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Abstract

Recently, substantial research effort has focused on how

to apply CNNs or RNNs to better capture temporal patterns

in videos, so as to improve the accuracy of video classifi-

cation. In this paper, however, we show that temporal in-

formation, especially longer-term patterns, may not be nec-

essary to achieve competitive results on common trimmed

video classification datasets. We investigate the potential of

a purely attention based local feature integration. Account-

ing for the characteristics of such features in video classi-

fication, we propose a local feature integration framework

based on attention clusters, and introduce a shifting opera-

tion to capture more diverse signals. We carefully analyze

and compare the effect of different attention mechanisms,

cluster sizes, and the use of the shifting operation, and also

investigate the combination of attention clusters for multi-

modal integration. We demonstrate the effectiveness of our

framework on three real-world video classification datasets.

Our model achieves competitive results across all of these.

In particular, on the large-scale Kinetics dataset, our frame-

work obtains an excellent single model accuracy of 79.4%

in terms of the top-1 and 94.0% in terms of the top-5 accu-

racy on the validation set.

1. Introduction

Video classification remains one of the prime challenges

in computer vision as well as machine learning. It has re-

ceived a substantial amount of attention in recent years,

owing not least to its numerous potential use cases, such

as video tagging, surveillance, autonomous driving, and

stock footage search. Thanks to recent large datasets, e.g.

YouTube-8M [1] and Kinetics [4], the recognition accuracy

in video classification has advanced considerably, although

the current state-of-the-art remains subpar in comparison

with human performance.

∗Corresponding author.
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Figure 1. Example of RGB frames sampled from videos. The

bottom ones are shown in a randomly permuted temporal order.

We observe several important characteristics of local features of a

video: high degree of similarity, local identifiability, approximate

unorderedness, and multi-component inputs.

Most of the existing effective video classification meth-

ods are based on convolutional neural networks (CNNs).

CNNs have shown their powerful representation learning

abilities in various image classification tasks. Convolutional

and pooling layers together essentially act as potent feature

extractors, which are able to mine local features from differ-

ent regions of an image. Unsurprisingly, CNNs can also be

used as a feature extractor for local feature extraction from

videos, extracting a sequence of features for relevant video

frames in accordance with their temporal order.

Many existing methods use convolutional neural net-

works (CNNs) or recurrent neural networks (RNNs) based

on such local feature sequences to capture the temporal in-

teractions within a video. The latter are particularly often

considered for their ability to capture longer-term temporal

patterns by retaining pertinent state information across time.

In this paper, however, we cast some doubt on whether tem-

poral patterns, especially long-term ones, are truly indis-

pensable for common trimmed video classification tasks.
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This is motivated by the following observations regarding

the characteristics of such local features for video classifi-

cation.

First, local features within a video tend to have a high

degree of similarity across frames. In short video clips, the

changes between RGB frames tend to be small. Especially

during phases of slow movement, adjacent RGB frames ex-

hibit substantial redundancy, sometimes differing in just mi-

nuscule ways. For instance, in the short example clip por-

traying golf chipping in Figure 1 (top), the frames are almost

identical except for gradual changes in the position of the

club. For classification, it may suffice to view these similar

features holistically, packaged as a whole, while disregard-

ing the particular details of their evolution over time.

Second, the local features of a video often possess the

property of local identifiability. When people watch videos,

they are frequently able to classify them based on just a few,

occasionally even just a single frame. For example, in the

video for brushing teeth in Figure 1 (middle), we can in-

fer the class having observed just the initial frame. That

is to say, even a tiny fraction of local features may single-

handedly provide exhaustive classification information. For

classification, the key is to spot the relevant local features

of these most informative frames, without needing to pon-

der over their temporal patterns.

Third, the local features of a video may be regarded as

approximately unordered in many classification settings. Of

course, the input video itself is ordered, and a thorough

semantic interpretation of the portrayed narrative requires

some level of understanding of the temporal progression.

For classification problems, however, we conjecture that the

order may not be crucial. Even if the local features are

permuted, a correct classification of the video may remain

achievable. For example, in the pole vault video in Figure 1

(bottom), the frames have been reordered, showing first the

landing, then the jump, and finally the run up. Yet, humans

can still easily categorize it. Hence, the order of local fea-

tures may not need to be preserved in video classification.

