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Attention-Gate-Based Encoder–Decoder Network for
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Abstract—Rapidly developing remote sensing technology pro-
vides massive data for urban planning, mapping, and disaster
management. As a carrier of human productive activities, buildings
are essential to both urban dynamic monitoring and suburban con-
struction inspection. Fully-convolutional-network-based methods
have provided a paradigm for automatically extracting buildings
from high-resolution imagery. However, high intraclass variance
and complexity are two problems in building extraction. It is hard to
identify different scales of buildings by using a single receptive field.
For this purpose, in this article, we use the stable encoder– decoder
architecture, combined with a grid-based attention gate and atrous

spatial pyramid pooling module, to capture and restore features
progressively and effectively. A modified ResNet50 encoder is also
applied to extract features. The proposed method could learn gated
features and distinguish buildings from complex surroundings such
as trees. We evaluate our model on two building datasets, WHU
aerial building dataset and our DB UAV rural building dataset.
Experiments show that our model outperforms other five most
recent models. The results also exhibit great potential for extracting
buildings with different scales and validate the effectiveness of deep
learning in practical scenarios.

Index Terms—Attention gate (AG), building extraction,
deep learning, fully convolutional networks (FCNs), semantic
segmentation.

I. INTRODUCTION

S
INCE 1980s, building extraction has been an essential
research goal in remote sensing [1]. Especially with the

acceleration of urbanization and the need of urban planning,
a precise and immediate extraction of buildings becomes
critical.

Conventional methods often focus on designing distinguish-
able features and using simple classifiers such as the Bayesian
classifier to extract buildings [2]. The selected features contain
spectral and spatial contextual characteristics such as shape,
edge, and height. These features were often used to better rec-
ognize buildings. For example, an integrated strategy including
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structural, contextual, and spectral information was used for
identifying buildings in [3]. Aytekin et al. proposed an automatic
and unsupervised method based on morphological and length pa-
rameters to detect buildings in complex urban environments [4].
Considering the properties of the building itself, some shadow-
based methods were proposed to help extract buildings [5]–[7].
A morphological building/shadow index was also developed
to detect buildings in high-resolution imagery that was widely
used in later researches [8]. Ok et al. proposed a new fuzzy
landscape generation approach to model the directional spatial
relationship between buildings and their shadows [9]. In general,
these traditional methods based on handcraft features often need
prior knowledge and could only solve specific tasks that cannot
be widely applied in automatic identification of buildings.

Nowadays, convolutional neural networks (CNNs) are heavily
used in image recognition tasks such as image classification,
object detection, and semantic segmentation [10]–[12]. Mean-
while, huge progress has been done in remote sensing image
processing, including building extraction and road detection.
The development in deep learning has created a new shift in
learning features automatically. The classic CNN models, such
as AlexNet, VGG, GoogLeNet, ResNet, and DenseNet [13]–
[17], have achieved enormous success in classification tasks.
In 2014, the emergence of fully convolutional network (FCN)
has boosted CNN architectures for dense predictions without
any fully connected layers [18], thus providing semantic image
segmentation a paradigm for all the subsequent state-of-the-art
approaches, such as U-Net [19], SegNet [20], a series of Deeplab
networks [21]–[24], GCN [25], and DFN [26]. Accordingly,
these FCN-based models and their variants are widely used in
remote sensing tasks [27]–[30].

With regard to semantic segmentation in building
footprints extraction, a lot of FCN-based methods have
been proposed [31]–[34]. Li et al. evaluated the FCN on
building extraction and compared it with some conventional
methods, which showed the validity of the FCN [35]. In the
study of building extraction, many methods also have been
designed [36]–[38]. Xu et al. proposed a method termed as
“ResUNet” that combined U-Net and ResNet, together with
guided filters to extract buildings [39]. Huang et al. developed
an end-to-end trainable gated residual refinement network
that fused high-resolution aerial images and LiDAR point
clouds [40]. To solve the problem of multiscale information
capture, Liu et al. designed a spatial residual inception module
to preserve details and used large kernels to capture the context
information [41]. Compared to the original U-Net, Ji et al.
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proposed a Siamese U-Net sharing weight in two branches and
improved the segmentation accuracy [42]. Feng et al. presented
an enhanced deep convolutional network with a postprocessing
method through the superpixel-based conditional random fields
in building extraction [43]. Besides, the residual refinement
module was used in [44] to serve as a postprocessing part in
extracting buildings. In [45], a multiscale aggregation strategy
in the prediction level and the two postprocessing methods are
introduced to refine the segmentation maps. Despite that these
recent FCN-based methods demonstrate obvious advantages
over the existing aerial building datasets, two aspects in building
extraction still exist. The first one is the high intraclass variance
of buildings and the low interclass difference between buildings
and other nonbuilding objects. The other one is the scale
invariance of buildings under many complex scenarios.

