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Abstract—Remote sensing (RS) image scene classification is an
important research topic in the RS community, which aims to assign
the semantics to the land covers. Recently, due to the strong behav-
ior of convolutional neural network (CNN) in feature represen-
tation, the growing number of CNN-based classification methods
has been proposed for RS images. Although they achieve cracking
performance, there is still some room for improvement. First, apart
from the global information, the local features are crucial to distin-
guish the RS images. The existing networks are good at capturing
the global features since the CNNs’ hierarchical structure and
the nonlinear fitting capacity. However, the local features are not
always emphasized. Second, to obtain satisfactory classification
results, the distances of RS images from the same/different classes
should be minimized/maximized. Nevertheless, these key points
in pattern classification do not get the attention they deserve. To
overcome the limitation mentioned above, we propose a new CNN
named attention consistent network (ACNet) based on the Siamese
network in this article. First, due to the dual-branch structure of
ACNet, the input data are the image pairs that are obtained by the
spatial rotation. This helps our model to fully explore the global
features from RS images. Second, we introduce different attention
techniques to mine the objects’ information from RS images com-
prehensively. Third, considering the influence of the spatial rotation
and the similarities between RS images, we develop an attention
consistent model to unify the salient regions and impact/separate
the RS images from the same/different semantic categories. Finally,
the classification results can be obtained using the learned features.
Three popular RS scene datasets are selected to validate our ACNet.
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Compared with some existing networks, the proposed method can
achieve better performance. The encouraging results illustrate that
ACNet is effective for the RS image scene classification. The source
codes of this method can be found in https://github.com/TangXu-
Group/Remote-Sensing-Images-Classification/tree/main/GLCnet.

Index Terms—Convolutional neural network (CNN), remote
sensing (RS), scene classification.

I. INTRODUCTION

W
ITH the development of remote sensing (RS) technol-

ogy, an increasing number of RS images can be collected

every day by the diverse earth observation satellites. Abundant

information is provided by these images to scholars for under-

standing our planet. How to organize these huge volumes of RS

images becomes an urgent and necessary task. As a fundamental

and useful technology, RS image scene classification plays an

important role in the RS community. Through assigning the

semantic tags (e.g., “airport” and “beach”) to the RS images,

the large number of RS images could be categorized in different

classes. Then, researchers can select the specific RS images

according to the diverse semantics to accomplish their tasks.

Due to this characteristic, RS image scene classification is

popular in many practical applications, such as agriculture [1],

hydrology [2], and forestry [3].

During the last decades, many successful RS image scene

classification methods have been proposed [4]–[17]. At first, the

two-stage framework dominates the scene classification commu-

nity. In other words, researchers develop the methods to extract

or learn the RS images’ visual features first, and then some

machine learning algorithms are adopted or designed to com-

plete the categorization. For example, Sheng et al. [5] proposed

a two-stage classification scheme in which the support vector

machine (SVM) [18] is used to generate probability images with

different handcrafted features in the first stage and the generated

probability images with different features are fused in the second

stage to obtain the final classification results. Another scene

classification method was presented in the literature [10]. It

extracts several handcrafted visual features from the RS images

first. Then, the fully sparse semantic topic model is developed

to fuse the contributions of diverse features. Finally, the fused

features are classified by the SVM classifier. In this period,

for the feature extraction/learning, the low-/mid-level visual

features (e.g., Gabor feature [19] and bag of words feature [20])

are popular since they are easy in accomplishment and stable

in performance. For the classification, some traditional machine
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learning classifiers based on the statistical and Bayesian theories

(e.g., random forest [21] and SVM) are favored by researchers.

Recently, due to the strong feature learning ability and the

end-to-end classification framework, the convolutional neural

network (CNN) attracts more and more scholars’ attention.

An ocean of CNN-based RS scene classification methods is

proposed. Lu et al. [22] introduced an unsupervised deep fea-

ture learning method for scene classification. Inspired by the

deconvolution network [23], [24], the weighted deconvolution

network and the spatial pyramid model are combined to ex-

tract the effective features from RS images. Then, the scene

classification results can be obtained by these features. Liu

et al. [25] proposed a random-scale stretched CNN named

SRSCNN, where the patches with a random scale are cropped

from the image and stretched to the specified scale as input to

train a CNN for solving the scale variation of the same object in

a scene. To explore the semantic label information, Lu et al. [26]

proposed an end-to-end feature aggregation CNN (FACNN). In

FACNN, a supervised convolutional features’ encoding module

and a progressive aggregation strategy are proposed to leverage

the semantic label information to aggregate the intermediate

features. The good performance of the above methods mainly

depends on CNN’s hierarchical feature learning structure and

a large number of labeled samples. However, they do not fully

consider a key issue in the pattern classification [27], i.e., the

interclass differences should be maximized and the intraclass

variations should be minimized.

To overcome the limitation mentioned above, the Siamese

network [28] is introduced to the RS images classification task.

On the one hand, based on the basic CNN framework, the

Siamese network can explore the high-level semantic features

from the RS images. On the other hand, due to the dual-channel

structure and specific loss function, the Siamese network can

also mine the similarity relationships between the RS image

pairs. For example, Liu et al. [29] imposed the metric learning

regularization term on the original Siamese network, which

enforces the Siamese networks to be more robust. Although

the mentioned Siamese network based classification methods

perform well for RS scenes, there is still some space to improve.

First, to capture the complex contents within the RS images,

not only the global information but also the local objects should

be taken into account during the feature learning. In general,

the global information of an RS image can be explored by the

common CNN. Nevertheless, it is hard for a usual CNN to mine

the objects from the RS images since they are diverse in type

and huge in volume. Second, to compact the interclass samples

and separate the intraclass images, the resemblance relationships

between RS images should be measured from different aspects.

Based on the above discussion, we design a new method

based on the Siamese network to accomplish RS image scene

classification, which is named attention consistent network (AC-

Net). First, we adopt a popular CNN (VGG16Net [30]) to learn

the intermediate feature maps (global information) from the RS

image pairs. Second, with the help of the visual attention mecha-

nism, a parallel-attention model is designed to mine the detailed

information (objects’ information) from the obtained feature

maps. Third, to reduce the influence of differences between

attention maps corresponding to the input pairs, we develop an

attention consistent model here. Also, this model can narrow

down the intraclass variations and enlarge interclass differences

of RS images from the specific region aspect, which is beneficial

to deeply explore the similarity relationships between RS images

for the classification task. Finally, the RS scene classification

results can be obtained using the learned deep features.

The major contributions of this article are as follows.

1) Based on the Siamese network, an end-to-end RS image

scene classification model is proposed. The input RS

image pairs for our model are constructed by the spatial

rotation, which can not only augment the training data but

also highlight the intraclass similarities.

2) Taking the characteristics of RS images into account,

the parallel-attention model is developed to capture the

local information from the spatial and spectral aspects.

Accompanying with the global knowledge obtained by a

successful CNN, the discrimination of the final features

can be improved a lot.

3) To unify different kinds of attention maps and consider the

resemblance between RS images for the scene classifica-

tion, we design the attention consistent model. On the one

hand, it can avoid the negative effects caused by the differ-

ences between attention maps of image pairs. On the other

hand, this model is able to reduce the interclass differences

and increase intraclass variations of RS images.

4) Extensive experiments are conducted on three benchmark

datasets, and the encouraging results prove that our ACNet

is effective for the RS image scene classification task.

The remainder of this article is organized as follows. Related

work is reviewed in Section II. Then, the proposed ACNet

is introduced in Section III. The evaluations of the proposed

method are given in Section IV. Finally, the conclusions are

summarized in Section V.