Accounting for the above considerations, we investigate

an approach that completely abandons temporal cues. In-

stead, we explore the potential of purely attention based lo-

cal feature integration methods to generate a global repre-

sentation. This is because attention mechanisms naturally

possess the following properties. First of all, attention out-

puts are essentially weighted averages, which implies that

repeated local features will automatically be aggregated to

reduce their redundancy. Secondly, an attention model may

assign higher weights to significant local features so as to

focus on a small number of key signals, and their local iden-

tifiability determines to what extent the classification results

on a small number of key frames can be taken as a class la-

bel for the entire video. Finally, the inputs to an attention

model are naturally unordered sets of varying sizes, which

fits the properties of the local features, and also facilitates a

generalization ability to varying numbers of local features.

We also observe a further important property, the multi-

component nature of local features of a video. Multiple cues

in the signal may simultaneously make important contribu-

tions towards enabling the classification of a given video.

For instance, in the pole vault video (Figure 1 bottom), the

landing, jump, and run up all may yield useful information.

Combining the signals across these different aspects ought

to be better than focusing on just one of them.

A single attention unit can be viewed as focusing on just

one aspect of the video, hence discarding a considerable

amount of information. It turns out that it is near-impossible

to achieve our aims with a single attention unit. Thus, we

propose using multiple attention units to construct an atten-

tion cluster that constitutes a global representation of the

video. Furthermore, we find that attention clusters result-

ing from a simple concatenation of the outputs of attention

units only lead to weak gains, making them an inefficient

choice. Instead, we propose a very simple and efficient pro-

cedure, the shifting operation, which effectively increases

the diversity between attention units, speeding up the train-

ing efficiency and improving the classification accuracy.

In the following, we first review pertinent related work

in Section 2. Then, in Section 3, we present our proposed

attention clusters approach with the shifting operation, as

well as our overall architecture for video classification. In

Section 4, in order to analyze the effect of various attention

cluster approaches and visualize the inner workings of the

attention mechanism, we propose Flash–MNIST as a new

toy dataset, and conduct various comparative experiments

on it. Finally, we show the results of using attention clus-

ters on challenging real-world video classification datasets

in Section 5.

2. Related Work

2.1. Attention Mechanisms

Attention networks were originally proposed on the ba-

sis of the REINFORCE algorithm. In particular, Mnih et al.

[20] and Ba et al. [2] proposed attention for object recog-

nition with recurrent neural networks. These attention net-

works select regions by making hard binary choices, which

may face difficulties in training.

Soft attention mechanisms were proposed by using

weighted averages instead of hard selections. Bahdanau et

al. [3] apply soft attention to machine translation with the

aim of capturing soft alignments between source and tar-

get words. Sharma et al. [24] proposed a Soft-Attention

LSTM model built on top of multi-layered RNNs to se-

lectively focus on parts of the video frames and classify

videos after taking a few glimpses. Wang et al. proposed

an attention-based method for weakly supervised action
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recognition [37], but it mainly targets untrimmed videos

and is not ideal when directly applied to trimmed videos.

Li et al. proposed an end-to-end sequence learning model

called VideoLSTM [17], which hardwires convolutions in

the Soft-Attention LSTM. These soft attention models re-

quire the introduction of supplementary sources of infor-

mation to guide the weighted averages, which incur a sub-

stantial computational cost while failing to yield sufficient

improvements in classification tasks.

To address the problem of attention on single sequences,

many self-attentive models have been proposed for a variety

of tasks, such as reading comprehension [5] and abstrac-

tive summarization [22]. Lin et al. [18] applied multiple

attention units to learn task-independent sentence represen-

tations, relying on a penalization term to force each atten-

tion to attend to different parts. However, penalty functions

forcing each weight vector to be different are too restrictive

for video classification. Due to highly similar features be-

tween frames, many videos lack sufficient diversity, so this

method fails to obtain good results. Our proposed atten-

tion clusters are another form of self-attentive architecture,

which introduces a shifting operation to learn diversified at-

tention units.