In this work, we propose an encoder–decoder architecture
for automatical building extraction through a modified ResNet-
50 architecture with an atrous spatial pyramid pooling (ASPP)
module and attention gate (AG) mechanism. On the one hand,
the grid-based AG is a gating signal conditioned to buildings’
spatial information without adding a large number of additional
parameters, while the ASPP module contribute to the integrity
of large-scale buildings. The proposed method that make use of
these two modules not only can catch the large-scale features
but also pay more attention to small buildings to a certain extent
as well. On the other hand, the integration of the two modules
shows effectiveness on different and complex environments in
the task of building extraction.

The remainder of this article is organized as follows. Section II
demonstrates the proposed network architecture. Section III
presents four experiments and the corresponding analysis on two
datasets with other FCN models. Finally, Section IV concludes
this article with some remarks and hints at plausible future
research lines.

II. NETWORK

A. Encoder–Decoder Architecture

The encoder–decoder architecture is a simple yet effective
structure in semantic segmentation. The encoder part gradually
reduces the spatial dimension through the pooling layer, obtain-
ing shallow to deep features. The decoder gradually recovers
the object details and spatial dimension through deconvolution
or interpolation. It also ensures that the output has the same
dimension as the input image to achieve end-to-end training.
There are usually shortcut connections from the encoder to
the decoder to help decoder recover the object details bet-
ter. FCN, U-Net, and SegNet are popular methods within this
class.

However, the simple form of the encoder–decoder structure
often loses the global information because of directly fusing
the deepest feature without any other possible operation. This
leads to misclassified pixels within the buildings of large scale
when it comes to the dense classifications of high-resolution
aerial images. Thus, it is necessary to design a network, which
can both utilize the stability of the encoder–decoder architecture
and avoid missing global features.

Fig. 1. (a) Basic building block. (b) Bottleneck building block.

B. Residual Block

First proposed for solving gradient disappearance and ex-
plosion problems, residual networks have been increasingly
applied to semantic segmentation. In [16], it is shown that the
accuracy increases with the depth, overcoming the optimization
difficulties. Besides, it was demonstrated that in [15] and [16],
compared with the plain net, the residual net converge faster
under the same layers. In this work, we chose ResNet-50 as our
backbone to make the network converge faster as well as learn
deep features.

The residual blocks consist of two paths, including the resid-
ual part and the identity shortcut, with the ability to smooth the
backward and forward flow of information. The residual part
is often stacked by several convolution blocks and the identity
shortcut is a way of matching dimensions that usually include a
1 × 1 convolution operation. Typically, as shown in Fig. 1, there
are two types of residual block, i.e., the basic building block
and the bottleneck building block. The main difference of these
two designs lies in the residual part, two layers for the “basic”
and three for the “bottleneck.” In the bottleneck building block,
two 1 × 1 convolutions are responsible for first reducing and
finally increasing the dimensions, leaving a 3 × 3 convolution
as a bottleneck with a relatively small dimension. This helps the
whole architecture to be more efficient. For this reason, we use
a modified ResNet-50 architecture as our encoder to learn more
feature representations. In our encoder part, the whole layers in
ResNet-50 are employed except for the first max pooling layer
to improve the resolution of feature maps. In the meantime, the
convolutional operation follows a batch normalization (BN) [46]
layer and a rectified linear unit (ReLU) [13] activation layer.
The whole residual block simplifies the learning process and
enhances gradient propagation.

C. Atrous Spatial Pyramid Pooling (ASPP)

Originally proposed in [47], spatial pyramid pooling is a way
of combining multilevel features. As the dilated convolution has
the ability to increase the receptive field without pooling that may
lose location information [23], by adding dilated convolution on
the original spatial pyramid pooling block, ASPP can capture the
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Fig. 2. Overview of the proposed network architecture. The encoder of the network is a modified ResNet-50 design without a first pooling layer. The input image
is first downsampled by a 7 × 7 kernel with a stride of two and the following four layers are composed of three, four, six, and seven residual blocks, respectively.
Then, a convolution operation is used to reduce the dimensions. As a center bridge, an ASPP module with four different atrous convolutions is designed to enlarge
the view of field to get a broader context information. During the other skip connection layers, a grid-based AG mechanism is used between the encoder and
decoder, which filters the irrelevant background information. Schematics of the AG and the ASPP are shown on the right side of the chart.

