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Abstract: In recent decades, haze has become an environmental issue due to its effects on human
health. It also reduces visibility and degrades the performance of computer vision algorithms in
autonomous driving applications, which may jeopardize car driving safety. Therefore, it is extremely
important to instantly remove the haze effect on an image. The purpose of this study is to leverage
useful modules to achieve a lightweight and real-time image-dehazing model. Based on the U-Net
architecture, this study integrates four modules, including an image pre-processing block, inception-
like blocks, spatial pyramid pooling blocks, and attention gates. The original attention gate was
revised to fit the field of image dehazing and consider different color spaces to retain the advantages of
each color space. Furthermore, using an ablation study and a quantitative evaluation, the advantages
of using these modules were illustrated. Through existing indoor and outdoor test datasets, the
proposed method shows outstanding dehazing quality and an efficient execution time compared
to other state-of-the-art methods. This study demonstrates that the proposed model can improve
dehazing quality, keep the model lightweight, and obtain pleasing dehazing results. A comparison to
existing methods using the RESIDE SOTS dataset revealed that the proposed model improves the
SSIM and PSNR metrics by at least 5–10%.

Keywords: single-image dehazing; deep learning; attention gate; lightweight; real-time

1. Introduction

Low-visibility environments have a significant influence on vision-based autonomous
driving systems. For example, haze can cause serious damage to image quality, including
color and brightness deviations that lead to numerous visual information losses. Conse-
quently, the performance of computer vision algorithms, such as object detection, semantic
segmentation, and visual simultaneous localization and mapping (visual SLAM), are
degraded, and the safety of autonomous car driving that relies heavily on the above-
mentioned algorithms is jeopardized accordingly. To preserve the performance quality
of these vision-based algorithms, the images obtained by cameras require preprocessing
before feeding to these functional processes.

The main cause of haze is the scattering of atmospheric particles. Gui et al. [1] di-
vided image-dehazing methods into two categories depending on whether an atmospheric
scattering model (ASM) [2] is used. Tan [3] mentioned that single-image dehazing using
an ASM may face an ill-posed problem due to the availability of the transmission map
and atmospheric light. Therefore, statistical experience is required to obtain a reasonable
assumption called the prior, such that the ASM-based approach can be applied to a single-
image dehazing problem. He et al. [4] obtained the dark channel prior (DCP) from large
numbers of outdoor images by statistical methods. This is because the dark channel value
of the haze-free outdoor image captured during daytime is close to zero, except for the
sky and white areas. Other priors were also proposed in the literature. Zhu et al. [5]
found that the difference between brightness and saturation is proportional to the depth,
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which is the so-called color attenuation prior (CAP). The haze-line prior [6] is based on the
observation that the pixel values of a hazy image can be modeled as lines in the RGB space
with atmospheric light as the origin. The distance from the origin of the same haze line is
affected by the transmission map. Ju et al. [7] added an absorption function to the ASM
and solved the image dehazing problem with the gray-world assumption. Based on DCP,
Yang et al. [8] improved the estimation method of atmospheric light to avoid mistaking the
sky region as containing haze and smoothed the transmission map with two morphological
operators, namely, dilation and erosion.

The recent development of graphics processing units (GPUs), which deliver extraor-
dinary acceleration in workloads involving artificial intelligence and machine learning,
leads to an alternative dehazing approach based on these related technologies and be-
comes a research hotspot without using the ASM. Deep learning methods can be divided
into supervised and unsupervised learning methods. The method based on supervised
learning requires both hazy and ground truth images as inputs to a specially designed
convolutional neural network (CNN) and trains a dehazing network using an appropriate
loss function and backpropagation. Since the transmission map and atmospheric light
are required when using the ASM approach, Cai et al. [9] set the atmospheric light to 1
and constructed a network structure called DehazeNet to estimate the transmission map.
However, because the atmospheric light is defined in advance, the result of image dehazing
is poor. Li et al. [10] integrated the transmission map and atmospheric light into a function
as the learning target of the proposed AOD-Net. Furthermore, Yang et al. [8] redesigned the
network architecture of AOD-Net [10], inheriting the advantages of few trainable parame-
ters and real-time capabilities. Based on the idea of integrating the transmission map and
atmospheric light as the learning target, Zhang et al. [11] designed a multi-scale network
architecture using 1× 1 convolution and pooling. Qin et al. [12] concatenated two attention
mechanisms to FFA-Net: channel attention and pixel attention. These mechanisms result in
a greater weight in the blurred region, but the number of trainable parameters is too large.
Liu et al. [13] proposed a generic model-agnostic CNN that is composed of an encoder and
decoder associated with residual blocks, and the whole network can be trained end-to-end
which means that no physical knowledge should be obtained in advance. It is worth
mentioning that this network architecture can be applied to other tasks in addition to
image dehazing.