2.2. Video Classification

Since CNNs enjoy great success in image classification

[15, 31, 26, 11], they have also been applied to video clas-

sification tasks. Karpathy et al. [14] studied multiple fusion

methods based on pooling local spatio-temporal features ex-

tracted by 2D CNNs from RGB frames. This can be viewed

as a preliminary exploration of the idea of integrating local

feature sets, although simple pooling methods do not yield

significant gains.

Many architectures have been proposed for modeling

spatio-temporal information. The optical flow method [39]

captures temporally local information by considering the

variation in the surrounding frames. Simonyan et al. [25]

devised a method that uses both RGB and stacked optical

flow frames as appearance and motion signals, respectively.

The accuracy is significantly boosted even by simply fus-

ing probability scores, which indicates that optical flow can

contribute useful short-term motion information. Feichten-

hofer et al. [8, 7] compared a number of ways of fusing

CNNs both spatially and temporally and combined them

with ResNets [11] to extract better spatio-temporal informa-

tion. C3D [33] extends 2D CNNs by using 3D convolution

kernels to capture spatio-temporal information. Varol et al.

[34] found that better results could be achieved by expand-

ing the temporal length of inputs and using optical flows

instead of RGB inputs for 3D CNNs. Carreira et al. [4] in-

corporated the Inception architecture [31] into 3D CNNs.

To model long-term temporal interactions in video clas-

sification, recurrent neural networks (RNN), particularly

long short-term memory (LSTM) [13] have been applied

in numerous papers. Ng et al. [21] devised two-stream

LSTMs. Donahue et al. [6] proposed an end-to-end archi-

tecture based on LSTMs. Srivastava et al. [28] attempted

to improve the representation ability of LSTMs by first pre-

training them in an unsupervised manner to reconstruct the

input. However, the accuracy on video classification with

these RNN-based methods has been unsatisfactory, which

may indicate that long-term temporal interactions are not

crucial for existing video classification datasets. Our pro-

posed method explores the potential of local feature integra-

tion without any recourse to long-term order information.

3. Approach

We now describe our approach of using attention clusters

with a shifting operation, and show how to apply it to the

task of video classification. We broadly consider three ma-

jor parts: local feature extraction, local feature integration,

and global feature classification. Each of these is addressed

by suitable neural networks. Among them, the local feature

extraction uses existing CNNs, and the global feature clas-

sification invokes fully connected and softmax layers. The

main contribution lies in the local feature integration step,

that is, our investigation of how to generate global represen-

tations given a set of local features.

3.1. Local Feature Set

In neural network settings, we often obtain local features

of a video, since CNNs can naturally be used as a feature

extractor.

The local feature set is defined as a set of unordered local

features corresponding to different parts of the same video.

Here, for convenience, we use a M × L matrix X to repre-

sent a set containing L local features, each column of which

is a separate local feature vector xi:

X = (x1,x2, ...,xL). (1)

Note that, in fact, the set of local features is unordered, and

hence permuting the columns of the matrix should not affect

the results. Also, the number of local features L can vary

across different objects. The challenge we seek to address

at this point is how to generate fixed-length global vectors g

to classify objects based on pertinent information from the

local feature sets as given by X.

3.2. Attention

We rely on an attention mechanism to obtain such global

features. In classification settings, the attention is static, and

the input contains only the local feature vector set itself. Its

responsibility is to first analyze the importance of each lo-

cal feature and then to bestow the global feature with as
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much useful information as possible, while ignoring irrel-

evant signals and noise. Such attention outputs can essen-

tially be regarded as weighted averages on a vector set:

v = Xa, (2)

where a is a weight vector of dimension L, which is deter-

mined by a weighting function.

The choice of weighting function is the most crucial de-

sign decision to be made. Its input is the local feature set

X, while its output is the weight vector a, whose ℓ1 norm

is 1. Each dimension of the weight vector corresponds to a

local feature.

There are many methods to compute the weights of local

features. For instance, global averages can be considered

as a degenerate form of attention, and the corresponding

weighting function can be expressed as:

a =
1

L
1, (3)

where 1 is a vector of dimensionality L with all elements

equal to 1. For a more malleable attention weighting func-

tion, we can use a single fully-connected layer that has only

one cell (FC1), such as:

a = softmax(w⊺X+ b), (4)

where w and b are parameter vectors of dimensionality M
and L, respectively. Similarly, we may use two successive

fully-connected layers of size H and one hidden cell (FC2):

a = softmax (w⊺

2
tanh(W⊺

1
X+ b1) + b2) , (5)

where W1 is a parameter matrix of dimensionality M ×H ,

b1, w2 are parameter vectors of dimensionality H , and b2

are parameter vectors of size L.