context of a center pixel at multiple scales [22]. After multiple
parallel dilated convolutions with different dilation rates are
computed, a sum operation follows to fuse all the feature maps.
As illustrated in Fig. 2, there are four parallel paths with different
dilation rates of 1, 6, 12, and 18, respectively. Although dilated
convolution can capture broader information, it also brings the
problem of much memory consumption in shallow layers. In
this case, the ASPP block is used in our network between the
encoder part and the decoder part when the resolution of feature
maps gets relatively small.

D. Attention Gate

The basic idea of the attention mechanism in computer vision
is to allow the system to be able to ignore irrelevant information
and focus on the key parts. This could be divided into hard
attention and soft attention. For hard attention, the value of each
region is either 0 or 1. In this case, the model is a nondifferen-
tiable process and the training process is often done through
reinforcement learning [48]. For soft attention, the attention
weights of each region could be expressed by some continuous
values between 0 and 1. In addition, the attention mechanism
can also be divided into spatial and channel aspects from the
concern of domain. In this article, the AG is a kind of soft
attention that focuses on the spatial domain. It was first applied
in medical segmentation. The grid-based AG block provides
better attention to salient regions and suppression of irrelevant
regions [49]. Besides, it can be easily embedded into the FCN
framework and improve the model performance without adding
a large number of parameters of network computation.

As shown in Fig. 2, spatial regions are selected by using
the contextual information collected from a coarser scale. By
multiplying attention coefficients with feature maps that are
combined with coarse- and fine-level information, this block
could focus on the features that are useful for the final prediction
in a specific task. For example, in building extraction tasks, the
attention block could overlook those nonbuilding background
information such as clutters by giving more weight to deeper
feature maps that have higher semantic information. In this
experiment, we embed this attention module on the skip con-
nection. Specifically, the AG could filter the features learned by
cascading convolutions, and then, concatenate with up-sampling
output layer accordingly to get a finer feature map.

E. Architecture Design

As introduced in Section II-B, we use a modified ResNet-50
design as our contracting path. First, a 7 × 7 large kernel
convolution (with a stride of 2) is applied to obtain low-level
features and reduce the resolution of the input image. We discard
the pooling layer in the original ResNet-50 architecture. That is,
after the first convolution operation, four stages of the bottleneck
residual block are stacked in the spare encoder part. The feature
map in the next stage has twice the channels and half the feature
map size of the previous stage, except for the first block. After
four stages, the output of the encoder has 1/16 the size of the
input data, while capturing deeper semantic features. To reduce
the model parameters, we add a convolution operation to change
the dimensions of feature maps. We consider an ASPP block
as the center bridge to connect the encoder and decoder. In
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such a small resolution feature map, the ASPP module could
get more multilevel high semantic information. Besides, the
AG is embedded in the skip connection in our network. To be
specific, the outputs of up-sampling layers in the decoder part
are concatenated with the corresponding encoder output. It is
worth noting that the encoder output is a set of weighted feature
maps that have learned the importance of features. By using skip
connection with AG and concatenation operation, redundant
information could be filtered and the extracted features can be
fused to get a clear segmentation map. After concatenation, two
3 × 3 convolutions are applied to change dimensions together
with the corresponding BN and ReLU layer. At the end of the
decoder part, the image size is the same as the input layer, and a
convolution with 3 × 3 kernel size is added to get a score map of
the pixels. Finally, a sigmoid function is applied with a threshold
of 0.5 to segment the buildings and background.

F. Comparison With Other Models

To evaluate the proposed method in building extraction, we
make comparison with the typical encoder–decoder network
such as SegNet and U-Net, as well as Deeplab v3+. Meanwhile,
another network using attention mechanism, SE-U-Net, and the
most recent model, MA-FCN in building extraction are also
considered. Here follows a brief introduction of these models.

1) SegNet: Brought up by Badrinarayanan et al. in 2015 [20],
SegNet adds more shortcut connections compared with the FCN.
At the same time, indices from maxpooling layers are introduced
to the expanding path. This makes SegNet more efficient and
significant for the following FCN models.

2) U-Net: U-Net is the most typical encoder–decoder sym-
metrical architecture that was first proposed by Ronneberger
et al. in the biomedical image segmentation field [19]. A cas-
cading contraction path, along with the corresponding expansion
path, makes up the entire network. This network is usually used
as a baseline for comparing all kinds of models. With the skip
connection between two paths, this model exhibits a relative
stable performance both in medical imaging and remote sensing
tasks.