The classic method based on unsupervised learning for the image dehazing prob-
lem involves the use of generative adversarial nets (GAN). The discriminator is used to
determine authenticity, and the generator and the discriminator are trained separately
through backpropagation. Engin et al. [14] imported cyclic perceptual consistency loss
into CycleGAN [15] to improve the quality of image dehazing, but it cannot recover color
deviation and object edge well. Qu et al. [16] proposed a two-scale generator and dis-
criminator, and an enhancer with a multi-scale average pooling architecture has been
constructed to provide more different receptive fields. In heavily hazy scenes, there is
still room for improvement; therefore, it is necessary to apply more enhancing blocks to
enhanced Pix2pix [16]. Mehta et al. [17] modified CycleGAN [15] and conditional GAN [18]
to formulate their image-dehazing model. The proposed model of [17] outperforms the
aforementioned GANs, but it may generate unnatural colors for some scenes. However,
GANs are difficult to train efficiently because the generator and the discriminator are hard
to converge at the same time. In general, the model sizes of image-dehazing GANs are
comparatively large, which has a significant impact on execution time.

In practical applications, the image-dehazing algorithm belongs to the pre-processing
part for autonomous driving systems; thus, while improving the quality of image dehazing,
it is also necessary to consider the execution time and size of the trainable parameters. This
paper proposes a lightweight CNN containing an attention gate, an inception-like block,
and a spatial pyramid pooling (SPP) block with an appropriate loss function to achieve
better image-dehazing quality. Finally, using an existing dataset, comparisons between
other state-of-the-art and proposed image-dehazing algorithms based on image-dehazing
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quality, trainable parameters, and the average execution time per image are presented. In
conclusion, the main contributions of this study can be summarized as follows:

• It provides a real-time and lightweight end-to-end image-dehazing CNN model that
restores the blur caused by the haze environment without intermediate component
computation for ASM and knowledge of the physical model.

• Before feeding hazy images to the CNN, an image pre-processing block was used
to map normalized RGB images to different color spaces. The image pre-processing
block increases the number of layers of feature maps such that the image-dehazing
CNN can extract features effectively.

• The inception-like block uses two 3× 3 convolutions to replace one 5× 5 convolution,
which effectively increases the receptive field. The SPP block utilizes different pooling
kernel sizes to extract feature values and to generate more feature maps. The proposed
attention gate can smartly pay more attention to unclear structures, such as buildings
and pedestrians.

• Through an ablation study and a quantitative evaluation, this study demonstrates
the advantages of using the image pre-processing block, the inception-like block, the
spatial pooling blocks, and the proposed attention gate.

• The number of trainable parameters of the image-dehazing CNN is 207.3 K, the model
size is 0.86 MB, and the average execution time per frame under GPU acceleration is
0.018 s, which is equivalent to 55.56 fps.

• RESIDE-SOTS and RESIDE-HSTS were used as the testing image-dehazing-quality
datasets, which improved the peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM) compared to other state-of-the-art image-dehazing methods.

2. Preliminaries
2.1. Atmospheric Scattering Model

In the field of computer vision, atmospheric scattering models are often used to
describe the formation formula for hazy images, as shown in Equation (1).

I(x) = J(x)t(x) + A(1− t(x)), (1)

where x is the pixel position, I(x) is the hazy image, J(x) is the clear image, A is the global
atmospheric light, and t(x) is the transmission map described by Equation (2). J(x)t(x) is
called direct attenuation, and A(1− t(x)) is called airlight.

t = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere and d(x) is the distance between
the camera and the observed objects. According to Equation (2), the larger the distance,
d(x), the lower the transmittance. From the direct attenuation term, J(x)t(x), a clear image
becomes blurred and unclear for a larger d(x) due to the atmospheric light, which makes
the image brighter and whiter.

