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Abstract

We propose three architectures for a word vector prediction

system (WVPS) built with LSTMs that consider both past and

future contexts of a word for predicting a vector in an embed-

ded space where its surrounding area is semantically related to

the considered word. We introduce an attention mechanism in

one of the architectures so the system is able to assess the spe-

cific contribution of each context word to the prediction. All

the architectures are trained under the same conditions and the

same training material, following a curricular-learning fashion

in the presentation of the data. For the inputs, we employ pre-

trained word embeddings. We evaluate the systems after the

same number of training steps, over two different corpora com-

posed of ground-truth speech transcriptions in Spanish language

from TCSTAR and TV recordings used in the Search on Speech

Challenge of IberSPEECH 2018. The results show that we are

able to reach significant differences between the architectures,

consistently across both corpora. The attention-based architec-

ture achieves the best results, suggesting its adequacy for the

task. Also, we illustrate the usefulness of the systems for re-

solving out-of-vocabulary (OOV) regions marked by an ASR

system capable of detecting OOV occurrences.

Index Terms: word vector prediction, speech recognition, out-

of-vocabulary terms, curricular learning, neural network, lan-

guage model

1. Introduction

Traditional language models (LMs) predict a word w by em-

ploying its past context. This appears natural in tasks like ASR,

since the future context of w may not be available in an online

decoding. The current maturity of ASR algorithms allows to

achieve a good performance in WER terms without the need of

taking into account the future context of the words (also thanks

to the acoustic evidence that these systems handle in parallel).

However, the future context of a word can contribute no-

tably to its prediction. Due to the extra computational cost in-

volved, we may consider the use of both past and future contexts

only to certain words that are difficult to predict. In ASR, we

can think of OOV terms as such type of words that could benefit

from this two-side prediction. Moreover, instead of predicting

a word w, we can predict a vector in a word embedded space

which is semantically related to w, without the need of having

w in the vocabulary of the system. That is the purpose of a

WVPS. Thus, with a WVPS, we find a new way of dealing with

the OOV problem in ASR, following the next approach:

• First, a portion of an utterance is decoded by an ASR

system, which in principle has a limited vocabulary, so

the appearance of OOV terms is possible (typically re-

sulting in errors while substituting each OOV by two or

more in-vocabulary (INV) terms).

• Second, some OOV detection algorithm is applied to

the decoding result, making use for example of confi-

dence measures or some mechanism that explicitly in-

dicate OOV regions, like those found in Term Discov-

ery (TD) strategies, as in [1] or [2]. This results in the

determination of potential OOV regions in the decoded

portion of an input utterance.

• Third, a WVPS is employed to carry out a two-side pre-

diction for the previous OOV regions (ignoring the tran-

scribed content inside the OOV regions). A vector in

a word embedding space is thus yielded, to which the

missing word is semantically related. In the simplest use

case, the most appropriate words for each region that ex-

ist in the vocabulary should appear as the nearest neigh-

bors of this vector. In our intended use case, the vector

would trigger searches in some knowledge sources (e.g.

Wikipedia) for collecting word candidates in a similar

way as in TD strategies like those found in [1] or [3].

• Finally, a decision mechanism should be employed in

order to approve or reject the substitution of the original

content of an OOV region by a retrieved OOV term.

In this work, we present the architecture of a WVPS ca-

pable of carrying out two-side word vector predictions, based

on LSTMs and attention mechanisms, comparing its perfor-

mance to another two architectures also based in neural net-

works (NNs). Although our interest for such WVPS resides in

the previously described approach for OOV resolution, it can be

employed in any task where a two-side word vector prediction

might appear useful.

2. Related Work

Traditional LMs are based on n-gram statistics, typically with

an n of order 3. The enduring use of these models has lead to

numerous improvements through smoothing techniques that are

able to leverage the counts of the tokens and also to take into

consideration unseen words by setting apart some probability

[4].

In fact, n-gram LMs are still used in ASR, specially for

the first speech decoding which would lead to a lattice genera-

tion. In this field, it is usual that this first LM is constrained to

an operative reasonable size, and compiled in a Weighted FST

together with the lexicon and a HMM containing the acoustic

states related to the acoustic model, as in the Kaldi toolkit [5].

Then, a second, bigger LM would be employed for the rescor-
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ing of the lattice, which can be based also on n-grams (perhaps

of a higher order) or, more recently, on NNs.