3) Deeplab v3+: Based on a series of Deeplab net-
works [21]–[23], Chen et al. presented an improved version,
Deeplab v3+ [24]. By retaining the advantage of atrous convolu-
tion and pyramid pooling, this network uses Xception [50] as its
backbone. To this extent, Deeplab v3+ achieved state-of-the-art
performance.

4) Se-U-Net: Inspired by the squeeze and excitation (SE)
module for channel recalibration of feature maps for image
classification in [51], Roy et al. introduced three variants of SE
modules for image segmentation, including squeezing spatially
and exciting channel-wise (cSE), squeezing channel-wise and
exciting spatially (sSE), and concurrent spatial and channel
squeeze and excitation (scSE) [52]. These SE modules were
incorporated within three FCN models and achieved consistent
improvement of performance across all architectures. These SE
modules are essentially an attention mechanism. In this article,
we use the scSE module on U-Net for comparison.

Fig. 3. Samples of (a) WHU building dataset and (b) DB UAV rural building
dataset, with orange marks.

5) Ma-Fcn: A multiscale aggregation FCN termed as MA-
FCN is one of the most recent networks to extract building pix-
els [45]. The backbone of the MA-FCN is a four-layer VGG-16
encoder. To make full use of the multiscale feature information,
the MA-FCN implements multiscale feature aggregation by con-
catenating the last convolution layers of each scale in decoding
and predict the final result by concatenating these feature maps.
At the same time, polygon regularization methods for boundary
refinement are also introduced for boundary refinement. This
method achieved state-of-the-art results on the WHU dataset.

III. EXPERIMENTS AND ANALYSIS

A. Datasets

To evaluate the performance of our proposed method in dif-
ferent environments, two datasets are conducted in our experi-
ments. The first one is an open dataset, WHU building dataset,
and the second is our DB UAV rural building dataset. Fig. 3
shows experimental images of these two datasets.

1) WHU Aerial Building Dataset: This dataset was created
by [42], which consists of 18 7000 buildings with a resolution of
0.3 m. The original data from the New Zealand Land Information
Services website have been manually edited so the dataset has
a rather high quality. It covers about 450 km2 of New Zealand
area with different building shapes and appearances. This dataset
contains 8188 tiles 512 × 512 RGB aerial images and is divided
into three parts, 4 736 for training, 1 036 for validation, and
2 416 for testing.

2) DB UAV Rural Building Dataset: In this experiment, we
collected UAVs aerial orthoimages with 0.2-m spatial resolution,
which mainly covers the countryside area of Dianbai county of
Guangdong province, China. The whole image is collected using
UAV platform and the ground truth of the buildings is manually
annotated by experts. Some operations, such as projection trans-
formations and alignment adjustment, are applied.

We downsampled these original images into 0.4-m ground
resolution using bilinear interpolation method and cropped them
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into 23 932 tiles with an image size of 512 × 512. After down-
sampling, we randomly divided these images into training set,
validation set, and testing set at a ratio of 3:1:1. In the bottom
row of Fig. 3, we could see that rural buildings have different
distributions and characteristics. Compared to the WHU build-
ing dataset, the buildings in this dataset are often tiny and hard
to recognize. In fact, due to the limitations of drone platform
imaging such as atmospheric conditions, light intensity, etc., the
quality of the images is worse than those in the WHU aerial
dataset. Furthermore, in rural environments, the buildings are
often built around the trees and overshadowed by them, which
makes the extracting more difficult.

B. Evaluation Metrics

In evaluation part, we use four metrics for pixel-based eval-
uation, including precision, recall, F1-Score, and intersection
over union (IoU). These metrics are widely used as the criteria
in semantic segmentation and building extraction. F1 is the
weighted average of precision and recall. These four indicators
are explained as follows. IoU is a criterion that calculates the ra-
tio of the intersection and union between the predicted category
and the real category.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

IoU =
TP

TP + FP + FN
(4)

where TP , FP , and FN denote the true positive, false positive,
and false negative, respectively.

C. Implementation Details

To enhance network generalization ability and avoid over-
fitting, data augmentation strategies are implemented. We first
use spatial data augmentation methods on both two datasets,
including random rotation at different angles (90◦, 180◦, 270◦,
360◦) and random mirror flip vertically or horizontally. Consid-
ering that DB aerial images from the UAV platform are acquired
under different time and illumination conditions, we also use
radiometric augmentation on the DB rural building dataset.
Spectral augmentation methods include brightness and contrast
enhancement, blurs, and gauss noise.