The single-image dehazing problem is an ill-posed problem because it requires both
global atmospheric light and transmission maps to be obtained simultaneously. Therefore,
statistical methods for obtaining empirical rules are necessary for model-based approaches.

2.2. Deep-Learning-Based Method

Using U-Net [19] as the prototype of the image-dehazing network to carry out single-
image dehazing is a common method. Its architecture includes an encoder and a decoder.
The encoder is composed of several convolution filters and maximum pooling operations,
while the decoder contains several convolution filters and transposed convolution filters to
perform upsampling. In addition, before the decoder performs convolution, the feature
map of the same resolution generated by the encoder and the transposed convolution result
of the previous layer are directly concatenated and used as the convolution input.



Appl. Sci. 2022, 12, 6725 4 of 18

U-Net [19] is mainly used to solve the problem of image segmentation. When using
this architecture to solve the problem of image dehazing, it is not possible to simply deepen
the number of network layers; but a suitable neural network block should be imported.
For example, TheiaNet [20] imports the bottleneck enhancer into the final output of the
encoder, which extracts the feature map from coarse to fine through multi-scale pooling to
obtain different feature maps and then concatenates these feature maps together. The final
output of the decoder is added to the aggregation head, and the outputs of the encoder and
decoder of different layers are upsampled to the same resolution and concatenated.

2.3. Downsampling and Upsampling

Downsampling and upsampling reduce and enlarge the resolution of the original
image, respectively, by a specified multiple. Downsampling often uses maximum pooling,
a predefined operation, to improve the receptive field without increasing the computational
complexity. Upsampling often uses predefined interpolation methods, such as nearest-
neighbor interpolation and bilinear interpolation.

The advantage of predefined operations is that they save memory space, but the
disadvantage is that CNN cannot learn its own sampling method. Therefore, convolution
and transposed convolution can be adopted to allow the CNN to learn a suitable down-
sampling and upsampling process during the training process. For example, to reduce the
image resolution to one-half of the original image, a 2× 2 convolution with a stride of two
can be used instead of a 2× 2 max pooling with a stride of two, without sacrificing the
values of the other feature maps. Similarly, to double the image resolution of the original
image, a 2× 2 transposed convolution with a stride of two can be used instead of the
interpolation method.

Additionally, when the kernel size cannot be divisible by stride, it causes a checker-
board effect due to the uneven overlapping. Therefore, kernel size = 2 and stride = 2 are
applied to avoid generating a checkerboard-like pattern.

2.4. Multiple Input Channel

It can be observed from the ASM that the image is mainly blurred due to atmospheric
light and particle scattering. Based on these phenomena, Ren et al. [21] proposed GFN,
which inputs three different image processing methods, namely, white balance to deal
with color deviation, contrast enhancement to increase the structure of objects, and gamma
correction to solve dark regions. Then, they are concatenated to form a 9-channel input.
The dehazing image is expressed by

J = Cwb ◦ Iwb + Cce ◦ Ice + Cgc ◦ Igc, (3)

where Cwb, Cce, and Cgc, are confidence maps for the white-balanced image, Iwb, the
contrast enhanced image, Ice, and the gamma corrected image, Cgc, respectively, and ◦ is
the Hadamard product.

In addition to image pre-processing, a multichannel input can also be mapped to
different color spaces to increase the number of channels in the input image. Wan et al. [22]
emphasized that the halo effect can be suppressed in the HSV color space. Tufail et al. [23]
experimentally proved that better contrast and brightness can be obtained in the YCbCr
color space. Therefore, inspired by [22,23], Mehra et al. [20] used a multi-cue color space,
including RGB, HSV, YCbCr, and Lab, to formulate a 12-channel input.

The proposed method integrates the concepts of GFN [21] and TheiaNet [20] to
preprocess hazy images. In the next section, we introduce significant blocks of our image-
dehazing CNN, including the image pre-processing blocks, inception-like blocks, SPP
blocks, and attention gates (AG).
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3. Proposed Method

This section introduces details of the proposed image-dehazing CNN, as shown in
Figure 1. First, the image preprocessing block performs image normalization and maps to
different color spaces to form a 12-channel input. Subsequently, the inception-like block is
used to increase the receptive field, and an SPP block is performed to increase the dimension
of the feature map of high-level feature maps. The skip concatenation of U-Net [19] is
replaced with an AG, which can adjust the gain of the feature map to leverage the blurry
regions. Finally, an appropriate loss function for image dehazing is presented.
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Figure 1. The proposed image-dehazing CNN architecture.