LMs based on NNs have proven to achieve a good per-

formance in perplexity terms [6], and also their suitability for

different tasks including ASR [7]. In recent years, multiple

variants have been proposed, where various regularization and

optimization techniques have also been explored, as shown in

[8]. When employing RNNs like LSTMs, the context that these

models can regard is arbitrarily large for the same amount of

parameters (although usually it is limited to some span), in con-

trast with FF networks, whose number of parameters increases

as longer spans are required. For the input to this kind of

LMs, we can employ pretrained word embeddings of the con-

text words instead of an index-codification (like 1-hot) [9].

A recent improvement in the area of NNs is the attention

mechanism [10], employed typically in seq2seq tasks, like ma-

chine translation [11] or abstractive summarization [12], but

also for improving DNN classifiers like those found in more

general NLP tasks (e.g. sentiment analysis [13]). Attention al-

lows to focus on different parts of the input sequence, which is

useful both for single decision problems (because usually not

all the input elements are equally important) and for seq2seq

problems (because each of the output elements can be decoded

more precisely focussing on different input elements). Machine

translation is a clear example where the resulting alignment of

both sequences via attention is inherently advantageous.

We find some works that attempt to introduce some atten-

tion mechanism into a NN LM (the most similar system to a

WVPS). In [14], a cache is added to the network so recent words

acquire a higher probability of reappearance, while in [15] a

pointer sentinel is appended in order to add the possibility of

selecting one of the previous words as the output instead of a

prediction.

In our work, the attention mechanism proposed is applied

to both sides of the handled word, in contrast to [14] and [15].

Also, the motivation for our framework is to perform a robust

estimation of a difficult word vector to predict where the sur-

rounding terms might contribute in different proportions to its

insight (like in an OOV resolution scenario), rather than con-

sidering whether some recent word is to be repeated at some

moment (more oriented to a long-range dependency modeling

in LMs).

3. Proposed Architectures

We propose three different architectures of WVPS’s that em-

ploy the context at both sides of the word to predict. The first

one would act as a baseline architecture, due to its simplicity.

Then, the second one will present some refinements, while the

third one expands the refinements by employing an attention

mechanism. Despite their different levels of complexity, they

will be designed with a similar number of parameters so their

evaluation is comparable, as explained in the next section.

For all the upcoming descriptions, we use the follow-

ing notation. The letters L and R refers to the left (past)

and right (future) context of the word to predict, respectively.

We take the same span C/2 at both sides, for a total con-

text of C (we made C=20 in all our experiments). The

sub-indices of each context word are numbered as their order

of entrance to the front LSTMs, so the string of words that

could be find in a text when predicting a word w would be

{L1, L2, ..., LC

2

, w,RC

2

, ..., R2, R1}.

In the depictions, an LSTM block would receive its inputs

from the bottom, in the direction of the arrow drawn inside; the

outputs would leave the block from the top; and its inner state

might be initialized through one of the sides. The same applies

to the Feed-Forward (FF) block, except for the inner state, since

they are memory-less.

The inputs to every architecture are the normalized word

embeddings associated to the context words Li and Rj , of di-

mension dembed. Their output, predicted, is a normalized vector

in the same embedded space, so it can be interpreted as a point

in that space with which the surrounding words have some se-

mantic relation, and consequently this point should be close to

the embedding of the actual w (the golden standard solution).

The baseline architecture is depicted in figure 1. It consists

of one LSTM per context side and a FF block of two hidden

layers. The FF is fed with the concatenation of the last outputs

of the two LSTMs, so each LSTM can contribute with the infor-

mation extracted from all of its inputs, and in the proper feeding

direction towards the word to predict.

Figure 1: Baseline architecture of WVPS.

The second architecture, that we call stacked architecture,

can be seen in figure 2. We introduced a second layer of

LSTMs, one per side of the context, each one receiving the

pertinent outputs of the preceding LSTMs. With the purpose

of harnessing information gathered by both LSTMs of the first

layer, we add their last outputs (i.e. L1O C

2

+ R1O C

2

) for ini-

tializing the states of both LSTMs of the second layer. Then,

the FF is fed with the concatenation of the last outputs of the

top LSTMs.