II. RELATED WORK

RS scene classification is one of the challenging content

understanding tasks in the RS community. In recent years, with

the help of CNN, the performance of RS scene classification

is enhanced dramatically. Here, we roughly divide the existing

CNN-based classification methods into two groups according to

their architecture.

In the first group, the structure of the classification networks

is the single-branch. In other words, these networks have only

one entrance. When the RS images are input the networks, they

would be mapped into the feature vectors by some operations

(e.g., convolution, pooling, fully connection, and other advanced

techniques) for completing the classification task. The positive

results of this kind of classification methods mainly depend on

constructing the relationships between RS images and semantic

labels by a large number of training data [31], [32]. At the

very beginning, some classical CNNs (such as AlexNet [33],

Overfeat [34], and VGG16 [30]) were applied to the RS scene

classification directly [35]. Due to the pretrained weights (using

ImageNet dataset [36]) and the strong feature learning capacity

of CNN, the classification results are improved dramatically.
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Then, considering the characteristics of RS images, a series of

methods have been proposed based on the basic CNNs. In 2017,

Han et al. [37] proposed a pretrained AlexNet-spatial pyramid

pooling-side supervision model for RS scene classification, in

which the spatial pyramid pooling and the side supervision mod-

els are embedded into a pretrained AlexNet to solve the problem

of nonconvergence caused by the small quantities of RS images.

Since the feature maps corresponding to different convolutional

layers are fused, the multiscale information within RS images

can be explored, so that this model enhances the RS image

classification performance of AlexNet effectively. A multisource

compensation network was proposed in the literature [38]. It

combined a pretrained CNN, a cross-domain alignment model,

and a classifier complement module to deal with the cross-source

scene classification task. By finding a common space for RS

images from different sensors, the homogeneous features of

diverse RS images can be captured, which is beneficial to the

multisource RS image scene classification. The mentioned two

networks focus on mining the global information, however, the

local information that is also important to scene classification

is ignored. Fan et al. [39] proposed an attention-based residual

network to fully explore the complex contents from RS images,

where the common CNN with residual blocks is selected to mine

the global information from RS images. Meanwhile, the visual

attention mechanism is utilized to capture the local informa-

tion from RS images by assigning the larger weights to key

areas of RS images. Through combining the global and local

information, the RS scene classification results were enhanced

obviously. In 2019, Guo et al. [40] proposed an end-to-end

global-local attention network (GLANet) in which the global

attention blocks are designed to capture the global semantic

information from RS images. Then, the local attention blocks,

as a kind of attention mechanisms, are proposed to explicitly

distinguish between key information and redundant information

of RS images. Finally, to enhance the learning ability of the

network, the two supplementary loss functions are applied to

the GLANet. Although the mentioned two networks consider the

global and local information simultaneously, and they achieve

good performance. The similarities between RS images are not

taken into account, which could further enhance the classifica-

tion accuracy.

In the second group, the structure of the CNNs is the multi-

branch. Besides extracting the discriminative features from

RS images, the methods in this group can deeply explore the

intra/interclass relationships between RS images, which are

important to the RS scene classification task. Among the diverse

multibranch CNNs, the Siamese network [41] is a typical one. It

combines two weight-shared CNNs and develops some specific

objective functions to accomplish RS the image content under-

standing. Zhan et al. [42] proposed a deep Siamese convolution

network for RS images. Different from the methods based on

hand-crafted features, this model is developed to capture the

visual features from the image pairs. Furthermore, the weighted

contrastive loss function is imposed on the Siamese convolution

network to ensure the discrimination of the features. Its effective-

ness has been proved by the positive performance of the change

detection task. In the literature [43], an RS scene classification

network was introduced. It integrates the Siamese network and

structural metric learning to accomplish the feature learning

and develops the diversity-promoting scheme to enhance the

representational ability of the network. In 2018, Ma et al. [44]

proposed the Siamese hierarchical attention network (SHAN).

To obtain the more discriminative semantic features from RS

images, SHAN is designed based on the hierarchical recurrent

structure. Duo to the characteristics of the Siamese network, it

can effectively minimize the distance between the same class of

samples and separate the distance between the different classes

of samples, thereby improving the learning ability of the CNN.

In 2019, Liu et al. [29] proposed a scene classification method

based on the Siamese network, which consists of identification

and verification models. The identification model is used to

predict the input images’ identity labels and the verification

model is designed to measure the similarities between image

pairs. Integrating those two models, the interclass samples could

be compacted, whereas the intraclass images could be separated.

Finally, the regularization term is imposed on the features, which

effectively improve the performance of Siamese networks. The

advantage of the above methods is developing the specific

strategies for capturing the similarities between RS images,

which could improve the classification performance through

compacting/separating the RS images from the same/different

classes. Nevertheless, they overlook the effectiveness of visual

features. In other words, the characteristics of RS images are not

fully taken into account during the feature learning.

III. METHODOLOGY

A. Overall Framework

Different from the ordinary multibranch network, which sam-

ples two images from the same/different classes to compose the

positive/negative input data, our ACNet takes the image I and

the image T(I) obtained by the spatial rotation as the input. The

reasons for this operation are twofold. First, spatial rotation is

a common data augmentation strategy. After the rotation, the

volume of training data can be increased two times with visual

perceptual consistency, which can not only reduce the overfitting

risk but also help ACNet to fully understand RS images from

different aspects. Second, since the RS images I and T(I) have

the same semantics, this kind of input pairs can push ACNet

to pay its attention to learn the rules for compacting the RS

images from the same classes. In other words, the RS images

from different semantic classes can be dispersed as well.

The framework of the proposed ACNet is shown in Fig. 1,

which contains four parts, i.e., the intermediate feature extrac-

tion model, the parallel-attention model, the attention consistent

model, and the classification model. First, the input image pairs I

and T(I) are passed through the intermediate feature extraction

model for the feature maps X and X′, which contain the basic

semantic information. Second, the parallel-attention model is

developed to explore the complex contents within the RS im-

ages from the global and local aspects. Then, the convolutional

representation is obtained by global average pooling (GAP)

on the concatenated feature maps, which come from parallel

attention models. Third, taking the influence of spatial rotation
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Fig. 1. Framework of our ACNet.

into account, we develop an attention consistent model to unify

the attention areas of the image pairs with different angles. Also,

this specific operation can compact the interclass samples and

separate the intraclass images. Finally, the softmax function is

combined to complete the classification. Note that, we assume

that the spatial rotation T(·) would not change the size of the

images. Now, we discuss them in detail.

B. Intermediate Feature Extraction

In this article, rather than developing some new CNNs, we

adopt VGG16 [30] to extract the intermediate features from

the RS images. The whole VGG16 network consists of 13

convolution layers with the kernel size of3× 3, five max pooling

layers with the size of 2× 2, five nonlinear activation layers, and

three fully connected (FC) layers. Here, our intermediate feature

extraction network remains convolution layers, max pooling

layers, and nonlinear activation layers. We use the pretrained

weights (obtained by ImageNet [35]) to initialize the feature

extraction model for speeding up the convergence. Note that,

for the input RS image pairs I and T(I), the feature extraction

networks are parameter shared. After the feature extracting

mode, the feature maps X ∈ R
H×W×C and X′

∈ R
H×W×C

can be obtained, where C, H , and W indicate the number of

channels, height, and width of the feature map.

The reasons that we adopt VGG16 are summarized as follows.