3.1. Image Pre-Processing Block

Haze will make the overall image whiter, that is, three RGB channel values will
concentrate on 255 for an 8-bit image and result in a blurred and unclear object structure.
Therefore, a normalization procedure, as shown in Equation (4), is applied to stretch the
original RGB value linearly and make the image clearer.

fnorm(xi,c) =
xi,c −min(xc)

max(xc)−min(xc)
, (4)

where xi,c is the input, i is the spatial dimension, c is the channel dimension referring
to the RGB channels, and max(xc) and min(xc) denote the maximum and minimum
values, respectively.

By mapping the normalized RGB image to HSV, YCbCr, and Lab, 12-channel images
are formed. It is beneficial to improve the quality of image dehazing. The mapping
operations to different color spaces only require simple mathematical operations without
additional trainable parameters, thus saving storage space. Equation (5) denotes the output
of the image preprocessing block.

I12 = [Rh,w, Gh,w, Bh,w, Hh,w, Sh,w, Vh,w, Yh,w, Cbh,w, Crh,w, Lh,w, ah,w, bh,w] (5)

where h and w are the dimensions of image height and width, respectively, and I12 is the
normalized image comprising 12 channels. RGB denotes red, green, and blue values. HSV
denotes hue, saturation, and brightness values. YCbCr denotes the luminance, blue difference,
and red difference. Lab denotes lightness, red/green values, and blue/yellow values.
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3.2. Inception-like Block

Convolution was used to extract image features to form feature maps. These feature
maps represent the high-dimensional images. Feature maps obtained through convolu-
tion filters usually go through nonlinear operators after convolution, such as a rectified
linear unit (ReLU) or sigmoid function, to increase the nonlinear characteristics of the
neural network.

Szegedy et al. [24] proposed that the receptive fields of two 3× 3 convolutions are
equivalent to the receptive field of one 5× 5 convolution. Similarly, the receptive fields of
the three 3× 3 convolutions are equivalent to the receptive field of one 7× 7 convolution.
One 7 × 7 convolution is 5.44 (49/9) times more computationally expensive than one
3× 3 convolution, and three 3× 3 convolutions are 3 (27/9) times more computationally
expensive than one 3× 3 convolution. Therefore, to increase the receptive field while also
reducing the computational complexity, we use two 3× 3 convolutions instead of one
5× 5 convolution, and the same applies to 7× 7 and 9× 9 convolutions which inspired
by MultiResUnet [25]. Figure 2 shows the overall inception-like block that includes four
convolutions in series and one residual connection. The outputs of these convolutions are
concatenated, and to increase the effectiveness of training, a 1× 1 convolution is added as
the residual connection.
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Figure 2. An illustration of an inception-like block.

3.3. SPP Block

Maximum pooling was used to extract the obvious feature values in the feature maps.
He et al. [26] used different pooling kernel sizes to extract feature values from the same
feature map, from coarse to fine, to generate feature maps with different resolutions. In this
way, without increasing the trainable parameters, it helps the shallower network obtain
deeper network layers, thereby enhancing the effect of deep learning training. The SPP
block in this study uses multi-scale maximum pooling with kernel sizes of 8× 8, 4× 4,
and 2× 2 to extract features from coarse to fine. Because the resolution of the feature
map shrinks after the maximum pooling, the results of each maximum pooling need to
be upsampled by bilinear interpolation to the same resolution as the original feature map
before they can be concatenated. Figure 3 shows the overall SPP block, which includes
multiscale maximum pooling operations to extract features from coarse to fine.
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3.4. Attention Gate

The original U-Net feature fusion involves directly concatenating the output of the
transposed convolution and the output of the encoder with the same resolution, while
Oktay et al. [27] proposed Attention U-Net to replace the direct concatenation part with the
attention gate; that is, the same spatial dimension of the feature maps needs to be multiplied
by the same attention coefficient between 0 and 1, as in Equation (6). This attention mecha-
nism is beneficial for automatically highlighting salient regions for semantic segmentation.

x̂l
i,c = αl

i × xl
i,c, 1 ≥ αl

i ≥ 0, (6)

where i is the spatial dimension, c is the channel dimension, l is the layer, xl
i,c is the input,

αl
i is the attention coefficient, and x̂l

i,c is the output.
Due to different task orientations, to pay more attention to the unclear region of the

hazy image, the values of the same spatial dimension are multiplied by different attention
coefficients, as follows:

x̂l
i,c = αl

i,c × xl
i,c, αl

i,c ≥ 0, (7)

where αl
i,c is positive, which differs from Attention U-Net [27].