In the experiments in Section 4, we compare the effects

of these different weighting functions.

3.3. Attention Clusters

The output of one such attention unit typically focuses

on a specific part of the video, e.g. a particular set of re-

lated frames or similar sounds. Normally, a single atten-

tion unit can only be expected to reflect one aspect of the

video. However, there can be multiple pertinent parts in a

video that together describe the overall event portrayed in

the entire video. Therefore, to be able to represent multi-

ple components, we need multiple attention units that focus

on different parts of local features. We refer to a group of

attention units that operate on the same input but have inde-

pendent parameters as an attention cluster. The size N of

an attention cluster is defined by the number of independent

attention units in it. The global feature g resulting from an

attention cluster is a vector of dimensionality NM which
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Figure 2. Multimodal Attention Clusters with Shifting Operation:

The overall architecture for video classification. Separate attention

clusters are applied for different feature sets and then the outputs

are concatenated for classification.

can be obtained by concatenating the outputs of all involved

attention units:

g = [v1,v2, ...,vN ], (6)

where vk is output of k-th attention unit.

3.4. Shifting Operation

Although we expect attention clusters to be able to focus

on different components, through experiments, which we

describe in Section 4.4, we found that simply concatenating

the outputs of attention units yields unsatisfactory results,

since they tend to focus on similar signals. In order to ad-

dress this problem, we propose a shifting operation, which

is added onto each attention unit. This is achieved by adapt-

ing Eq. 2 as follows:

v =
α ·Xa+ β√

N ‖α ·Xa+ β‖
2

, (7)

where α and β are learnable scalars, which act as a linear

transformation in the feature space. After the linear trans-

formation, we ℓ2-normalize each attention unit separately.

The factor 1/
√
N finally acts as a global ℓ2-normalization

on the cluster. Combining the linear transformation and nor-

malization, the shifting operation shifts the weighted sum

in the feature space and at the same time ensures scale-

invariance. The shift operation efficiently enables differ-

ent attention units to flexibly diverge from each other and

have different distributions, and the scale-invariance facili-

tates the optimization of the entire network.

3.5. Overall Architecture for Video Classification

In order to collect multimodal information from videos,

we extract a variety of different local feature sets, such as

appearance (RGB), motion (flow), and audio signals. How-

ever, it is unrealistic to process all feature sets simultane-

ously within the same attention cluster, because features of
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Figure 3. Frames of 5 videos in Flash-MNIST and the correspond-

ing label. The purple bold digits in label are digits flashing in the

video.

different modalities have different distributions, dimension-

alities, and scales. Instead, we propose multimodal atten-

tion clusters with the shifting operation to train attention

clusters for different modalities simultaneously. The layout

of the proposed overall architecture is illustrated in Figure

2.

First, we extract multiple feature sets from the video. For

each feature set, we apply independent attention clusters

with shifting operation to obtain a modality-specific repre-

sentation vector. Next, the output of all attention clusters

are concatenated to form a global representation vector of

the video. Finally, the global representation vector is used

for classification through a fully-connected layer.

4. Analysis and Visualization

Because real-world video classification datasets conflate

many different forms of variation, they are not easy to ana-

lyze and visualize directly. We first propose a new toy video

classification dataset, Flash–MNIST, which we syntheti-

cally generate from the MNIST handwritten digit dataset.

The Flash–MNIST dataset has fewer irrelevant factors of

influence and requires only modest amount of computation.

Nevertheless, its local feature set shares many properties

with real video classification, which is convenient for anal-

ysis and visualization. This allows us to observe the behav-

ior of the model under simplified conditions and achieve a

deeper understanding of how the model works. We make

our code for generating the dataset and training on it pub-

licly available1.

