow Rudenko et al. [2] who divide the motion

prediction problem into three main components.

1) Stimuli:

The features that influence and determine the future intention

of the target vehicle are mainly composed of target vehicle

cues and environment information.

Target vehicle features. They enclose target vehicle past state

observations (positions, velocities, etc.). Lenz et al. [3] use

as input to their model only the current state of a set of
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neighboring vehicles in order to achieve the Markov Property.

Other existing studies [4], [5], [6], [7], [1], [8] use a sequence

of past features to benefit from extra temporal information in

the prediction task.

Environment features. These are composed of:

- Static elements including static obstacles and environment

geometry.

- Dynamic elements representing the other traffic participants.

2) Modeling approach:

Different representations of the motion model are used, which

can be classified into:

Physics-based methods, where the future trajectory is pre-

dicted by applying explicit, hand-crafted, physics-based dy-

namical models [9], [10], [11]. These approaches basically

build upon the motion’s low level properties. Consequently,

they are restricted to short-term motion prediction.

Pattern-based methods that learn the motion and behaviors of

vehicles from data of observed trajectories. Aoude et al. [12]

combine a physics-based approach with Gaussian Processes

based motion patterns to generate probabilistically weighted

feasible motions of the surrounding vehicles. Other methods

divide the vehicle trajectory into a finite set of typical patterns

named maneuvers. Tran and Firl [13] identify the vehicle

maneuvers by comparing the likelihoods of the observed track

for the constructed non-parametric regression models. Hermes

et al. [14] cluster the motion patterns with a rotationally-

invariant distance metric into maneuvers and predict vehicles

trajectories by matching the observation data to the maneuvers.

Schlechtriemen et al. [15] deploy a Naive Bayes Classifier

followed by a Hidden Markov Model (HMM), where each

state of the HMM corresponds to one of the maneuvers

extracted from the naturalistic driving data. Houenou et al. [16]

conceive a maneuvers recognition module, then, generate dif-

ferent continuous realizations of the predicted maneuver. The

main limitation of these approaches is that they do not model

the interactions between the neighboring vehicles on the future

trajectory. Kafer et al. [17] tackle the task of joint pairwise

vehicle trajectory prediction at intersections. They compare the

observed motion pattern to the database and extract, for each

vehicle, possible predicted trajectories independently. Then,

they jointly compute, for each pair, the probability of possible

trajectories.

Most recent studies deploy deep learning based methods. They

will be detailed in the Section II-B.

Planning-based methods reason on the motion intent of

rational agents. Sierra González et al. [18] deploy Markov

Decision Process (MDPs) to represent the driver decision-

making strategy. They model a vehicle’s trajectory by a

sequence of states. Then, they build a cost function using

a linear combination of static and dynamic features param-

eterizing each state. Inverse Reinforcement Learning (IRL),

accounting for risk-aversive vehicles’ interactions, operates to

learn the cost function parameters from demonstrations. They

use Dynamic Bayesian Networks, in [19], to model vehicles’

interactions.

Li et al. [20] extend Generative Adversarial Imitation Learning

(GAIL) [21] and deploy it to predict the driver’s future actions

given an image and past states. The proposed method is

able to imitate different types of human driving behavior in

a simulated highway scenario. Rhinehart et al. [22] use a

deep imitative model to learn and predict desirable future

autonomous behavior. They train their model with an expert

human behaviors dataset, and use it to generate expert-like

paths to each of the precomputed goals.

3) Prediction:

Vehicle intent prediction is divided into two main aspects:

maneuver [4], [23] and trajectory prediction [5], [24], [8].

The former generates a high-level representation of the motion

such as lane changing and lane keeping. The latter outputs

the predicted state over time. Different forms of outputs are

used in the motion prediction task. In [5], [8], the exact future

positions are predicted. Others [7], [25], [6] deploy a multi-

modal solution using Gaussian mixture models over predicted

states. Ridel et al. [26] generate the probability distributions

over grids with multiple trajectory samples. Sampling genera-

tive models such as Generative Adversarial Networks (GANs)

was used in [27], [28], [29]

B. Deep Learning Pattern-based Motion Prediction

Motion prediction can be treated as a time series regression

or classification problem. Recurrent Neural Networks (RNNs)

are the main reason behind the significant advances in se-

quence modeling and generation. They have shown promising

results in diverse domains such as natural language processing

and speech recognition. Therefore, RNN-based approaches

have been deployed as well in the tasks of maneuver and

trajectory prediction.