The whole network was implemented using PyTorch with
CUDA10.0 and CuDNN7.6. For the parameter setting, we adopt
Adam [53] as our optimizer to make the training process con-
verge quickly and the initial learning rate is 0.0001. To fit our
GPU memory, batch size is set to 8. For the whole training
period, there are 60 epochs on 2× GeForce RTX 2080 Ti and
the entire training process on WHU dataset took about 6 h. In
our experiments, we use binary cross-entropy loss as the loss
function.

TABLE I
QUANTITATIVE RESULTS FOR PRECISION, RECALL, F1-SCORE, AND IOU ON

WHU AERIAL BUILDING DATASET

TABLE II
QUANTITATIVE RESULTS FOR PRECISION, RECALL, F1-SCORE, AND IOU ON DB

UAV RURAL BUILDING DATASET

D. Experiments and Analysis

In this part, we first compared our method with the afore-
mentioned competitors on building extraction on two datasets.
Then, the ablation study on the WHU dataset was conducted to
validate the effectiveness of each module. Finally, we explored
the impact of different backbone on the whole network. Here
follows the detailed experiments.

1) Experiments on WHU Aerial Building Dataset: Table I
shows the obtained numerical comparisons, including precision,
recall, F1-score, and IoU, and best records are marked with bold.
Our method outperforms other four methods on IoU and F1-
score metric, obtaining 0.9029 and 0.9490, respectively.

Fig. 4 further displays the prediction visualization results
of these comparative models. It can be observed that in large
buildings, the network with multiscale feature module, such as
our proposed method, Deeplab v3+, and MA-FCN, hs better
performance with regard to the integrity of buildings. This is
because of the aggregation of multiscale features, which lead
to broader context information. Visualization result of our pro-
posed method has a rather good improvement of detecting both
large and small buildings, as well as accurate edge information.
By introducing the ASPP module between the encoder and
decoder part, our method could catch the multiscale information
of these buildings and retain a complete edge and detailed
information.

2) Experiments on DB UAV Rural Building Dataset: In this
section, we compare our network with other state-of-the-art
semantic segmentation methods under the same training con-
figuration of 4 108 testing images totally on our DB UAV rural
building dataset. Compared to the WHU building dataset, the
images in this dataset are foggy and lower quality due to the
operating platform. All tests in Table II have been conducted
with radiometric augmentation before training as discussed in
the previous section. As shown in Table II, our methods exhibits
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Fig. 4. Visualization of the obtained results by different models on WHU aerial building dataset.

better or comparable numerical results compared to others.
Specifically, our method has higher F1-Score and IoU value that
outperforms the original U-Net model by 2.28% and 3.46%,
respectively. The highest values are highlighted in bold.

Apart from the numerical comparison, we also present visu-
alization results. Fig. 5 represents several sets of binary predic-
tion examples of our network and compared methods in rural
environments. Different from WHU dataset, these examples of
buildings have irregular distributions and different roof materi-
als. Some buildings are overshadowed by trees and some roofs
are even covered with moss, which increases the difficulty of
extraction. For illustrative purposes, we have selected two rep-
resentative samples with the corresponding results and zoomed
them in Fig. 6. More obvious area is marked with red rectangles.

According to the visualization results, our proposed method,
SE-U-Net and MA-FCN, performed better than others as the
whole, especially in the recognition of edges, tiny, and shady
buildings. By introducing the grid-based AG in building ex-
traction, spatial regions are selected by highlighting salient
and context information collected from a coarser scale. Thus,
information extracted from a coarse scale could be used in gating
to filter irrelevant and noisy responses in skip connections. At

the same time, the ASPP module can help to catch broader
context information that contributes to recognize large-scale
buildings. In general, with the grid-attention technique and the
ASPP bridge, our model could achieve a better and more precise
extraction result.

3) Ablation Experiments: To better show the influence of
the ASPP module and the AG, we conducted the ablation
studies on WHU dataset and quantified the results. First, we
conducted the baseline experiment without any module, which
is a modified ResNet-50 architecture. Then, we added the
grid-based AG mechanism on this baseline between the encoder
and the decoder. Finally, the baseline experiment with an ASPP
module used as a bridge to get broader context information was
conducted.