4.1. Flash–MNIST Dataset

In the well-known MNIST dataset, the goal is classify

28 × 28 pixel images of handwritten digits into 10 classes

for the respective digits. Flash–MNIST extends this image

classification task to video. The videos in Flash–MNIST

consist of 25 frames with noisy backgrounds, on which var-

ious MNIST digits briefly flash up. The goal is to identify

the specific set of digits that appear in the video, which en-

tails choosing from a total of 210 = 1024 categories. Figure

3 shows 5 samples and their corresponding labels. Specif-

ically, in order to generate training samples, we first ran-

domly generate 25 different 28× 28 noise frames, sample a

1https://github.com/longxiang92/Flash-MNIST

N Average
Without Shifting With Shifting

FC1 FC2 FC1 FC2

1 0.2 0.2 0.2 51.2 53.7

2 0.4 0.4 0.5 64.8 66.8

4 0.6 2.2 2.3 75.9 76.8

8 0.9 31.7 22.5 80.6 83.1

16 1.2 82.3 82.0 86.9 84.9

32 2.4 83.3 83.2 87.1 85.6

64 5.0 83.2 82.4 87.1 85.6

128 8.9 81.8 80.9 87.1 85.7

Table 1. Accuracy (%) on Flash-MNIST to show the effect of dif-

ferent weighting functions , various cluster sizes N , and aggrega-

tion with or without the shifting operation.

possible set of digits, and then randomly select correspond-

ing digit images from the MNIST training set and overlay

them on the random frames. For the test set samples, a simi-

lar process is used, except that images are selected from the

MNIST test data. We randomly generate 102,400 samples

for training, and 10,240 samples for testing.

We pretrain CNNs on MNIST with noisy backgrounds

to extract local features. The CNNs consist of 2 succes-

sive convolutional layers with 5 × 5 kernels, 10/20 filters

followed by relu activations and max-pooling with stride

2, and one fully connected layer with 50 hidden units.

Through the CNNs, we can obtain 25 local features with

a dimensionality of 50, each local feature corresponding to

a frame in the video. These 25 local features consist of the

local feature set, and we apply a variety of attention clus-

ter alternatives, as described in Section 3, to induce a global

representation. Finally, this is passed through one fully con-

nected layer for classification. The accuracy scores for dif-

ferent settings for the attention clusters are given in Table

1. We describe and analyze the results in the following. For

more details of the dataset generation and network training,

please refer to the supplementary material.

4.2. Effect of Weighting Function

First of all, we analyze the effect of the choice of weight-

ing function. We consider Average as described in Eq. 3,

and two different attention weighting functions, FC1 as de-

scribed in Eq. 4, and FC2 with 10 hidden units as described

in Eq. 5. As shown in Table 1, we observe a significant gap

between the results of using Average and the other attention

weighting functions, which means that attention can play

an effective role in this situation to focus on the parts that

merit consideration. We also observe that FC2 fares slightly

better than FC1 when the cluster size is small, but FC2 per-

forms worse than FC1 when the cluster size is large. This,

we speculate, may stem from the expressive power of at-

tention clusters saturating as the size increases, even if the

form of attention itself is simple enough. Considering that

FC2 contains more parameters and requires more computa-

tion, but is unable to yield any benefits, we rely on the FC1

weighting function as the default in all subsequent experi-

ments.
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Figure 4. The accuracy on Flash–MNIST in each epoch, learned

with different cluster sizes, with (w/) or without (w/o) the shifting

operation.

4.3. Effect of Attention Cluster Size

Next, we consider the effect of different cluster sizes

N . Because a video may include a variety of digits, these

should not be attended to by the same unit. Consider an

ideal situation, in which 10 attention units each pay atten-

tion to whether a specific digit occurs. This is obviously

more reasonable than using a single attention function. Of

course, during training, we lack control over which atten-

tion unit learns information about which digit. Still, we may

hope that using multiple attention units may have the poten-

tial to learn more beneficial information.

In order to verify our idea, for fairness of comparison,

we ensure that the numbers of network parameters are com-

pletely identical, except for parameters contained in the

weighting functions, by also replicating the output vectors

for the Average method N times. As shown in Table 1 and

Figure 4, we find that with an increase in the cluster size N ,

the classification results increase significantly when the size

is small and subsequently almost remain unchanged until

reaching a certain level. Furthermore, the gap between us-

ing attention and Average becomes larger as N increases,

indicating that this improvement is not due to an increase in

the number of network parameters, but that the model gen-

uinely pays attention to different aspects of local features.