The details of the attention gate are shown in Figure 4, where the attention coefficients
are used to pay more attention to the unclear region of the hazy image during backpropa-
gation. The difference between the original attention coefficient and the proposed attention
coefficient is shown in Figure 5, where the first half was proposed by Attention U-net [27]
for semantic segmentation. The second half is proposed in this study for single-image
dehazing. The attention coefficient is determined by the gate signal and the output of a
certain layer of the encoder. The gate signal is the result of the transposed convolution
of the decoder. For example, in Figure 1, the output of inception-like block 1 is the input
of the attention gate, and inception-like block 4, after the transposed convolution, is the
gate signal.
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The attention coefficient is calculated using Equation (8). The activation function
adopts the ReLU function to ensure that the attention coefficient is greater than 0.

αl
i ,= σ

(
ψT
(

σ
(

WT
x xl

i + WT
g gl

i + bg

))
+ bψ

)
, (8)

where xl
i is the input, σ is the ReLU function, Wx ∈ RCl×Cint , Wg ∈ RCg×Cint , Cl is the

number of channels in the input feature map, Cg is the number of channels in output
feature map, Cint is the number of channels in the intermediate feature map, ψ ∈ RCint×Cl ,
and bg and bψ are biases.

Figure 6 shows that the attention gate calls attention to objects of distant buildings,
ground textures, trees, and pedestrians that are blurred due to haze. The feature map
after the attention gate changes the gain by the attention coefficient to achieve the effect
of focusing on objects with complex structures and suppressing objects with relatively
simple structures, such as focusing on the characteristics of pedestrians and suppressing
the characteristics of the sky.
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3.5. Loss Function

The loss function setting of the image-dehazing CNN usually adopts the mean square
error (MSE), as follows:

LMSE(P) =
1
N ∑

p∈P
(x(p)− y(p))2, (9)

Treating MSE as a loss function means that only the difference in pixel values between
the dehazing image and clear image is considered during training. The MSE is related to
the peak signal-to-noise ratio (PSNR).

PSNR = 20 log10

(
MAX√

MSE

)
, (10)

where MAX is the maximum possible pixel value. In the case of an 8-bit image, MAX
is 255.

Considering that using only MSE may lead to visible speckle artifacts, this study intro-
duces the structural similarity (SSIM) to reveal the degree of similarity between dehazing
and clear images, including luminance, contrast, and structure, which can improve the
learning efficiency and quality of image dehazing. When the SSIM is closer to 1, the two
images are more similar.

SSIM(P) = l(x, y)α · c(x, y)β · s(x, y)γ, (11)
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where α = β = γ = 1, l(x, y) is the similarity of luminance, c(x, y) is the similarity of
contrast, and s(x, y) is the similarity of structures. The details of l(x, y), c(x, y), and s(x, y)
are as shown in Equation (12). 

l(p) = 2µxµy+C1
µ2

x+µ2
y+C1

c(p) = 2σxσy+C2

σ2
x+σ2

y+C2

s(p) = σxy+C3
σxσy+C3

, (12)

where µx and µy are the mean values of the signals x and y, respectively, σx and σy are the
standard deviations of the signals x and y, and C1, C2, and C3 are constant values.

In this study, the loss function is used in combination with the MSE and SSIM, as follows:

Loss = 0.2 · LMSE + 0.8 · LSSIM, (13)

In addition to the pixel value difference between the image generated by the proposed
network and the ground truth, the difference in the similarity between image patches is
also considered.

4. Experiments and Analysis

In this section, image-dehazing experiments are conducted. First, we determine the
trainable parameters of the image-dehazing CNN. We then introduce the image-dehazing
dataset used for training and testing the image-dehazing CNN. A comparison of the resulting
performance with that of other state-of-the-art models by using the image quality metrics is
provided. Figure 7 shows the workflow of the proposed-dehazing model generation.
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4.1. Parameters of Neural Network

The input image specification of the dehazing CNN is 12× 256× 256 after resizing
the original image. An image pre-processing block is used to obtain a pre-processed image
with 12 channels. The internal parameters of the proposed image-dehazing CNN are listed
in Table 1, including five inception-like blocks, two attention gates, two downsamplings,
and two upsamplings. The dehazing output image is an RGB image; therefore, there are
three convolutions at the end of the neural network.