Considering the complex contents of RS images, we need a

CNN that has strong nonlinear feature learning capacity. Also,

taking the time complexity of network training into account,

the select intermediate feature extraction network should be as

light as possible. VGG16 just meets the demands mentioned

above. Compared with some shallow CNNs (e.g., LeNet [45]

and AlexNet [33]), VGG16 has more nonlinear layers that could

improve the capacity of feature learning. Also, the sizes of

convolutional kernels of VGG16 are 3× 3, which are beneficial

to capture the objects with diverse resolutions. Compared with

some heavy models (e.g., GoogleNet [46] and ResNet101 [47]),

optimizing VGG16 is not a tough issue. Therefore, we choose

VGG16 as our intermediate feature extraction network in this

article.

C. Parallel-Attention Models

The intermediate feature maps extracted by VGG16 can

represent the contents of RS images from the global aspect.

However, they are limited to explore the targets’ information

from RS images. To address this problem, we introduce the

visual attention mechanism into our model. Furthermore, con-

sidering the characteristics of the complex targets within RS

images, a parallel-attention model is designed to fully capture

the local-level information for the scene classification task. Note

that, since the operations on X and X′ are the same, we use X

as an example to explain our parallel-attention model clearly.

The parallel-attention model contains two blocks: channel-

wise attention block (CAblock) and spatial-wise attention block

(SAblock). CAblock focuses on emphasizing the significant

channels and suppressing the insignificant channels ofX to cap-

ture the salient targets from the RS images. To this end, we adopt

the squeeze-and-excitation (SE) model [48] as our CAblock,

and its framework is shown in Fig. 2. The SE model mines the
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Fig. 2. Flowchart of CAblock.

local information from the input feature maps through adaptively

assigning the weights to different channels within X. First, to

quantize the contributions of different feature responses, SE

applies GAP on the input X. The generated channel descriptor

s ∈ R
1×C can be regarded as the compressed local descriptors.

The squeeze operation mentioned above can be formulated as

sC =
1

H ×W

H
∑

i=1

W
∑

j=1

xC(i, j) (1)

where sC indicates the Cth element of s, and xC means the Cth

feature map in X. Second, to construct correlations between

channels and capture channel-wise dependencies, the channel

descriptor s is passed through two FC layers with different

activation functions. The output o is the channel weight that

represents the importance of each channel. This excitation op-

eration can be formulated as

o = Fex(·,W) = η (W2σ (W1s)) (2)

where W1 and W2 represent the parameters of two FC layers,

σ(·) is the ReLU function, and η(·) is the sigmoid function.

Finally, the output of SE Xc ∈ R
H×W×C can be obtained by

the following function:

xl
c = ol · xl, l = 1, . . . , C (3)

where xl
c means the lth channel of Xl, ol indicates the lth

element of o, and xl denotes the lth feature map of X.

SAblock aims to transform the input data X into a special

space with the consideration of spatial information, in which

the targets within RS images can be highlighted. For the output

of the intermediate feature extraction network X, each feature

vector f
(i,j)
X

∈ R
1×1×C corresponds to a 32× 32× 3 spatial

region of the RS image. To make clear the contributions of

different spatial regions for exploring the local information,

SAblock should learn a group of weights in the spatial domain

for feature vectors within X. To achieve this goal, we select a

spatial attention (SA) model proposed in the literature [49] to be

our SAblock. The structure of the SA model is exhibited in Fig. 3.

First, to transform the input X into the spatial domain, the SA

model reshapesX intoXt ∈ R
C×WH . Second, to emphasize the

significant feature vectors within X (i.e., highlight the attention

regions), and analysis the spatial-wise dependencies between

feature vectors, SA applies multiple nonlinear layers and reshape

operation on Xt. In particular, this step can be formulated as

Ms = fm (σ (η (Re (WtXt)))) (4)

Fig. 3. Flowchart of SAblock.

where Wt ∈ R
1×C is the transformation matrix, Re(·) repre-

sents the operation of reshape, σ(·) is the ReLU function, η(·) is

the sigmoid function, fm(·) indicates the normalization function

that maps the elements of Ms into the values between 0 and 1,

and Ms ∈ R
W×H is the weight coefficient of X that reflects the

importance of the different RS image spatial regions. Finally,

the output of SA Xs ∈ R
H×W×C can be obtained by

x(i,j)
s = x(i,j)

·M(i,j)
s (5)

where x(i,j) indicates the 1× 1× C feature vector located in

the spatial position (i, j) of X, and M
(i,j)
s denotes the (i, j) of

Ms.

To fuse the contributions of different attention feature maps

and get complete local information, we first use the batch nor-

malization (BN) and GAP operations to map them into the chan-

nel attention feature fc ∈ R
1×1×C and SA feature fs ∈ R

1×1×C

Then, fc and fs are contacted together for the final feature

representation f ∈ R
1×1×2C .

D. Attention Consistent Model

So far, we get the deep features f and f ′ for the image pairs

I and T(I). They can represent the images’ contents from both

global and local aspects. Ideally speaking, we hope these two

deep features could help us to group the image pairs into the

same semantic class since they are constructed by the simple

spatial rotation. Nevertheless, these two features would influ-

ence each other negatively due to the issue of visual attention

inconsistency. In detail, as mentioned in Section III-A, the image

T(I) is obtained by rotating I spatially. Thus, the attention areas

of the two images may be different. Taking an RS image as

an example (shown in Fig. 4), when we rotate the original

image by 90◦, the attention regions are changed as well for

focusing on the planes to reflect the semantic of “Plane.” For

the original RS image [see Fig. 4(a)], the channel-wise attention

and spatial-wise attention regions are concentrated in the right

part. For the rotated RS image [see Fig. 4(b)], the channel-wise

attention and spatial-wise attention regions are concentrated in

the bottom part. Also, the objects within the attention regions

are different slightly. For instance, the lounge bridges can be

highlighted in the rotated scenario. In the original scenario,

however, the lounge bridges cannot be extracted by the attention

mechanism. To overcome the limitation discussed above, we

develop an attention consistent model here. On the one hand,

the proposed model could remain the consistency of the visual
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Fig. 4. Illustration of the visual attention inconsistency. The images within
the first column are input images, the heat maps in the second column are
the channel-wise attention maps, and the heat maps in the third column are
the spatial-wise attention maps. (a) Original image and its attention maps.
(b) Rotated image (90◦) and its attention maps.

attention areas of a pair of RS images. On the other hand,

the attention consistent model is beneficial to enlarging the

differences between interclass RS images and narrowing down

the distances between intraclass RS images.

For CAblock, to reduce the gap between two attention maps

Xc and X′

c corresponding to image pairs I and T(I), we first

extract the attention regions Mc ∈ R
W×H and M′

c ∈ R
W×H

from Xc and X′

c by the operations of average, BN, and ReLU

activation. In detail, the average (at the channel level) is used

to extract the salient features from attention maps, and BN

and ReLU operations are adopted to emphasize the attention

regions. Second, we reversely rotate M′

c ∈ R
W×H according to

the degrees of the input data rotation to get T̃(M′

c). Thus, the

angles of Mc and T̃(M′

c) are unified. Here, T̃(·) denotes the

inverse operation of T(·). In addition, we still suppose the sizes

of feature maps are not changed by T̃(·). Third, the mean square

error (MSE) loss function is chosen to constrain the difference

between Mc and T̃(M′

c). For SAblock, we first use (4) to get

the SA regions Ms and M′

s. Then, similar to the operation for

CAblock, we also reversely rotateM′

s to get T̃(M′

s) for unifying

the angles. Third, we use the MSE loss function to reduce the gap

between two SA regions that correspond to two SA maps Ms

and T̃(M′

s). In the whole, the objective function of our attention

consistent model is

Jdifferent =
1

2HW

H
∑

i=1

W
∑

i′=1

(gii′ (mc,m
′

c) + gii′ (ms,m
′

s))

gii′ (mc,m
′

c) =
∥

∥

∥
(mc)ii′ −

(

T̃ (m′

c)
)

ii′

∥

∥

∥

2

2

gii′ (ms,m
′

s) =
∥

∥

∥
(ms)ii′ −

(

T̃ (m′

s)
)

ii′

∥

∥

∥

2

2
(6)

where (mc)ii′ and (T̃(m′

c))ii′ indicate the values in the position

(i, i′) of channel attention regions Mc and T̃(M′

c), and (ms)ii′

and (T̃(m′

s))ii′ indicate the values in the position (i, i′) of SA

region Ms and T̃(M′

s).