Besides, the convergence speed also increases for in-

creasing cluster sizes. Although a larger cluster size re-

quires more computation, a smaller overall training time is

required for reasonably large cluster sizes, since the com-

putation of the attention and shifting operations is very effi-

cient.

We visualize the attention weight maps for attention

clusters with 8 units in Figure 5. We observe that each at-

tention unit learns about different kinds of information. For

instance, with shifting operation (middle, bottom), the first

attention unit learns to attend to the digit 4, and the fifth

attention unit learns to attend to digits 6 and 7.

4.4. Effect of Shifting Operation

Finally, we consider the effect of the shifting operation.

As shown in Table 1, we find that applying attention clus-

ters with shifting yields substantial improvements, as the

With Shifting Operation

Without Shifting Operation

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 5. Visualization of attention weight maps of 8-unit atten-

tion clusters with shifting operation (middle, bottom), and without

(top). We show frames in HSV space, in which larger values in-

dicate a larger weight. The first row for each sample provides the

video frames, and the respective following 8 rows correspond to

the 8 weights of 8 attention units.

accuracy increases from 83.3% to 87.1%. Inspecting the

attention weight maps in Figure 5, we find that the atten-

tion weights diverge entirely when using shifting, while the

third and fourth attention weights match the fifth and sixth

when not using the shifting operation. This indicates that

the shifting operation can help us learn more diversified in-

formation for better generalization, and, ultimately, a higher

accuracy. Simultaneously, the shifting operation can also

help the model converge more rapidly. As plotted in Figure

4, at the same cluster size, the approach with shifting con-

verges much more rapidly than when forgoing the shifting

operation.

5. Experiment on Real Video Classification

In this section, we proceed to evaluate and compare our

proposed methods on real-world video classification tasks.

5.1. Datasets

Specifically, we evaluate our methods on three popular

trimmed video classification datasets.

UCF101 [27] contains 13,320 web video clips with hetero-

geneous forms of camera motion and illumination. Each

clip contains about 180 frames and is labeled with one of

101 action classes, ranging from daily life activities to un-

usual sports.

HMDB51 [16] consists of 6,766 video clips from movies

and web videos. Each clip is labeled with one of 51 action
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N
RGB Flow Audio

Average w/o w/ Average w/o w/ Average w/o w/

1 72.5 73.1 73.4 63.5 63.7 65.2 20.6 21.3 21.5

2 73.0 73.6 73.9 64.5 64.6 66.1 21.4 22.3 22.3

4 73.2 73.8 74.2 65.0 65.0 66.5 22.2 22.8 22.9

8 73.2 74.1 74.4 65.4 65.5 66.8 22.5 23.3 23.4

16 73.1 74.0 74.6 65.2 65.9 67.1 22.4 23.3 23.7

32 73.0 73.6 74.7 64.9 65.5 67.4 22.3 23.1 23.9

64 72.5 73.2 74.9 64.4 65.1 67.5 22.2 22.7 24.1

128 72.6 73.2 75.0 65.1 63.9 67.5 21.8 22.5 24.2

Table 2. Top-1 accuracy (%) on Kinetics to show the effect of dif-

ferent cluster sizes and training with (w/) or without (w/o) shifting

operation for RGB, flow, and audio.

categories. For UCF101 and HMDB51, we report the aver-

age accuracy over three training/testing splits, following the

original evaluation scheme.

Kinetics [4] is a large-scale trimmed video dataset with

more than 300K video clips in total, in which 246,535 serve

as training data, and 19,907 for validation. Each video clip

is taken from a different YouTube video and lasts around

10s. The clips are labeled using a set of 400 human action

classes. We report experimental results on the validation

split, due to the unavailability of the test split at the time

of conducting these experiments. Since Kinetics is larger-

scale and has more categories, it is convenient for stable and

reliable experimental analysis. We mainly perform compar-

ative experiments on Kinetics.

5.2. Local Feature Extraction

Considering that video is inherently multimodal, we ex-

tract three kinds of local features – RGB, flow, and audio

– to represent the video. We rely on CNNs to extract these

features.