Long Short Term Memories (LSTMs) are a particular im-

plementation of RNNs. They are characterised by their abil-

ity to extract long-term relations between features. In other

word, unlike other neural networks, they consider sequential

information and model the dependency in inputs. They act

by performing the same operations for every input item of a

sequence while taking into consideration the computation of

the previous input item.

LSTMs have been deployed, recently, for predicting driver

future behaviors. Indeed, different LSTM-based models have

been conceived going from simple LSTM with one or more

layers in [4], [3], [5], [30] to different types of combina-

tions and extensions: A dual LSTM architecture was adopted

in [24]: the first LSTM extracts high-level driver behavior

succeeded by a second for continuous trajectory generation.

LSTM encoder decoder based architectures were deployed in

[6], [7], [31], [1].

One of the most important parts in a driver intention prediction

model is the surrounding vehicles’ interaction extractor. It

is also conceived differently in the state of the art. Some

existing studies [4], [3], [5], [6] implicitly infer the dependen-

cies between vehicles. They feed a sequence of surrounding

vehicles features as inputs to their model. Then, they accord

to the LSTM the task of learning the influence of surrounding

vehicles on the target vehicle’s motion. Other approaches

explicitly model the vehicles’ interactions using several com-

binations of networks. Alahi et al. [32] introduced the social

LSTM concept for pedestrian trajectory prediction task. They
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encode the motion of each agent using an LSTM block. Then,

they extract the interactions between agents by sharing the

hidden states between all the LSTMs corresponding to a set

of neighboring pedestrians. Hou et al [33] use a structural-

LSTM network to learn high-level dependencies between

vehicles. Similar to social LSTM, they attribute one LSTM

for each vehicle. Then, they use convolutional layers applying

successive local operations followed by a maxpool layer. the

spatial-neighboring LSTMs share their cell and hidden states

by a radial connection. The output states of the LSTMs are

treated recurrently in a deeper layer. The decoder generates all

the predicted trajectories.

Deo et al. [7] extend the social pooling and deploy it for

vehicle trajectory prediction task. They use an LSTM encoder

to generate a representation of each vehicle trajectory. Then,

they use convolutional layers applying successive local opera-

tions on the outputs from the encoders followed by a maxpool

layer. Therefore, they generate a context vector that consists

on a compact representation of the vehicles interactions. But

successive local operations are not always sufficient. Further-

more, the generated context vector is independent of the target

vehicle’s state. Zhao et al. [27] extend the convolutional social

pooling to simultaneous multi-agents trajectory prediction.

Multi-head attention mechanism was introduced by Vaswani et

al. [34] for natural language processing purposes. A relational

recurrent network based on attention mechanism was deployed

in [8] for trajectory prediction. In [1], an attention-based non-

local vehicle dependencies model that represents vehicles’

interactions based on their importance to the target vehicle

is introduced. The attention mechanism reduces the number

of local operations by directly relating distant elements. The

motion prediction results computed by this method on the

NGSIM dataset [35], [36] improve those reported in [6], [7].

In this article, we extend our previous approach [1] to tackle

the target vehicle trajectory prediction problem (cf. Section III)

as follows:

• We focus on studying non-local social pooling using a

multi-head attention mechanism. Therefore, we remove

the convolution layer used to extract local interactions in

our previous method [1].

• We expand our previous approach by exploiting addi-

tional information to boost our prediction. We follow [23]

and, in order to take into account the social effect of

the surrounding vehicles on the prediction target based

on relative dynamics, we include additional information

(velocity, acceleration) in the vehicle state vectors. We

also integrate the vehicle class information since the type

of the vehicle characterises its motion pattern.

• We investigate the interest of using multiple attention

heads and we analyse the interactions extracted using

each head. We also compare several ways of attention

computation.

• We augment our architecture to generate a multi-modal

solution based on a combination of partial and global

attentions paid to the surrounding vehicles.

Experimental evaluations presented in Section IV show the

benefits of using attention mechanisms to solve this problem.

III. TARGET VEHICLE TRAJECTORY PREDICTION

A. Problem Definition

The goal of this part is to predict the future trajectory of a

target vehicle T , knowing its past tracks and the past tracks

of its neighboring vehicles at observation time tobs.

We have as input the past tracks of the target and its n neigh-

boring vehicles. The input tracks of a vehicle i are defined as

Xi = [x1i , . . . , x
tobs
i ] where xti = (xt

i, y
t
i , v

t
i , a

t
i, class) is the

state vector. We note XT the state of the target vehicle T .