E. Classification Model

The main target of the classification model is to get the

semantic labels for the input RS images I and T(I) according to

their deep representation f and f ′. To this end, we add two FC

layers and a softmax layer on the top of ACNet to transform f

and f ′ into the predict labels p and p′. Also, the cross-entropy

loss function is selected to measure the predict labels. However,

due to the specific architecture of our ACNet, the classification

schemes of training and testing phases are different.

In the training phase, when we get the predicted labels p and

p′, the following objective function is developed to optimize our

ACNet:

L = Ji + Ji′ + λJd i f f e r e n t (7)

where Ji and Ji′ represent the cross-entropy loss functions for

two branches, Jdifferent means the objective function of the atten-

tion consistent model, and λ is a hyperparameter for controlling

the contribution of Jdifferent. In the testing phase, we directly

combine the classification results p and p′ together for the final

classification results P, and the formulation is

P =
p+ p′

2
. (8)

IV. EXPERIMENTS AND DISCUSSION

A. Testing Data Introduction

To testify the effectiveness of our ACNet, we select three RS

image benchmarks. The first one is a small-scale aerial image

dataset, which was published by the University of California

Merced [50], and we name it UCM1 in this article for short.

There are 2100 aerial images in UCM that cover 20 U.S. regions,

including Birmingham, New York, etc. These aerial images

are divided into 21 scene classes, and each class contains 100

RS images. Their spatial resolution and sizes are one foot and

256× 256. Some image examples and the semantic categories

of the UCM dataset are displayed in Fig. 5. The second one

is a medium-scale RS image dataset, which was proposed in

the literature [51]. We record it AID2 here for convenience.

There are 30 scene classes (such as “Dense Residential” and

“Viaduct”) in AID, and the volume of images within each class

varies from 220 to 420. The total number of images within AID is

10 000, and these aerial images cover different countries around

the world. The spatial resolution of images changes from 0.5 to

approximate 8 m, and the sizes of images are 600× 600. The

examples and their scene classes are displayed in Fig. 6. The last

one is a large-scale RS image dataset, which was constructed

in 2017 [31]. We name it NWPU3 here for short. There are

31 500 images in NWPU with the spatial resolution from 0.2

to 30 m, which are collected by more than 100 countries and

1[Online]. Available: http://vision.ucmerced.edu/datasets/landuse.html
2[Online]. Available: http://captain.whu.edu.cn/project/AID/
3[Online]. Available: http://www.escience.cn/people/gongcheng/NWPU-

RESISC45.html

http://vision.ucmerced.edu/datasets/landuse.html
http://captain.whu.edu.cn/project/AID/
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Fig. 5. Examples of different scenes of the UCM dataset. The scene numbers
and names are summarized as follows. 1-Agricultural, 2-Airplane, 3-Baseball
Diamond, 4-Beach, 5-Buildings, 6-Chaparral, 7-Dense Residential, 8-Forest,
9-Freeway, 10-Golf Course, 11-Harbor, 12-Intersection, 13-Medium Density
Residential, 14-Mobile Home Park, 15-Overpass, 16-Parking Lot, 17-River, 18-
Runway, 19-Sparse Residential, 20-Storage Tanks, and 21-Tennis Courts.

Fig. 6. Examples of different scenes of the AID dataset. The scene numbers
and names are summarized as follows. 1-Airport, 2-Bare Land, 3-Baseball Field,
4-Beach, 5-Bridge, 6-Center, 7-Church, 8-Commercial, 9-Dense Residential,
10-Desert, 11-Farmland, 12-Forest, 13-Industrial, 14-Meadow, 15-Medium Res-
idential, 16-Mountain, 17-Park, 18-Parking, 19-Playground, 20-Pond, 21-Port,
22-Railway Station, 23-Resort, 24-River, 25-School, 26-Sparse Residential,
27-Square, 28-Stadium, 29-Storage Tanks, and 30-Viaduct.

regions around the world. All of the images are equally grouped

into 45 scene categories, including “River,” “Water,” etc. The

image examples and the scene classes of the NWPU dataset are

displayed in Fig. 7.

B. Experimental Settings

In this article, we use an HP-Z840-Workstation with Xeon(R)

CPU E5-2630, NVIDIA GTX TITAN Xp, and 128 G RAM

to complete the experiments. As mentioned in Section III-B,

the intermediate feature extraction model of our network is

initialized with the ImageNet’s pretrained weights. The rest parts

of our ACNet are initialized by a set of random parameters that

follows a normal distribution with a standard deviation of 0.1. To

train ACNet, we choose the Adam algorithm with the learning

rate of 0.001 and the weight decay of 0.0001. Furthermore, the

batch size and epochs are equal to 64 and 120. The training

process is accomplished by the PyTorch platform [52]. Here, due

to the structure of the intermediate feature extraction model, we

resize the input RS images into 224 × 224. Two free parameters

impact the performance of our ACNet, i.e., the rotation angle

θ for building the image pairs and the hyperparameter λ for

Fig. 7. Examples of different scenes of the NWPU dataset. The scene num-
bers and names are summarized as follows. 1-Airplane, 2-Airport, 3-Baseball
Diamond, 4-Basketball Court, 5-Beach, 6-Bridge, 7-Chaparral, 8-Church, 9-
Circular Farmland, 10-Cloud, 11-Commercial Area, 12-Dense Residential,
13-Desert, 14-Forest, 15-Freeway, 16-Golf Course, 17-Ground Track Field,
18-Harbor, 19-Industrial Area, 20-Intersection, 21-Island, 22-Lake, 23-Meadow,
24-Medium Residential, 25-Mobile Home Park, 26-Mountain, 27-Overpass,
28-Palace, 29-Parking Lot, 30-Railway, 31-Railway Station, 32-Rectangular
Farmland, 33-River, 34-Roundabout, 35-Runway, 36-Sea Ice, 37-Ship, 38-
Snowberg, 39-Sparse Residential, 40-Stadium, 41-Storage Tank, 42-Tennis
Court, 43-Terrace, 44-Thermal Power Station, and 45-Wetland.

controlling the contributions of different terms in (7). We use the

fivefold cross-validation method to obtain their optimal values

for different datasets. Their influence would be discussed in

Section IV-E.

To validate our model’s performance, we choose two widely

used assessment criteria, i.e., overall accuracy (OA) [53] and

the confusion matrix (CM) [54]. OA is defined as the number

of correctly classified images divided by the number of the total

testing images. CM is an informative table in which the column

indicates the ground-truth and the row denotes the prediction.

From the observation of CM, it is easy for researchers to find if

the predicted labels of the test data are correct or not.

C. Performance of ACNet

To validate our ACNet extensively, we compare it with the

following five RS scene classification networks.

1) The discriminative CNN (D-CNN): The D-CNN model

was proposed in the paper [54], where a new objec-

tive function is developed to replace the common cross-

entropy loss for considering the issues of intraclass diver-

sity and interclass similarity. The positive results counted

on three RS image datasets demonstrate the usefulness of

D-CNN.