Finally, the third architecture, or attention architecture, is

drawn in figure 3. Now, the previous architecture is extended

with an attention mechanism, applied to the outputs of the

LSTMs of the second layer. In order to generate a query vector

that is able to asses the importance of each of these outputs, we

make use of an additional FF block, FF1, fed with the concate-

nation of the last outputs of the first layer of LSTMs. This way,

the query should carry information of both sides of the con-

text, so it can be employed to compute the attention weights of

the outputs of both LSTMs of the second layer. These weights

are computed with a dot product between the query and each

of those outputs, followed by a global softmax transformation

of all the dot products, so all the attention weights together to-

tal one. As it seems reasonable, the query is also employed

to initialize the states of the top LSTMs. When all the atten-

tion weights are computed, we perform a weighted sum of the

attended vectors to feed the last FF block, FF2, in charge of

producing the output of the network. We changed the feeding

direction of the top LSTMs, because, apart from that now the

attention mechanism should select the adequate output combi-
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Figure 2: Stacked architecture of WVPS.

nation, we are more sure that the information placed in their ini-

tial states (i.e. query) does not vanish when reaching the most

immediate context words to the word to predict, which are often

more important than the other words.

Figure 3: Attention architecture of WVPS.

4. Experiments

We conducted a series of experiments to asses the performance

of the three architectures proposed. We start by describing the

word embeddings that all the architectures employed. Then,

we present the training and evaluation materials and schemes

followed. Both training and evaluation designs are common

among architectures, including a similar number of parameters

(about 46M), so their results are comparable.

4.1. Word embeddings

The word embeddings employed were trained following the

Skip-gram version of Word2Vec [16], choosing a dimension

dembed=100, and contexts of four words at each side. They were

kept untouched during WVPS training. The involved entities

can be composed of one, two or three words (e.g. ‘Madrid’,

‘San Francisco’, ‘old bay seasoning’, respectively), totaling

248K, 25K and 60K tokens, respectively. They were selected

as the most frequent tokens (until some threshold) found in the

training texts, described below. For the case of multi-word to-

kens, we also required that they had their own Wikipedia article,

paying attention to discard those entities that are not specially

interesting to a general WVPS (e.g. scientific names of plants).

The corpora used for their training belong to different

sources in Spanish language: literature, Wikipedia and politi-

cal records, whose sizes are indicated in table 1 (62M of lines

of text in total). The literature set includes novels and essays

collected from different public Internet sites. For the Wikipedia

articles, we used the dump from the Spanish Wikipedia on date

2017-04-01. The political records are composed by the Span-

ish portions of the Europarl corpus [17] and the United Nation

documents that belong to the OPUS Project Corpora [18]. With

such a variety of texts, we aimed to train quite universal word

embeddings for the Spanish language, shuffling their lines.

Table 1: Texts employed for the training of word embeddings.

Vocabulary: 248K one-words, 25K two-words, 60K three-words

Source # of lines # of words

Literature 32M 1.2G

Wikipedia (Spanish) 19M 621M

Political records 11M 382M

4.2. Training scheme

The training data for the proposed WVPS’s comes from the

training material of the word embeddings (table 1). Now,

the data presentation to the systems was done in a curricular-

learning fashion, for what we performed the next preprocessing:

• First, we trained an attention architecture WVPS with

the shuffled corpora, for a quarter of an epoch, when a

reasonable level of convergence was obtained.

• Second, we computed with the previous system the aver-

age cosine similarity of the predicted vectors and the K
words of every line l in the corpora in vector form:

distl =
1

K

K
∑

j=1

(wj · predicted) (1)

• Finally, we sorted all the lines by their similarity and

we removed the lines with a cosine similarity inferior

to 0.2 (mostly very short sentences or with unusual syn-

tax and/or rare terms). We also removed the best 2M

lines (similarities close to 1.0), since they were mostly

template sentences used in Wikipedia or in political pro-

ceedings that do not appear valuable for our purposes.

With this preprocessed text, we firstly presented to our sys-

tems the M lines with the best cosine similarity, restarting the

process to present again the M best lines plus the next N best

ones, in an iterative manner so after each restart we present an
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additional bunch of N unseen lines, as in the following progres-

sion: {M,M+N,M+2N, ...}. We made M and N to be both

equal to 8M lines.