The coordinates of all the considered vehicles, are expressed in

a stationary frame of reference where the origin is the position

of the target vehicle at time tobs. The y − axis and x− axis

point respectively to one direction of motion on the highway

and to the direction perpendicular to it.

Our model outputs the parameters characterizing a probability

distribution over the predicted positions of the target vehicle.

Ypred = [ytobs+1

pred , . . . , y
tobs+tf
pred ]

Where yt = (xt, yt) is the predicted coordinates of the target

vehicle.

Our model infers the conditional probability distribution

P(Y|X). The distribution over the possible positions at time

t ∈ {tobs + 1, . . . , tobs + tf} can be presented as a bivariate

Gaussian distribution with the parameters Θt = (µt,Σt) of

the form:

yt ∼ N (µt,Σt)

Where µt is the mean vector and Σt is the covariance matrix:

µt =

(

µt
x

µt
y

)

,Σt =

(

(σt
x)

2 σt
xσ

t
yρ

t

σt
xσ

t
yρ

t (σt
y)

2

)

We evaluate our model by considering the mean µt values as

the predicted positions yt.

B. Overall Model

It is crucial to understand the relationships and interactions

that occur on the road to make realistic predictions about

vehicle motions. Therefore, our model architecture is made

up of three main components (cf. Fig. 1):

• Encoding layer, where the temporal evolution of the

vehicle’s trajectories and their motion properties are en-

coded by an LSTM encoder.

• Attention Module, which links the hidden states of the

encoder and decoder. It explicitly extracts the importance

of the surrounding vehicles based on their spatio-temporal

encoding in determining the future motion of the target

vehicle using different operations. Then, it forms a vector

representing the context influence.

• Decoding layer, which receives the context vector con-

taining the selected information about the neighboring

vehicles and the target vehicle motion encoding and

generates parameters of the distribution over the target

vehicle’s predicted future positions.
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Fig. 1: Proposed Model:The LSTM encoders, with shared weights, generate a vector encoding of each vehicle motion. The

multi-head attention module models the interactions between the target (green car) and the neighboring vehicles based on their

importance. The decoder receives the interaction vector and the target vehicle encoding and generates a distribution for the

predicted trajectory. The blocks added in green are the extension of the multi-head attention method to Multi-Modal Trajectory

Prediction.

C. Trajectory Encoder

This encoding layer encodes the trajectories of the vehicles

belonging to a neighborhood of the target vehicle at time

t = tobs. Unlike most of the previous studies that consider

a restricted number of vehicles immediately around the target

vehicle, we compute a grid over the surrounding area. This

representation of the context has the following advantages:

• It represents the drivable areas.

• It enables us to consider all the vehicles present in the

neighboring area without restriction.

Each state vector xti of each vehicle i of the neighboring area is

embedded using a fully connected layer to form an embedding

vector eti.

eti = Ψ(xti;Wemb)

where Ψ() is a fully connected function with LeakyReLU non

linearity, Wemb is the learnt the embedding weights.

T he LSTM encoder is fed by the embedding vectors of each

vehicle i for time steps t = 1, . . . , tobs:

ht
i = LSTM(ht−1

i , eti;Wencoder)

ht
i is the hidden state vector of the ith neighboring vehicle

at time t. We note ht
T the hidden state vector of the target

vehicle at time t. Wencoder are the LSTM encoders weights.

Each LSTM encoder share the same weights Wencoder.

We built a 3D spatial grid H composed of the neighboring

vehicles’ hidden states at time tobs based on their positions at

time tobs.

H(n,m, :) = δnm(xtobs
i , ytobsi )htobs

i ∀i ∈ AT

δnm(x, y) is an indicator function that equals 1 if (x, y) is

in the cell (n,m) and 0 otherwise. AT consists of the set of

surrounding vehicles present in the considered area.

The columns correspond to the three lanes (M = 3). The

considered spacial area corresponding to the grid is centered

on the target vehicle position and sized of (N,M). It covers

a longitudinal distance of 90 m with a grid cell size of 4.5 m.

We note C the dimension of the trajectory encoding vectors

htobs
i and we reshape the grid H to (NM,C).

D. Vehicle Interaction Modules

As the behavior of vehicles on a highway could be highly

correlated, it is important to consider the interactions between

the vehicles when predicting their future motion. Attention is

used to capture long-range spatio-temporal dependencies. The

attention module explicitly models the interactions between

the target vehicle and the other vehicles in the grid H and

selects the surrounding vehicles to pay attention to when

computing the future trajectory of the target vehicle.