RGB and flow features are extracted from RGB video

frames or optical flow images, which are created by stack-

ing the two channels for the horizontal and vertical vec-

tor fields [25]. For UCF101 and HMDB51, we initialize

ResNet-152 [11] with a pre-trained ImageNet model and

fine-tune it using the frames from training videos and then

apply it to extract RGB and flow features. For Kinetics,

we rely on Inception-ResNet-v2 [30] to extract these fea-

tures. The RGB model is initialized with a pre-trained Im-

ageNet model and fine-tuned using the training split based

on the temporal segment network framework [38] with 7

segments. Then the flow model is initialized by the RGB

model and also fine-tuned the same way. After training, we

can extract local RGB and flow features for every frame.

To extract audio features, we generate audio spectrogram

patches first. For every 10ms, we decompose the signal with

a short-time Fourier transform and then rely on aggregated,

logarithm-transformed 64 mel-spaced frequency bins fol-

lowing [12]. Each 96 consecutive bins yield one log-mel

96× 64 spectrogram patch, which can be processed just

like an image. After this, we can extract audio features

using VGG-16 [26] on Kinetics just as for RGB and flow

N RGB N Flow N Audio Top-1 (%) Top-5 (%)

1 1 1 77.9 93.6

4 4 4 78.7 94.0

16 16 16 79.1 94.0

32 16 16 79.2 94.0

32 32 32 79.3 93.9

64 32 32 79.4 94.0

64 64 64 79.3 94.0

128 128 128 79.3 93.9

Table 3. Top-1 and top-5 accuracy (%) of multimodal integration

of different cluster sizes for different modality on Kinetics.

features. For videos without audio, we feed in the average

of audio features over the training set.

5.3. Local Feature Set Augmentation

Data augmentation plays a very important role in train-

ing neural networks, making use of properties of the data

to effectively reduce overfitting. Here, we can similarly ex-

ploit the properties of the local feature sets to design new

data enhancement methods. Local feature sets are approxi-

mately unordered, and most of the time, we do not need to

understand the video using all of the local features, since we

often only need a few key frames for classification. Hence,

when we train the model, we can randomly sample a part

of the features from the local feature set, but use all the fea-

tures during testing. This data augmentation method can

reduce the amount of computation during training, effec-

tively prevent overfitting, and allow us to make use of all

information during testing.

5.4. Implementation Details

In order to reduce overfitting, we apply dropout with

probability 0.9 before the final fully connected layer. For

local feature set augmentation, we sample 15/15/20 local

features during training on UCF101/HMDB51/Kinetics, re-

spectively, and we extract 20/20/25 local features, respec-

tively, at equal intervals during testing. To balance the

dataset, we set the sample weight to 1/S if a given sam-

ple belongs to a class that contains S samples during train-

ing. We rely on the RMSPROP algorithm [32] to update

parameters with a learning rate of 0.001 and clip the gradi-

ent ℓ2-norm of all parameters to 5 for better convergence.

5.5. Result of Single Modality

We explore how many attention units we need to use

for a single modality and whether we should use the shift-

ing operation or not to achieve the best results on Kinetics.

Based on the previous experiment, we use the weighting

function FC1 as default. Table 2 describes the relationship

between the Top-1 accuracy of RGB, flow, and audio as sin-

gle modalities, for different attention cluster sizes N , and

with or without the shifting operation. We also show the

Average results as the baseline.

We find that often with increasing N , the accuracy in-

creases first and then decreases without shifting, or remains
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Method Top-1(%) Top-5(%)

C3D [33] 55.6 79.1

3D ResNet [10] 58.0 81.3

Two-Stream I3D* [4] 74.2 91.3

RGB+Flow TSN Inception V3 [38] 76.6 92.4

RGB

TSN[38] 73.0 90.9

TS-LSTM (5 seg) [19] 73.2 90.9

Temporal-Inception [19] 73.5 91.2

Bi-directional LSTM 74.0 91.6

Attention Cluster 75.0 91.9

Flow

TSN[38] 66.0 86.9

TS-LSTM (5 seg) [19] 65.3 86.2

Temporal-Inception [19] 65.4 86.2

Bi-directional LSTM 66.4 86.9

Attention Cluster 67.5 87.3

Audio

TSN[38] 21.6 39.4

TS-LSTM (5 seg) [19] 22.6 40.6

Temporal-Inception [19] 22.7 40.7

Bi-directional LSTM 23.4 41.3

Attention Cluster 24.2 42.2

RGB

+ Flow

+ Audio

Average 76.5 92.7

Flatten 76.7 92.7

TS-LSTM (5 seg) [19] 77.3 93.0

Temporal-Inception [19] 77.6 93.3

Bi-directional LSTM 78.2 93.5

Attention Cluster 79.4 94.0

Table 4. Kinetics top-1 and top-5 accuracy (%) on the validation

set, except for results marked with ‘∗’, which were reported based

on the test set.