2) The FACNN: FACNN was introduced in the litera-

ture [26], in which a CNN feature-oriented encoding

module and a feature fusion scheme are developed to fully

explore the semantic information from the RS images.

Then, the classification results can be obtained in an

end-to-end manner.
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TABLE I
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED

ACNET AND THE COMPARED NETWORKS ON THE UCM DATASET

The entry with the highest values is

bold-faced.

3) The Siamese CNN (S-CNN): Based on the dual-channel

framework, S-CNN was developed for the RS scene clas-

sification task [29]. There are two submodels within S-

CNN, including the identification and verification blocks.

Along with the specific metric learning loss function, the

classification results can be obtained.

4) The GLANet: GLANet was presented in the litera-

ture [40], in which the FC layers of VGGNet are replaced

by the attention blocks to explore the global and local

information from RS images. Also, two auxiliary loss

functions are adopted in this model to complete the scene

classification.

5) The residual attention network (RAN): To highlight the

useful information and eliminate the redundant informa-

tion during the feature learning, the RAN model was

introduced in the paper [39]. With the residual units and

attention techniques, the promising scene classification

results can be obtained.

Note that, all of the methods are accomplished by ourselves.

In addition, for the sake of the fairness, the experimental settings

of the compared methods are the same as the contents discussed

in Section IV-B.

1) Results of the UCM Dataset: For the UCM dataset, we

select 80% RS images randomly to construct the training data,

and the rest of the images are regarded as the testing data.

The optimal values of λ and θ for UCM are 0.7 and 180◦,

respectively. The OA and Kappa values of different methods are

summarized in Table I, where we can find that the performance of

all methods is good and our network has the strongest behavior.

Compared with other methods, the improvements in OA values

obtained by our ACNet are 0.95% (D-CNN, S-CNN, and RAN),

0.71% (FACNN), and 0.47% (GLANet). The reasons for the

superior performance of our method are threefold. First, due

to the dual-network architecture and the specific loss function,

not only the global features but also the similarities between

RS images can be learned by our ACNet. Second, with the

help of the attention mechanisms, the diverse land cover in-

formation within RS images can be fully explored. Third, the

developed attention consistent model could help ACNet to unify

the important regions in the RS images, which is beneficial to

highlight the target-level information further. Apart from the

OA values, the superiority of ACNet is also confirmed by CM

Fig. 8. CM of the UCM dataset under the training ratio of 80% using our
ACNet. The semantic of each number can be found in Fig. 5.

TABLE II
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED

ACNET AND THE COMPARED NETWORKS ON THE AID DATASET

The entries with the highest values are bold-faced.

that is exhibited in Fig. 8. Here, due to the space limitation, we

only show CM generated by ACNet. From the observation, it is

apparent that the confusion is only appeared between “Medium

Density Residential” and “Dense Residential.” The encouraging

results discussed above demonstrate that our model is useful to

classify the scenes within the UCM archive.

2) Results of the AID Dataset: To study the performance of

our network to the AID dataset deeply, we establish two training

sets, respectively. In the first set, the proportion of the numbers of

training and testing data is 2:8 and we set λ = 0.8 and θ = 180◦.

In the second set, this proportion is changed into 5:5 and the λ

and θ are equal to 0.8 and 90◦. The OA values and their standard

deviations are exhibited in Table II. Similar to the results counted

on the UCM dataset, the performance of our model is the best

among all methods in any case. When there are 20% RS images

that can be used to train different networks, the enhancements

achieved by ACNet are 1.28% (D-CNN), 0.85% (FACNN),

0.95% (S-CNN), 1.53% (GLANet), and 1.15% (RAN). When

the percentage of the number of RS images in the training set

equals to 50%, the improvements obtained by our model are

0.76% (D-CNN), 0.28% (FACNN), 0.14% (S-CNN), 1.22%

(GLANet), and 1.72% (RAN). Different from the results of

the UCM dataset, the behavior of the attention-based methods
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Fig. 9. CM of the AID dataset under the training ratio of 20% using our ACNet.
The semantic of each number can be found in Fig. 6.

Fig. 10. CM of the AID dataset under the training ratio of 50% using our
ACNet. The semantic of each number can be found in Fig. 6.

(GLANet and RAN) is weaker than that of others. On the

one hand, the size of RS images within the AID dataset are

600 × 600, which are larger than that of the UCM dataset. The

areas highlighted by the attention technique used in GLANet

and RAN maybe not important to the classification. On the other

hand, the semantics of the AID dataset are more diverse than that

of the UCM archive. The relationships between the RS images

would be impacted by the improper salient regions generated

by the attention method, which harms the classification results.

The CMs of ACNet counted by the AID dataset under different

training sets are exhibited in Figs. 9 and 10. Through observing

these matrices, we can find that our ACNet is good at distinguish-

ing the RS images belonging to “Baseball Field,” “Beach,” and

TABLE III
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED

ACNET AND THE COMPARED NETWORKS ON THE NWPU DATASET

The entries with the highest values are bold-faced.

“Viaduct.” However, for the images from “Resort” and “School,”

our model’s performance is not as good as expected.

3) Results of the NWPU Dataset: The NWPU dataset is the

largest one among three archives. Thus, we only select 10%

and 20% RS images from NWPU to train different models,

respectively. Then, the rest of 90% and 80% images are used

as the testing data. Here, the value of λ is set to be 0.7 for

two scenarios, and θ equals to 90◦/180◦ when the proportion of

the training set is 10%/20%. The OA values and their standard

deviations are exhibited in Table III, in which we can find that

the strongest network is the proposed ACNet. Compared with

other methods, the enhancements achieved by ACNet under the

training ratio of 10% are 2.00% (D-CNN), 0.22% (FACNN),

3.04% (S-CNN), 1.59% (GLANet), and 2.3% (RAN). The im-

provements obtained by our model under the training ratio of

20% are 0.74% (D-CNN), 1.04% (FACNN), 1.43% (S-CNN),

0.92% (GLANet), and 1.02% (RAN). These encouraging results

illustrate that our method is useful to the scene classification

task even though the dataset is diverse and complex. Besides,

ACNets’ CMs under different training sets are displayed in

Figs. 11 and 12. From the observation of CMs, it is easy to

find that ACNet is effective for most categories. Taking Fig. 12

as an example, the accuracies of ACNet are higher than 90%

for 35 out of 45 categories and are higher than 85% for 42

out of 45 categories. Especially for the “Chaparral” class, there

is no incorrect prediction. These promising results prove the

effectiveness of our model again.

D. Ablation Study

As mentioned in Section III, our ACNet mainly contains an in-

termediate feature extraction model, a parallel-attention model,

and an attention consistent model. To study their influence on

ACNet, we conduct the following ablation experiments. First,

three networks are constructed, as follows.

1) Net-0: Intermediate feature extraction model.

2) Net-1: Intermediate feature extraction model + Parallel-

attention model.

3) Net-2: Intermediate feature extraction model + Parallel-

attention model + attention consistent model.

Here, Net-0 is the VGG16 net, Net-1 is the single version

of ACNet, and Net-2 is our ACNet. Net-0 and Net-1 are single-

branch networks, whereas Net-2 is a multibranch network. Then,

we count their classification performance on three datasets for

studying different models’ behavior. The experimental settings
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Fig. 11. CM of the NWPU dataset under the training ratio of 10% using our ACNet. The semantic of each number can be found in Fig. 7.

are the same as the contents mentioned in Section IV-B. The

results of the three networks are shown in Fig. 13(a). From

the observation, we can find some conclusions. First, the per-

formance of Net-0 is the weakest among the three networks

since only the global features learned by VGG16 are utilized to

complete the classification. After adding the attention models,

the behavior of Net-1 is stronger than that of Net-0. Moreover,

there is a distinct performance gap between Net-1 and Net-0.