Instead of computing vehicle relationships at each time step,

which is computationally expensive, we use the hidden states

of the encoder LSTM computed at the observation time

as inputs to the attention module. These hidden states are

projected into a high-dimensional space, if we consider all
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the attention heads. The vehicles interactions can be exploited

as follows:

• The hidden state of the target vehicle is mapped to a

query Ql = θl(h
tobs
T ,Wθl)

• The grid is mapped to form the keys Kl = φl(H,Wφl
)

and the values Vl = ρl(H,Wρl
).

Wθl , Wφl
and Wρl

are the weight matrices that will be learned

in each attention head l.

An attention feature headl is then calculated as a weighted

sum of values vlj , where the attention weights, αlj , weight

the effect of surrounding vehicles on the target vehicle future

motions, based on their relative dynamics.

We investigate three possible ways to compute the attention

weights αl:

headl =

NM
∑

j=1

αljvlj

1) α-Attention: Attention weights are computed from the

encoding vectors of the surrounding vehicles independently

of the target vehicle state. They are computed using a tanh

function and a fully-connected layer.

αl = softmax(wT
l tanh(Kl))

wl is a learned weight, and αl ∈ R1×NM is the lth attention.

2) Dot-Product Attention: The weights represent the effect

of an interaction between a pair of vehicles based on their

relative dynamics. They are the product of the query Q with

keys K.

αl = softmax(
QlK

T
l√
d

)

QlK
T
l is matrix multiplication used to calculate dot

product similarities. d is a scaling factor that equals to the

dimensionality of the projection space.

3) Concatenation Attention: The pairwise relation can be

also represented by concatenation operation, as in [37], [38].

αl = softmax(wT
l concat(repeat(Ql),Kl))

One can notice that dot-product and concatenation attentions

consider pairwise inter-relationships, whereas α-attention does

not.

E. High Order Interaction

We deploy a higher order interaction extractor based on

multi-head attention to retain different types of spatio-temporal

relationships. The use of multi-head is inspired by the Trans-

former [34] architecture. In fact, a single learned attention

feature mainly focuses on one inter-related subgroup of vehi-

cles that may represent a single aspect of the possible spatio-

temporal relationships occurring in the neighborhood of the

target vehicle. In order to extend the attention to higher order

interactions, different queries, keys and values are generated

nh times in parallel, in nh attention heads, with different

learned linear projections Ql, Kl and Vl, l ∈ [1, nh].
The nh generated attention features represent nh subgroups of

vehicles inter-related with the target vehicle. These represen-

tations are concatenated and dynamically weighted to extract

complex interactions between the different subgroups.

z = Concat(head1, ..., headnh)W
O

z is the compact context vector that combines interaction

information of all the vehicles.

F. Trajectory Prediction

LSTM Decoder is fed by the context vector z, which

contains the selected information about the vehicles interac-

tions, and the motion encoding of the target vehicle: hdec =
Concat(htobs

T , z). It generates the predicted parameters of the

distributions over the target vehicle’s estimated future positions

for time steps t = tobs + 1,. . . , tobs + tf .

Θt = Λ(LSTM(ht−1

dec ;Wdec))

where Θt is the predicted parameters of the positions distri-

bution at time t, Λ() is a fully connected function followed

by a LeakyReLU non linearity, Wdec are the learnt weights of

the LSTM decoder and ht−1

dec is the hidden state vector of the

decoder at time t− 1.

Our model is trained by minimizing the following negative

log-likelihood loss function:

Lnll(Ypred) = −
∑

tobs+1≤t≤tobs+tf

{

log(PΘt(yt|X))
}

G. Multi-Modal Trajectory Prediction

Given the history of a vehicle’s motion, there are many

plausible future trajectories. Generating one trajectory for

motion forecasting tends to be the average of the possible

motions. When a driver decides to perform a specific motion,

he directs his attention to a set of neighboring vehicles. For

example, a driver exerting a lane change maneuver will mainly

pay attention to the vehicles in the target lane. Therefore, from

each considered set of neighboring vehicles, we may derive a

plausible future trajectory. To do so, we deploy a muti-head

attention as described before and, we proceed as following

(Figure 1):

The decoder receives nh encodings of the scene based on

different attention heads.

hl
dec = Concat(htobs

T , headl, z) l ∈ [1, nh]

Then, using each encoding, the decoder generates a plausible

trajectory Yl
pred.

During the training, we compute only the loss Lnll(Y
l∗

pred)
corresponding to closest predicted trajectory to the ground-

truth Yl∗

pred. Therefore, the position outputs are updated only

for the minimum error.