4.3. Evaluation scheme

We evaluated the systems after a certain amount of training

batches were completed for all of them. The material employed

for that is composed of speech transcriptions (ground truth) of

two different corpora. The first one is the Spanish partition of

the TCSTAR corpus [19], from which we took a third of the

audio transcriptions (equivalent to 27 hours of speech). The

second corpus collects audio recordings (and their human tran-

scriptions) of political programs of the National Spanish TV, be-

tween 2015 and 2016, which were used in the Search on Speech

Challenge of IberSPEECH 2018 [20]. We also took the tran-

scription of 27 hours of speech. The reason of evaluating over

speech transcriptions is to asses the usefulness of the proposed

architectures to be used as an OOV resolver in ASR systems.

The evaluation metric employed, distC , is the average co-

sine similarity of the predicted vectors and every word in an

evaluation corpus C in vector form. It can be computed with

equation 1 by considering a corpus as a single long line with K
words. Since most of the individual similarities will be com-

prised between 0 and 1.0, the metric can be interpreted as the

average probability that a predicted vector for a word w is in the

semantic area of the embedded space that is most related to w.

In order to provide the results with approximated confi-

dence intervals of 95%, we would like to employ the next equa-

tion, adapted from chapter 8 of [21]:

distC (95%) ≈ distC ± 1.96 ·

√

distC · (1− distC)

N
(2)

where N is the total number of words in corpus C.

However, to employ this equation, a gaussian distribution

is presumed over all the items under evaluation (words in our

case). If we study the cosine similarities of the words in an eval-

uation corpus with any of the systems, we would observe the

distribution showed in figure 4, which appears to be gaussian

except for the peak on the right, as the dashed line shows (a fit-

ted gaussian to the central part). The peak on the right is due to

the stopwords, much easily to predict than normal words. Thus,

if we ignore for our evaluation metric the 250 most frequent

words in the WVPS’s vocabulary, we can get rid of most of this

peak and so we can apply equation 2, with an updated value of

N (smaller, so the confidence intervals would get wider).

4.4. Results

The evaluation results of the three architectures are presented

in table 2, averaging the results of two random initializations

per system (though their differences were non-significant). All

the systems were evaluated after the same number of training

batches (with also the same training data), at the moment in

the curricular-learning when M+3N (∼32M) different lines of

text were showed and significant differences between the sys-

tems were already maintained over time.

As can be seen, all results show significant differences

among architectures, preserving this for both evaluation cor-

pora. The attention architecture achieves the best performance,

with a relative improvement over the baseline architecture of

25.6% and 18.2% for the TCSTAR and TV corpora, respec-

tively; and with a relative improvement over the stacked archi-

tecture of 1.7% and 1.8% for the TCSTAR and TV corpora,

-0.2 0 0.2 0.4 0.6 0.8 1

Cosine distance

10
1
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Figure 4: Histogram of cosine similarities applied to the TC-

STAR evaluation corpus, for the attention architecture of WVPS.

In dashed line, gaussian approximation of the central part.

Table 2: Evaluation results of the WVPS architectures proposed,

excluding the 250 most frequent words in the vocabulary

Architecture distTCSTAR distTV

Baseline 0.4043 ± 0.0031 0.3536 ± 0.0028

Stacked 0.4996 ± 0.0031 0.4104 ± 0.0029

Attention 0.5079 ± 0.0031 0.4179 ± 0.0029

respectively. These results confirms our initial intuition about

the usefulness of the proposed attention mechanism applied to

this scenario.

The general performance between TCSTAR and TV can be

understood due to the characteristics of each corpus. While TC-

STAR has a clear political domain with speakers maintaining a

strict formality, in the TV we find more spontaneous speech and

more variety of topics, complicating the task.

5. Conclusions

The three proposed WVPS architectures have been compared in

a realistic scenario involving speech transcriptions of two dis-

tinct corpora. The refinements applied to a baseline architec-

ture have demonstrated notable improvements. Specifically, the

attention mechanism introduced in the third architecture out-

performs the other two with significant differences. Therefore,

their interest for a word vector prediction task is evidenced,

where we can consider both the past and future contexts of a

word, obtaining a vector in an embedded space semantically re-

lated to this word. This is specially useful when aiming to pre-

dict vectors for difficult words like OOV terms present in the

speech decoded by an ASR system, for which the system has to

previously detect the pertinent OOV regions.
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