unchanged with the shifting operation. When N is small,

due to limitations of the expressive power of attention mod-

els, the accuracy increases with increasing N both with and

without the shifting operation. When N is sufficiently large,

the expressive power is adequate. Without the shifting op-

eration, for increases in N , the number of parameters also

increases, and harmful overfitting becomes a serious issue,

while the training is also more difficult. This leads to a de-

crease in accuracy. With the shifting operation, the training

remains stable and reliable even for large cluster sizes.

We observe that the accuracy while using the shifting

operation is universally better than without it. This suggests

that the shifting operation can increase the diversity of the

attention mechanism effectively, to improve the accuracy.

We have also observed that attention clusters with shifting

operation converged more quickly than without, similar to

the observations on Flash–MNIST.

As shown in Table 4, comparing to the pretrained TSN

models used for feature extraction, our attention clusters

achieve excellent improvements of 2.0% for RGB, 1.5% for

flow, and 2.6% for audio, in terms of top-1 accuracy. We

also find that our results can beat other fusion methods us-

ing the same local features.

5.6. Result of Multimodal Integration

We investigate the effects of various combinations of

different attention cluster sizes for multimodal integration.

The results are shown in Table 3. We find that we can use

smaller cluster sizes for multimodal integration rather than

for a single modality. We can achieve the best top-1 accu-

racy (79.4%) and the best top-5 accuracy (94.0%) with 64

attention units for RGB, and 32 for flow and audio. We also

implement a series of three stream fusion methods using the

Method UCF101(%) HMDB51 (%)

iDT + FV [35] 85.9 57.2

iDT + HSV [23] 87.9 61.1

EMV-CNN [40] 86.4 -

VideoLSTM[17] 89.2 -

FSTCN [29] 88.1 59.1

TDD+FV [36] 90.3 63.2

TSN (2 modalities) [38] 94.0 68.5

Two Stream [25] 88.0 59.4

Temporal-Inception [19] 93.9 67.5

TS-LSTM [19] 94.1 69.0

Fusion [8] 92.5 65.4

ST-ResNet [7] 93.4 66.4

ActionVLAD [9] 92.7 66.9

Attention Cluster RGB+Flow 94.6 69.2

Table 5. Mean classification accuracy (%) comparing with State-

of-the-Art methods on UCF101 and HMDB51.

same local features (see supplementary material for details).

As shown in Table 4, our approach improved over them by

a large margin.

5.7. Comparison with State-of-the-Art

Finally, we compare our method against the state-of-the-

art methods.

On UCF101 and HMDB, our approach obtains robust

improvements over the two-stream fusion results for CNNs.

As shown in Table 5, our approach can achieve competitive

results in comparison with existing published methods [35,

23, 40, 25, 29, 17, 36, 8, 33, 38, 7, 9, 19].

On Kinetics, as shown in Table 4, we compare our

method against many published results [33, 10, 4, 38].

Since the local feature extractors are trained using TSN

[38], the results with CNNs are already very strong. The im-

plemented three stream fusion methods also act as a strong

baseline. Our approach again enjoys great improvements

over all of them and obtains the start-of-the-art result.

6. Conclusion

To explore the potential of pure attention networks for

video classification, a new architecture based on attention

clusters with a shifting operation is proposed to integrate

local feature sets. We analyze and visualize attention on

the proposed Flash–MNIST data to get a better understand-

ing of how our attention clusters work. We also have con-

ducted experiments on three well-known video classifica-

tion datasets and find that this architecture can achieve ex-

cellent results for a single modality or integrating multiple

modalities, while also accelerating the training phase.

In terms of future work, we hope to apply this architec-

ture to low-level local features and assess to what extent it

can uncover relationships between features in different spa-

tial coordinates. We further hope to integrate it into end-to-

end-trained networks.
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