We augment the proposed architecture by a network com-

posed of two fully connected layers separated by a non-linear

function. It receives the outputs of all the attention heads and

decides about the probability (pl, l ∈ [1, nh]) of each produced

trajectory being the closest to the real one. This network

outputs the likelihood of the nh predicted trajectories. For this
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purpose, we add to the loss function a second term, which is

the classification cross-entropy loss with nh classes [25].

LClass = −
nh
∑

l=1

δl∗(l)log(pl)

where δ is function equal to 1 if l = l∗ and 0 otherwise.

Therefore, the probability of the best matching trajectory pl∗

is trained to become closer to 1, and the probabilities of the

others to 0. This makes the probability outputs updated for all

the attention heads.

During the evaluation, we compute the loss function by taking

the selected trajectory Ys
pred having the maximum probability

ps (Note that Ys
pred may be different from Yl∗

pred).

The proposed network causes each attention head to specialize

in extracting interaction features characterizing a distinct class

of driver behavior without requiring explicit labels.

IV. EXPERIMENTAL EVALUATIONS

Evaluations have been performed on public driving datasets

that are described in Section IV-A. The approach proposed

in Section III is compared with state-of-the-art quantitatively.

Qualitative results are also presented for further analysis.

A. Datasets

1) highD [39]: captured in 2017 and 2018. It was recorded

by camera-equipped drones from an aerial perspective of six

different German highways at 25 Hz. It is composed of 60

recordings of about 17 minutes each, covering a segment of

about 420m of two-way roads (Figure 2).

It consists of vehicle position measurements from six different

Fig. 2: Highway drone dataset highD [39]: recordings cover

about 420 m of German highways.

highways with 110 000 vehicles (about 12 times as many

vehicles as NGSIM) and a total driven distance of 45 000 km.

This dataset is of great importance since it has 5 600 recorded

complete lane changes and presents recent driver behaviors.

2) NGSIM [35], [36]: a publicly available large dataset

captured in 2005 at 10Hz, widely studied and used in the

literature, especially in the task of future intention prediction

of vehicles [4], [7], [3], [5], [6]. We use this dataset to

compare our model with the state-of-the-art.

We split each of the datasets into train (75%) and test (25%)

sets. We split the trajectories into segments of 8s of the

trajectories composed of a track history of 3s and a prediction

horizon of 5s. We downsample each segment to get only 5 fps

to reduce the complexity of the model.

B. Training and Implementation Details

We deploy LSTM encoder with 64 units (C=64) and decoder

with 128 units. The dimension of the embedding space is

32. We use different number of parallel attention operations

applied on the projected vectors of size d=32. The batch size

is 128 and the adopted optimizer is Adam [40]. The model

is implemented using PyTorch [41].

C. Evaluation Metric

In our evaluation, we use Root of the Mean Squared

Error (RMSE) metric since it averages the distance between

predicted trajectories and the ground truth.

LRMSE =

√

√

√

√

1

tf

tobs+tf
∑

t=tobs+1

(xt
T − xt

pred)
2 + (ytT − ytpred)

2

We use the means of the predicted distributions over the future

trajectories to calculate the RMSE.

D. Models Compared

Evaluations have been performed on the following models

that all consider the interactions between surrounding vehicles.

They are fed with the track history of the target and the

surrounding vehicles and output distributions over the future

trajectory of the target vehicle.

• Maneuver-LSTM (M-LSTM) [6]: an encoder-decoder

based model where the encoder encodes the trajectories of

the target and surrounding vehicles. The encoding vector

and maneuver encodings are fed to the decoder which

generates multi-modal trajectory predictions.

• Social LSTM (S-LSTM) [32]: social encoder-decoder

using fully connected pooling.

• Convolutional Social Pooling (CS-LSTM) [7]: social

encoder-decoder using convolutional pooling.

(CS-LSTM(M)) generates multi-modal trajectory predic-

tions based on six maneuvers (2 longitudinal and 3

lateral).

• Multi-Agent Tensor Fusion (MATF GAN) [27]: the

model encodes the scene context and vehicles’ past

trajectories, then, deploys convolutional layers to capture

interactions. Finally, the decoder generates the predicted

trajectories, using adversarial loss.

• Non-local Social Pooling (NLS-LSTM) [1]: combines

local and non local operations to generate an adapted

context vector for social pooling. Five attention heads

are used in this approach.

• Multi-head Attention Social Pooling (MHA-LSTM):

This is the model described in this paper using multi-

head dot product attention with xti = (xt
i, y

t
i), i.e. without

using velocity, acceleration and class information for each

vehicle and with four attention heads.