These indicate the usefulness of the local features for scene un-

derstanding. When we expand the structure of the network into

the dual-branch, Net-2’s performance is enhanced for different

datasets. This denotes that the data augmentation achieved by

the spatial rotation and the intraimage compaction achieved by

the attention consistent model play a positive role in the scene

classification task.

Besides the above ablation experiments, we also want to study

the contributions of two attention blocks. To this end, two single-

branch networks are constructed based on Net-1 and two dual-

branch networks are constructed based on Net-2. In detail, given

as follows.

1) Net-1-CA: Intermediate feature extraction model + CA-

block.

2) Net-1-SA: Intermediate feature extraction model +

SAblock.

3) Net-2-CA: Intermediate feature extraction model + CA-

block + attention consistent model.

4) Net-2-SA: Intermediate feature extraction model +

SAblock + attention consistent model.

The performance of different networks is displayed in

Fig. 13(b), in which the results of Net-1 and Net-2 are also

exhibited for reference. It is easy to find that 1) the networks with

channel-wise attention model (Net-1-CA and Net-2-CA) out-

perform the networks embedding spatial-wise attention model

(Net-1-SA and Net-2-SA), and 2) the dual-branch networks

that contain two kinds of attention models (Net-1 and Net-2)

outperform the single-branch networks. The contents discussed

above confirm the contributions of different attention models

and the superiority of our ACNet.

Here, we want to further explain why Net-1-CA and Net-2-

CA outperform Net-1-SA and Net-2-SA. The reasons behind

this phenomenon can be summarized as follows. In general,

channel-wise attention methods aim to emphasize the significant

channels and suppress the insignificant channels for capturing

the salient targets from the RS images, whereas spatial-wise
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Fig. 12. CM of the NWPU dataset under the training ratio of 20% using our ACNet. The semantic of each number can be found in Fig. 7.

Fig. 13. Ablation experimental results counted on different RS image datasets with the different ratios of training data. (a) Performance of networks with different
models. (b) Performance of networks with different attention mechanisms.
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Fig. 14. Sensitivity study of our ACNet, including overall accuracies of ACNets based on different (a) λ, (b) rotation angle θ, (c) batch size, and (d) percentage
of damaged RS images within training set.

attention methods focus on transforming the feature maps into

a specific space with the consideration of spatial information so

that the important targets within RS images can be highlighted.

To decide the importance of each channel within the feature

map, the selected SE model (CAblock) [48] learns the weights

of different channels by GAP, FC layers, and the self-gating

mechanism (sigmoid activation). Then, the attention maps are

generated through the average, BN, and ReLU activation opera-

tions, which are conducted on the updated feature maps (which

are obtained by multiplying the original feature maps by the

learned weights). This leads that the obtained attention maps

contain much useful information for our task.

Different from SE, the adopted SA model (SAblock) [49]

first transforms the feature map into a spatial space. Then,

the relationships between feature map pixels are mined for

emphasizing the useful local information so that the SA maps

can be generated. Although the selected SA model completes

the attention areas extraction under the paradigm of spatial-wise

attention methods, its shortcomings should not be ignored. First,

the spatial-wise dependencies between feature map pixels are

not fully mined. Second, the SA maps are learned directly,

which would be influenced by the training data. Due to the

limitation discussed above, the target information may not be

captured from the complex RS images accurately. Consequently,

the performance of networks based on the SA model is weaker

than that of networks based on the SE model. We have to admit

that many other advanced spatial-wise attention methods can be

used [55]. If we choose one of them, the behavior of networks

based on it could be stronger. How to select or develop a proper

SA model could be our future work.

E. Sensitivity Analysis

In this section, we study the sensitivity of our ACNet from

the four aspects, including the influence of two free parameters

[the rotation angle θ and the hyperparameter λ within (7)], the

impact of different batch size in the training process, and the

performance variation if there are some damaged RS images in

the training set.

First, the value of λ is varied from 0.1 to 1, and then the OAs

of ACNets obtained by three datasets are shown in Fig. 14(b).

From the observation of figures, we can find the following points.

First, the trend of our networks’ performance is upward with λ

is increased. This demonstrates the importance of the attention

consistent model. Second, when λ ∈ [0.6, 0.9] the behavior of

ACNets is strong and stable. The peak values of model’s perfor-

mance appear at λ = 0.7 (UMC and NWPU) and λ = 0.8 (AID).

Therefore, we suggest that the value of λ can be tuned at a range

of [0.6, 0.9].
Second, we change θ from 45◦ to 315◦ with the interval of

45◦, and then the OAs of ACNets counted on different datasets

are exhibited in Fig. 14(a). We can find that the difference of

ACNets is not big, which denotes that our network is not sensitive

to the rotation angles. Taking the results counted on “NWPU

(2:8)” as examples, the OAs are 92.05% (45◦), 92.27% (90◦),

91.96% (135◦), 92.42% (180◦), 91.87% (225◦), 92.19% (270◦),
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Fig. 15. Examples of RS images and their damaged version. All of the RS
images are randomly selected from the UCM dataset. The images exhibited in
the first row are the original RS images, and the images displayed in the second
row are the damaged RS images. (a) Agricultural. (b) Airplane. (c) Baseball
Diamond. (d) Beach. (e) Harbor.

and 91.92% (315◦), respectively. In addition, an interesting

observation is that the behavior of ACNets under 90◦, 180◦, and

270◦ is stronger than that of ACNets under 45◦, 135◦, and 225◦.

The reason behind this is that there is information loss when

the rotation angles are arbitrary. Fortunately, the information

loss impacts our model slightly. Note that, the reason why the

arbitrary rotation angles (45◦, 135
◦

, 225
◦

) are adopted in our

experiments is that we want to study if our ACNet works or not

when one of the input RS images loses some contents.

Third, the values of batch size are varied from 16 to 128 for

studying its influence, and the results of ACNets are exhibited

in Fig. 14(c). It is easy to find that the performance of ACNets

is enhanced with the batch size increases. Taking the UCM

dataset as an example, the OAs rise from 98.81% to 99.76%

when batch size is varied from 16 to 64. When the value of

batch size equals 128, the OAs of different ACNets are almost

remained (compared with the results of batch size equals 64).

Therefore, we suggest that the batch size can be tuned around

64 for some other RS image datasets.

Last, we further discuss the influence of damaged images on

our ACNet. To construct the damaged images, we cut out a

rectangular region with the size of 50 × 50 from the original RS

images (which have not been resized to 224 × 224). In detail,

for an RS image, we first select a 50 × 50 rectangular region

randomly. Then, the contents of the rectangular region are wiped

off from the RS image and the pixels within this region are set to

be 0. The examples of RS images and their damaged version are

displayed in Fig. 15. When we input the damaged RS images into

our ACNet, their sizes would be resized to 224 × 224. Here, the

percentage of damaged RS images within the training set is var-

ied from 10% to 50% to observe the performance of the proposed

ACNet. The classification results of three datasets are shown in

Fig. 14(d). From the observation of bars, it is easy to find that

the performance of ACNet is decreased when the percentage

of numbers of damaged RS images increase. Fortunately, the

degrees of decline for three datasets are acceptable. For example,

the OA values of ACNets are decreased from 99.76% to 98.29%

when the volume of damaged RS image within the training set

is increased from 0% to 50%. The positive results prove that

ACNet is not sensitive to the damaged images.