Numerical results are shown in Table III, and the best values
are marked with bold. Compared to the baseline experiment
and the other two experiments with only one module added, the
proposed network achieved relatively higher values of the four
metrics. With the two modules, the proposed method outper-
formed the baseline by 1.62 % on IoU and 0.9 % on F1-score.
Despite this, it should be noted that the AG module and the
ASPP module can both improve the recall metric. It can be
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Fig. 5. Visualization of the results obtained by different state-of-the-art models and our model on DB UAV rural building dataset.

Fig. 6. Presentation of the characteristics of buildings in rural environments and the corresponding prediction results of comparing models.

inferred that, in the building extraction task, the modules can
both reduce the probability of false-negative predictions. This
may be because of the broader context information from the
ASPP module and the salient features of buildings from the
grid-based spatial AG mechanism. Besides, the baseline with
the ASPP module performs better than the AG with regard to
the gain in accuracy. Accordingly, in relation to the network
complexity, it also brings more parameters than the AG module.

Visualization results of the ablation experiments are in Fig. 7.
The top row of Fig. 6 is an example filled by a large building and
the bottom one is an example mainly filled with small buildings.
We could see that the baseline model with only an AG module
are more likely to misclassify the category (such as the hole
in it), especially in the large building recognition. Meanwhile,
while predicting small buildings, this method can capture them
accurately and precisely. In contrast, the baseline network with



2618 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Visualization results of the ablation studies.

TABLE III
QUANTITATIVE RESULTS OF THE ABLATION STUDIES ON WHU AERIAL

BUILDING DATASET, INCLUDING FOUR EXPERIMENTS, I.E., BASELINE,
BASELINE+AG, BASELINE+ASPP, AND PROPOSED METHOD

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT BACKBONES FOR PRECISION, RECALL,

F1-SCORE, AND IOU ON WHU AERIAL BUILDING DATASET

an ASPP module is more likely to catch the context information
and predict the right category. Accordingly, the details of the
building are not maintained well. In this case, the proposed
method that makes use of these two modules can both catch
the multiscale features and pay attention to small buildings to
a certain extent as well. More specifically, the ASPP module
used in the coarse layer can get more global context information
and the AG modules in the relatively finer layers can highlight
salient information in local regions.

4) Different Backbone Comparison: In this article, we use
a modified ResNet-50 as our encoder path. We also explore
the performance of ResNet-18 and ResNet-34 as encoder part.
Similarly, we removed the first max pooling layer to ensure the
resolution of feature maps. Same as ResNet-50, there are four
stages in ResNet-18 and ResNet-34 and every stage consists
of several blocks. In ResNet-18, every stage contains two basic
building blocks, and in ResNet-34, the four stages contain three,
four, four, and six basic building blocks, respectively. ResNet-50
has the same building blocks as ResNet-34 but it uses bottleneck
building block instead of basic building block as its component
unit. Table IV recorded the prediction results obtained for the
testing data of WHU aerial building dataset. The highest values
are marked with bold. Compared with ResNet-18, ResNet-34

and ResNet-50 achieve better results, getting 0.9009 and 0.9029
on IoU metric, respectively. It can be concluded that the stack
of convolutional layers contributes to the final results, which
exhibits about 0.49% IoU improvement. At the same time, the
stack of bottleneck building blocks provides a slight improve-
ment as compared to the basic building block. Despite this, with
the complexity of the network structure, the amount of network
parameters and running time will increase accordingly.

IV. CONCLUSION

FCNs have shown great potential in semantic segmentation
of buildings. In this article, a new encoder–decoder architecture
(combined with AG and an ASPP module) is proposed to de-
tect various scales of buildings under complex circumstances.
Simultaneously, different augmentation methods are applied to
enhance the generalization ability of the model and tackle the
radiation difference problem observed in rural building datasets.
This spatial-wise AG mechanism is applied to highlight salient
regions and restraint irrelevant information. This avoids mis-
classifying those background objects that have similar spectral
features as buildings, such as concrete road and courtyard wall.
We use the ASPP module as a bridge between the encoder and
the decoder, to capture multiscale features of the objects. This
innovative contribution allows us to take into account both small-
and large-scale buildings. Because of the capacity of our method
to distinguish buildings under complex environments and extract
multiscale features of buildings, our network exhibits high value
in practical scenarios.

As the semantic labeling extraction of buildings is only part
of buildings extraction, in future work, we will further extract
the vector boundaries of buildings based on our method to
provide structured individual building polygons for practical
applications. Meanwhile, in relation to the parameters of the
two modules, we will consider the balance between the network
complexity and accuracy gains in the future.
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