• Multi-head Attention Social Pooling (MHA-LSTM(+f)):

MHA-LSTM with additional input features (velocity, ac-

celeration and class) and with three attention heads.
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TABLE I: RMSE in meters over a 5-second prediction horizon for the models.

Dataset Prediction Horizon (s) M-LSTM S-LSTM CS-LSTM CS-LSTM(M) MATF GAN NLS-LSTM MHA-LSTM MHA-LSTM(+f)

highD 1 - 0.22 0.22 0.23 - 0.20 0.19 0.06

2 - 0.62 0.61 0.65 - 0.57 0.55 0.09

3 - 1.27 1.24 1.29 - 1.14 1.10 0.24

4 - 2.15 2.10 2.18 - 1.90 1.84 0.59

5 - 3.41 3.27 3.37 - 2.91 2.78 1.18

NGSIM 1 0.58 0.65 0.61 0.62 0.66 0.56 0.56 0.41

2 1.26 1.31 1.27 1.29 1.34 1.22 1.22 1.01

3 2.12 2.16 2.09 2.13 2.08 2.02 2.01 1.74

4 3.24 3.25 3.10 3.20 2.97 3.03 3.00 2.67

5 4.66 4.55 4.37 4.52 4.13 4.30 4.25 3.83

E. Target vehicle trajectory prediction: Quantitative evalua-

tion

1) Overall evaluation: Table I shows the RMSE values

for the models being compared on the NGSIM and highD

datasets. Previous studies [32], [7], [6] compare their results

with independent prediction models to put emphasis on the

importance of considering surrounding agents. In this work,

we not only show that considering surrounding vehicles is a

key factor to perform trajectory prediction but we also model

their interactions in a more efficient way.

To compare our model, we consider the results reported in

[7], [6] on the NGSIM dataset and we train S-LSTM and

CS-LSTM on highD dataset as well. We train and test the

approaches on the NGSIM and highD datasets separately and

we notice that the RMSE values obtained on the NGSIM

dataset are higher than the ones computed on the highD

dataset. This may be due to the difference in size of the two

datasets: highD contains about 12 times more vehicles than

NGSIM. It can be also caused by annotation inaccuracies

resulting in physically unrealistic vehicle behaviors in the

NGSIM dataset, as observed by Coifman et al. [42].

Anyway, examining the RMSE values for either NGSIM or

highD datasets leads to the same order for the proposed meth-

ods. Our attention-based approaches (NLS-LSTM, MHA-LSTM

and MHA-LSTM(+f)) perform better than the others. MHA-

LSTM reduces the prediction error by about 10% compared

to the CS-LSTM while having comparable execution time.

With MHA-LSTM(+f), we investigate the use of additional

features like the speed and acceleration. We notice that this

leads to significant improvements in the motion prediction

accuracy, as MHA-LSTM(+f) outperforms all the methods.

This consolidates our assumption that the relation between

vehicles is not only related to their positions but also to their

dynamics. The class of transportation (truck or car) also char-

acterizes the speed and pattern of the motion. Therefore, these

results indicate that multi-head attention better models the

interdependencies of vehicle motion than convolutional social

pooling. Moreover, this suggests that considering the relative

importance of surrounding vehicles using both positions and

dynamics when encoding the context is better than focusing

on local dependencies.

2) Effects of using multiple attention heads: In order to

evaluate the influence of the number of attention heads on the

prediction accuracy, let us examine the RMSE values obtained

by MHA-LSTM on the highD dataset with 2, 3 4, 5 and

6 attention heads on Table II. We notice that using several

attention heads improves the prediction accuracy since each

attention head represents a set of weights capturing one aspect

of the effect of surrounding vehicles on the target vehicle. In

addition, combining the attention vectors helps extract higher

order relations. The best performance is reached with four

TABLE II: RMSE in meters over a 5-second prediction

horizon for different numbers of attention heads on the highD

dataset.

Time(s)
Heads

2 3 4 5 6

1 0.21 0.20 0.19 0.20 0.21
2 0.61 0.61 0.55 0.57 0.59
3 1.20 1.19 1.10 1.13 1.16
4 1.96 1.99 1.84 1.87 1.92
5 2.95 3.01 2.78 2.83 2.93

attention heads.

We have conducted further experiments to evaluate the benefits

of adding extra features, including explicit vehicle dynamics

and class (MHA-LSTM(+f)). We observe that we outperform

previous results when using different numbers of attention

heads.