Apart from the cases discussed above, the convergence of AC-

Net is also studied in this section. As mentioned in Section IV-B,

the epochs for training our model are set to be 120 for different

Fig. 16. Loss curves of ACNets counted on different RS image datasets with
the different ratios of training data. (a) UCM dataset. (b) AID dataset with 20%
training data. (c) AID dataset with 50% training data. (d) NWPU dataset with
10% training data. (e) NWPU dataset with 20% training data.

RS image datasets. To observe if this setting is suitable or not,

we count the loss values for three datasets with different ratios

of training data. The results are exhibited in Fig. 16. It is easy to

find that all ACNets are convergent when epochs equal around

[80, 100]. The reason why we set epoch to be 120 is that a little

more training epochs could make our model more stable.

F. Time Costs

In this section, we study the time costs of our model. The

time consumption of training ACNet using different datasets

with the different ratios of training data is recorded in Table IV.

The compared methods’ training times are counted as well for

the reference. Through observing the results, we can find that 1)
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TABLE IV
TRAINING TIMES (MIN) OF THE PROPOSED ACNET AND THE COMPARED NETWORKS ON THREE DATASETS UNDER DIFFERENT TRAINING RATIOS

all of the models’ training times are acceptable, and 2) the most

time-saving method is GLANet and the most time-consuming

network is our model. The time costs of GLANet are low since

it is constructed by a feature extraction network with a simple

attention block. The main reason is that the structure of ACNet

is the most complex, in which an intermediate feature extraction

model, a parallel-attention model, an attention consistent model,

and a classification model are combined. The function of them

is learning the global and local information from RS images,

unifying the local areas, and compacting the RS images with

same semantics. Compared with D-CNN, FACNN, and S-CNN,

our ACNet has extra attention models. Compared with GLANet

and RAN, our ACNet is a dual-branch model. Therefore, it is not

surprising that training ACNet needs more times. Fortunately,

training ACNet is an offline process that can be completed

only once. When ACNet is trained, the time costs of predicting

an RS image are low, which only needs several milliseconds.

Moreover, the encouraging experimental results illustrate that

the comparatively high time cost of ACNet is acceptable.

V. CONCLUSION

In this article, we propose a dual-branch network (ACNet) to

accomplish the RS scene classification task. It consists of four

parts, including the intermediate feature extraction model, the

parallel-attention model, the attention consistent model, and the

classification model. The input image pairs’ (constructed by the

spatial rotation) global features are learned by the intermediate

feature extraction model. Then, two attention techniques are run

concurrently to explore the local information from RS images

deeply. To eliminate the influence of the spatial rotation in the

generation of salient regions, the attention consistent model is

developed based on the reversed rotation and the specific loss

function. This step can also impact the samples within the same

categories and separate the samples from different categories.

Finally, the results are obtained by the classification model. The

positive results counted on three popular benchmarks demon-

strate that our model is useful to the RS scene classification

task.

REFERENCES

[1] N. Zhu et al., “Deep learning for smart agriculture: Concepts, tools,
applications, and opportunities,” Int. J. Agricultural Biol. Eng., vol. 11,
no. 4, pp. 32–44, 2018.

[2] J. Marçais and J.-R. de Dreuzy, “Prospective interest of deep learning for
hydrological inference,” Ground Water, vol. 55, pp. 688–692, 2017.

[3] X. Zou, M. Cheng, C. Wang, Y. Xia, and J. Li, “Tree classification in
complex forest point clouds based on deep learning,” IEEE Geosci. Remote

Sens. Lett., vol. 14, no. 12, pp. 2360–2364, Dec. 2017.
[4] L. Chen, W. Yang, K. Xu, and T. Xu, “Evaluation of local features for scene

classification using VHR satellite images,” in Proc. IEEE Joint Urban

Remote Sens. Event, 2011, pp. 385–388.
[5] G. Sheng, W. Yang, T. Xu, and H. Sun, “High-resolution satellite scene

classification using a sparse coding based multiple feature combination,”
Int. J. Remote Sens., vol. 33, no. 8, pp. 2395–2412, 2012.

[6] L. Jiao, X. Tang, B. Hou, and S. Wang, “SAR images retrieval based
on semantic classification and region-based similarity measure for earth
observation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8,
no. 8, pp. 3876–3891, Aug. 2015.

[7] X. Tang and L. Jiao, “Fusion similarity-based reranking for SAR image
retrieval,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 242–246,
Feb. 2017.

[8] X. Tang, L. Jiao, W. J. Emery, F. Liu, and D. Zhang, “Two-stage reranking
for remote sensing image retrieval,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 10, pp. 5798–5817, Oct. 2017.

[9] X. Tang, L. Jiao, and W. J. Emery, “SAR image content retrieval based on
fuzzy similarity and relevance feedback,” IEEE J. Sel. Topics Appl. Earth

Observ. Remote Sens., vol. 10, no. 5, pp. 1824–1842, May 2017.
[10] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Scene classification based on the

fully sparse semantic topic model,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 10, pp. 5525–5538, Oct. 2017.

[11] R. Xu, Y. Tao, Z. Lu, and Y. Zhong, “Attention-mechanism-containing
neural networks for high-resolution remote sensing image classification,”
Remote Sens., vol. 10, no. 10, p. 1602, 2018.

[12] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep sparse semantic
modeling framework for high spatial resolution image scene classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6180–6195,
Oct. 2018.

[13] Q. Zhu, Y. Zhong, S. Wu, L. Zhang, and D. Li, “Scene classification based
on the sparse homogeneous-heterogeneous topic feature model,” IEEE

Trans. Geosci. Remote Sens., vol. 56, no. 5, pp. 2689–2703, May 2018.
[14] X. Tang, X. Zhang, F. Liu, and L. Jiao, “Unsupervised deep feature learning

for remote sensing image retrieval,” Remote Sens., vol. 10, no. 8, p. 1243,
2018.

[15] H. Sun, S. Li, X. Zheng, and X. Lu, “Remote sensing scene classification by
gated bidirectional network,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 1, pp. 82–96, Jan. 2020.

[16] X. Tang, C. Liu, J. Ma, X. Zhang, F. Liu, and L. Jiao, “Large-scale remote
sensing image retrieval based on semi-supervised adversarial hashing,”
Remote Sens., vol. 11, no. 17, p. 2055, 2019.

[17] C. Liu, J. Ma, X. Tang, F. Liu, X. Zhang, and L. Jiao, “Deep hash learning
for remote sensing image retrieval,” IEEE Trans. Geosci. Remote Sens., to
be published, doi: 10.1109/TGRS.2020.3007533.

[18] S. R. Gunn et al., “Support vector machines for classification and regres-
sion,” ISIS Tech. Rep., vol. 14, no. 1, pp. 5–16, 1998.

[19] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced Fisher linear discriminant model for face recognition,” IEEE

Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.
[20] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual

categorization with bags of keypoints,” in Proc. Workshop Statist. Learn.

Comput. Vis., Prague, Czech Republic, 2004, vol. 1, pp. 1–2.
[21] A. Liaw et al., “Classification and regression by randomforest,” R News,

vol. 2, no. 3, pp. 18–22, 2002.
[22] X. Lu, X. Zheng, and Y. Yuan, “Remote sensing scene classification by

unsupervised representation learning,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 9, pp. 5148–5157, Sep. 2017.

https://dx.doi.org/10.1109/TGRS.2020.3007533


2044 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[23] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Proc. Int. Conf.