Considering the trade-off between the complexity of cal-

culation and the MHA-LSTM(+f) RMSE corresponding to

different numbers of attention heads, we choose to deploy

three attention heads in the experiments that follow.

3) Comparison of attention methods: In Table III, we show

the performances of the three possible ways to compute the

attention weights in MHA-LSTM(+f), named α-attention, dot

product attention, and concatenation attention presented in

Section III-D. One can note that dot product and concatenation

attentions outperform the α-attention. Therefore, we conclude

that both the dynamics of the surrounding vehicles and their

relationships with the target vehicle are of great importance

for trajectory prediction.

TABLE III: RMSE in meters over a 5-second prediction

horizon for different attention operations on the highD dataset.

Time(s)
Methods

α−attention Dot product Concatenation

1 0.06 0.06 0.07
2 0.10 0.09 0.11
3 0.26 0.24 0.25
4 0.62 0.59 0.61
5 1.25 1.18 1.20

4) Error evaluation per lane change: In order to complete

the evaluation of our approach, we use the trained model

MHA-LSTM(+f) to estimate the lateral and longitudinal errors
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obtained while carrying out right (RLC), left (LLC) lane

change maneuvers or lane Following (LF) in the test set of

the highD dataset (cf. Table 3).

TABLE IV: Longitudinal and lateral errors in meters over a

5-second prediction horizon for different maneuvers.

Maneuver RLC LLC LF

Error Long Lat Long Lat Long Lat

1 0.07 0.03 0.20 0.03 0.05 0.01
2 0.12 0.06 0.32 0.07 0.07 0.02
3 0.34 0.18 0.42 0.19 0.22 0.06
4 0.79 0.43 0.88 0.45 0.54 0.14
5 1.43 0.76 1.74 0.78 1.10 0.22

One can notice that the observed lateral error is low even

during lane changes maneuvers (5% of the test data). This

demonstrates the effectiveness of our method in predicting lane

changes. It may also be observed that the longitudinal and

lateral errors are greater during the LLC maneuvers. This may

be due to the fact that the vehicle often speeds up when it

performs LLC, which is not the case for the other maneuvers

(LF or RLC).

F. Qualitative Analysis of Predictions

To understand which vehicles are taken into account by

each attention head in our method, in Figure 3 we present the

attention maps corresponding to two lane change maneuvers

carried out by the target vehicle. More precisely, a left lane

change and a right lane change are shown and the attention

maps are computed at times tobs = tlc − 2s, tobs = tlc − 1s
and tobs = tlc where tlc is the time of crossing the lane

mark during the lane change maneuver. Each attention map

corresponds to an attention head. The target vehicle is shown

in green in the center of the attention map, the grey rectangular

region corresponds to the 2D drivable area described by the

grid H and the colors of the other vehicles indicate the

attention weight associated to them in the attention head (they

are darker when their attention weight increases).

We can remark that each attention head focuses on a subset of

vehicles in the grid that are crucial to determining the future

trajectory of the target vehicle. Moreover, like a human driver,

most of the attention is directed to vehicles in front of the

target vehicle, the vehicles behind it being less considered.

We also notice that, in each example, one attention head

considers all the vehicles in the grid equally (attention head

2 for the left lane change and attention head 1 for the right

lane change). Moreover, at time tlc − 2s, attention map 3 is

such that the most important vehicles belong to the target lane

even though other vehicles are closer to the target vehicle in

another lane. This consolidates our assumption that the closest

neighbors do not always have the strongest influence on the

target vehicle.

Some other factors like the speed and the vehicle’s lane are

also essential for correctly estimating the importance of a

neighbor. To emphasise that aspect, we consider the relative

speeds of the vehicles surrounding the target vehicle and

belonging either to the same lane as the target vehicle or to

the target lane in examples 1 and 2. Table V summarizes the

states of the considered interacting vehicles.

TABLE V: Neighbor vehicles states.

Example 1 Vehicle Preceding Lead

State Sl S +

Example 2 Vehicle Preceding Following Lead Rear

State S + F Sl + F -

• Preceding, following: a vehicle belonging to the same

lane as the target vehicle and preceding or following it.

• Lead, rear: a vehicle belonging to the target lane and

positioned ahead or behind the target vehicle.

• S, Sl, F: same speed, slower, faster than the target vehicle

respectively.

• -, +: decelerating, accelerating respectively.

In example 1, the preceding vehicle is slower than the target

vehicle. The latter has two possible maneuvers: either to

continue in the same lane and decelerate, or to accelerate and

make a left lane change. In the left lane, the lead vehicle is

distant to the target vehicle and has comparable velocity. This

makes the lane change maneuver more likely.

In example 2, the preceding vehicle is accelerating and the

following one is faster than the target vehicle. Therefore, the

target vehicle has two options, either to accelerate or to make

a right lane change.

In these two examples, we notice that even 2 seconds before

performing a lane change, the target vehicle focuses mainly

on the vehicles that belong to the target lane and which may

have an influence on its future speed. Indeed, in both cases,

the target vehicle performs the lane change while accelerating

or decelerating according to the situation.

G. Multi-Modal Trajectory Prediction

Using multi-Modal Trajectory Prediction, we model the

uncertainties of the future and acknowledge the existence of

multiple possible paths. Generating one solution trajectory

tends to average all the possible trajectories which may lead

to unrealistic predicted behaviors. To address this problem,

we use each attention head to specialize for a distinct class

of driver behavior. In the following experiment, we use a

combination of each of the three attention head and the global

attention to generate three different possible trajectories.

Table VI and Figure 4 show the RMSE in meters over a 5-

TABLE VI: RMSE in meters over a 5-second prediction

horizon for the generated trajectories highD dataset.

Time(s) Min Max H1 H2 H3 Proba

1 0.07 0.13 0.08 0.11 0.10 0.08
2 0.12 0.21 0.14 0.20 0.13 0.14
3 0.19 0.53 0.36 0.45 0.30 0.31
4 0.36 1.18 0.81 0.91 0.73 0.67
5 0.69 2.13 1.51 1.58 1.38 1.24

second prediction horizon for the generated trajectories using

three attention heads for the RMSE values obtained as follows:

• Min and Max RMSE were computed by selecting at each

instant the trajectory having respectively the minimum

and maximum RMSE.
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(a) Left lane change at tobs = tlc − 2s (b) Left lane change at tobs = tlc − 1s (c) Left lane change at tobs = tlc

(d) Left lane change at tobs = tlc − 2s: blue, red and yellow tracks represent respectively past, future and predicted trajectories.

(e) Right lane change at tobs = tlc − 2s (f) Right lane change at tobs = tlc − 1s (g) Right lane change at tobs = tlc

(h) Right lane change at tobs = tlc − 2s: blue, red and yellow tracks represent respectively past, future and predicted trajectories.

Fig. 3: Three heads attention maps for two different lane change maneuvers. For visualisation, The target vehicle is added in

green in the center of all the maps. The driving direction is from left to right.

Fig. 4: RMSE in meters over a 5 second prediction horizon

for the generated trajectories.

• Hl represents the RMSE of the trajectory generated by

the attention head l, l ∈ [1, 3].
• Proba RMSE is obtained by computing the RMSE values

of the trajectory computed by one of the three attention

heads and having the maximum probability at tobs.

We notice that one of the generated possible trajectories

presents lower prediction error than the one solution trajectory

by comparing the Min RMSE to the results in Table VI.

Moreover, choosing the trajectory that has the best probability

of predicting the target trajectory gives better results than

systematically selecting the trajectory computed by one at-

tention head (either H1, H2 or H3). However, the network for

trajectory selection does not always guide us to the trajectory

with minimum loss, which justifies the difference between the

min and probability based losses.

V. CONCLUSION

This work proposed an adapted attention-based method for

modeling vehicle interactions during the tasks of vehicle tra-

jectory prediction on highways. We extended our first method

to acknowledge the future uncertainties and generate a multi-

modal solution presenting different possible future trajectories.

The proposed method caused each attention head to specialize

in extracting interaction features characterizing a distinct class
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of driver behavior without requiring explicit labels. Experi-

ments showed that our approach MHA-LSTM(+f) significantly

outperforms the state-of-the-art on two naturalistic large-scale

driving datasets based on the RMSE metric. Furthermore,

the presented visualisation of the attention maps enabled us

to recognize the importance and the dependencies between

vehicles. It confirmed that the attention is directed based on the

future maneuver. This justified our choice to use each attention

head to generate a possible future trajectory.

Our evaluation results confirmed our intuitions: the importance

of the relative dynamics and the efficiency of multi-head at-

tention mechanism in modeling interactions between vehicles

to predict vehicle trajectories in a highway scenario.

Our proposed approach can be extended to consider hetero-

geneous and mixed traffic scenarios with different road users,

such as buses, trucks, cars, scooters, bicycles, or pedestrians.

However, further information about the road structure should

be integrated in our model for better representation of different

driving scenes.
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