Comput. Vis., 2011, pp. 2018–2025.
[24] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional

networks,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-

nit., 2010, pp. 2528–2535.
[25] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, and Q. Qin, “Scene classification based

on a deep random-scale stretched convolutional neural network,” Remote

Sens., vol. 10, no. 3, p. 444, 2018.
[26] X. Lu, H. Sun, and X. Zheng, “A feature aggregation convolutional neural

network for remote sensing scene classification,” IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 10, pp. 7894–7906, Oct. 2019.
[27] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York,

NY, USA: Elsevier, 2013.
[28] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature

verification using a ‘Siamese’ time delay neural network,” in Proc. Adv.

Neural Inf. Process. Syst., 1994, pp. 737–744.
[29] X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu, and Y. Zheng, “Siamese

convolutional neural networks for remote sensing scene classification,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1200–1204, Aug. 2019.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[31] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state-of-the-art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[32] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-

cess. Syst., 2012, pp. 1097–1105.
[34] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,

“OverFeat: Integrated recognition, localization and detection using con-
volutional networks,” 2013, arXiv:1312.6229.

[35] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth
observation classification using ImageNet pretrained networks,” IEEE

Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105–109, Jan. 2016.
[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2009, pp. 248–255.
[37] X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-trained AlexNet architecture

with pyramid pooling and supervision for high spatial resolution remote
sensing image scene classification,” Remote Sens., vol. 9, no. 8, p. 848,
2017.

[38] X. Lu, T. Gong, and X. Zheng, “Multisource compensation network for
remote sensing cross-domain scene classification,” IEEE Trans. Geosci.

Remote Sens., vol. 58, no. 4, pp. 2504–2515, Apr. 2020.
[39] R. Fan, L. Wang, R. Feng, and Y. Zhu, “Attention based residual network

for high-resolution remote sensing imagery scene classification,” in Proc.

IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 1346–1349.
[40] Y. Guo, J. Ji, X. Lu, H. Huo, T. Fang, and D. Li, “Global-local at-

tention network for aerial scene classification,” IEEE Access, vol. 7,
pp. 67200–67212, 2019.

[41] Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned CNN
embedding for person reidentification,” ACM Trans. Multimedia Comput.,
Commun. Appl., vol. 14, no. 1, pp. 1–20, 2017.

[42] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change de-
tection based on deep Siamese convolutional network for optical aerial
images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1845–1849,
Oct. 2017.

[43] Z. Gong, P. Zhong, Y. Yu, and W. Hu, “Diversity-promoting deep structural
metric learning for remote sensing scene classification,” IEEE Trans.

Geosci. Remote Sens., vol. 56, no. 1, pp. 371–390, Jan. 2018.
[44] K. Ma, L. Wu, L. Tao, W. Li, and Z. Xie, “Matching descriptions to spatial

entities using a Siamese hierarchical attention network,” IEEE Access,
vol. 6, pp. 28064–28072, 2018.

[45] Y. LeCun et al., “LeNet-5, convolutional neural networks,” vol. 20, p. 5,
2015. [Online]. Available: http://yann.lecun.com/exdb/lenet

[46] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2015, pp. 1–9.
[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[48] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[49] L. Chen et al., “SCA-CNN: Spatial and channel-wise attention in convo-
lutional networks for image captioning,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 2017, pp. 5659–5667.
[50] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions

for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Adv.

Geographic Inf. Syst., 2010, pp. 270–279.
[51] G.-S. Xia et al. “AID: A benchmark data set for performance evaluation

of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Jul. 2017.

[52] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8024–
8035.

[53] X.-Y. Tong et al., “Land-cover classification with high-resolution remote
sensing images using transferable deep models,” Remote Sens. Environ.,
vol. 237, 2020, Art. no. 111322.

[54] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning meets
metric learning: Remote sensing image scene classification via learning
discriminative CNNs,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,
pp. 2811–2821, May 2018.

[55] X. Zhu, D. Cheng, Z. Zhang, S. Lin, and J. Dai, “An empirical study of
spatial attention mechanisms in deep networks,” in Proc. IEEE Int. Conf.

Comput. Vis., 2019, pp. 6688–6697.

Xu Tang (Member, IEEE) received the B.Sc., M.Sc.,
and Ph.D. degrees in electronic circuit and system
from Xidian University, Xi’an, China, in 2007, 2010,
and 2017, respectively. From 2015 to 2016, he was a
Joint Ph.D. Candidate along with Prof. W. J. Emery
with the University of Colorado at Boulder, Boulder,
CO, USA.

He is currently an Associate Professor with the Key
Laboratory of Intelligent Perception and Image Un-
derstanding of Ministry of Education, School of Ar-
tificial Intelligence, Xidian University. His research

interests include remote sensing image content-based retrieval and reranking,
hyperspectral image processing, remote sensing scene classification, object
detection, etc.

Qiushuo Ma received the B.Eng. degree in electronic
and information engineering from Yanshan Univer-
sity, Qinhuangdao, China, in 2018. He is currently
working toward the master’s degree in computer
science with the Institute of Artificial Intelligence,
Xidian University, Xi’an, China.

His research interests include machine learning and
remote scene classification.

Xiangrong Zhang (Senior Member, IEEE) received
the B.S. and M.S. degrees in computer science from
the School of Computer Science, Xidian University,
Xi’an, China, in 1999 and 2003, respectively, and the
Ph.D. degree in pattern recognition from the School of
Electronic Engineering, Xidian University, in 2006.

She is currently a Professor with the Key Labora-
tory of Intelligent Perception and Image Understand-
ing of the Ministry of Education, Xidian University.
From January 2015 to March 2016, she was a Visiting
Scientist with the Computer Science and Artificial

Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA, USA. Her research interests include pattern recognition, machine learning,
and remote sensing image analysis and understanding.

http://yann.lecun.com/exdb/lenet


TANG et al.: ATTENTION CONSISTENT NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION 2045

Fang Liu (Member, IEEE) was born in China, in
1990. She received the B.S. degree in information and
computing science from Henan University, Kaifeng,
China, in 2012, and the Ph.D. degree in intelligent in-
formation processing from Xidian University, Xi’an,
China, in 2018.

She is currently a Lecturer with Nanjing Univer-
sity of Science and Technology, Nanjing, China. Her
research interests include deep learning, object detec-
tion, and polarimetric SAR image classification and
change detection.

Jingjing Ma (Member, IEEE) received the B.S. and
Ph.D. degrees in electronics science and technology
from Xidian University, Xi’an, China, in 2004 and
2012, respectively.

She is currently an Associate Professor with the
Key Laboratory of Intelligent Perception and Image
Understanding, Ministry of Education, Xidian Uni-
versity. Her research interests include computational
intelligence and image understanding.

Licheng Jiao (Fellow, IEEE) received the B.S. degree
in high voltage from Shanghai Jiao Tong University,
Shanghai, China, in 1982, and the M.S. and Ph.D.
degrees in electronic engineering from Xi’an Jiao-
tong University, Xi’an, China, in 1984 and 1990,
respectively.

From 1984 to 1986, he was an Assistant Professor
with the Civil Aviation Institute of China, Tianjin,
China. From 1990 to 1991, he was a Postdoctoral
Fellow with the Key Laboratory for Radar Signal
Processing, Xidian University, Xi’an, China, where

he is currently the Director of the Key Laboratory of Intelligent Perception
and Image Understanding of Ministry of Education of China. He has authored
or coauthored more than 200 scientific articles. His research interests include
signal and image processing, nonlinear circuits and systems theory, wavelet
theory, natural computation, and intelligent information processing.

Dr. Jiao is a member of the IEEE Xian Section Executive Committee and
an Executive Committee Member of the Chinese Association of Artificial
Intelligence. He is the Chairman of the Awards and Recognition Committee.