Table 1. Parameters of proposed network.

Blocks Layers Num

Inception-like block 1 and 5

Conv2D(3,3) 1

Conv2D(3,3)
8
8

Conv2D(3,3)
Conv2D(3,3)

8
8

Conv2D(1,1) 32

Inception-like block 2 and 4

Conv2D(3,3)
Conv2D(3,3)

16
16

Conv2D(3,3)
Conv2D(3,3)

16
16

Conv2D(1,1) 64

Inception-like block 3

Conv2D(3,3)
Conv2D(3,3)

32
32

Conv2D(3,3)
Conv2D(3,3)

32
32

Conv2D(1,1) 128

Pyramid pooling block

Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)

32
32
32
32

Attention gate 1

Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)

32
32
32
32

Attention gate 2

Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)
Conv2D(1,1)

64
64
64
64

Downsampling 1 Conv2D(2,2) 32

Downsampling 2 Conv2D(2,2) 64

Upsampling 1 ConvT2D(2,2) 2 32

Upsampling 2 ConvT2D(2,2) 64

Final convolution Conv2D(1,1) 3
1 Convolution with kernel size = 3 and stride = 1. 2 Transposed convolutions with kernel size = 2 and stride = 2.

The size of the trainable parameters of the proposed image-dehazing CNN affects
the time required for training and inference speed. Although a larger number of trainable
parameters can improve the image-dehazing quality, the number of trainable parameters
should not be too large for real-time dehazing. Table 2 shows a comparison of the num-
ber of trainable parameters with the state-of-the-art model. Although FFA-Net [12] has
outstanding dehazing quality, it has too many trainable parameters to meet a lightweight
model and will not be applied in the proposed approach.
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Table 2. Comparison of trainable parameters.

Methods Trainable Parameters Model Size

DehazeNet [9] 8.305 K 0.035 MB
AOD-Net [10] 1.76 K 0.008 MB

ReViewNet [28] 399.7 K 5 MB
FFA-Net [12] 4455.9 K 21.3 MB
TheiaNet [20] 157.9 K 1.98 MB

Proposed Method 207.3 K 0.86 MB

4.2. Image-Dehazing Datasets

Constructing a large-scale real image-dehazing dataset is not easy because concurrently
acquiring a hazy image and a haze-free image in the same place is not possible. Therefore,
a large-scale dataset named RESIDE (REalistic Single-Image DEhazing) was proposed
by Li et al. [29]. In RESIDE, data are presented as synthetic and real hazy images that
correspond to clear images. The RESIDE Indoor Training Set (ITS) contains 1399 clear
images, each of which contains 10 images with varying degrees of haze, for a total of
13,990 hazy images. The RESIDE Outdoor Training Set (OTS) contains 2061 clear images,
and each clear image synthesizes 35 images with different degrees of haze to obtain a total
of 72,135 hazy images. In addition, the testing dataset of RESIDE includes a synthetic
objective testing set (SOTS) and a hybrid subjective testing set (HSTS).

In this study, RESIDE ITS and RESIDE OTS were used to train indoor and outdoor
image-dehazing CNNs, while RESIDE SOTS and RESIDE HSTS were used to test the
image-dehazing quality. The distribution of the dataset is shown in Table 3.

Table 3. Distribution of the dataset.

Datasets Training Dataset Testing Dataset

Categories Indoor Outdoor Indoor Outdoor

RESIDE ITS 13,990 - - -
RESIDE OTS - 72,135 - -

RESIDE SOTS - - 500 500
RESIDE HSTS - - - 10

4.3. Ablation Study

It is crucial to discuss the influence of each neural network block on the dehazing
quality; therefore, we trained six different models to observe the performance of these
blocks. Table 4 lists the details of the six models.

Table 4. Description of ablation analysis.

Blocks Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Proposed)

Image pre-processing block - - - - O O
Inception-like block - O O O O O

Pyramid pooling block - - O O O O
Original attention gate - - - O O -
Proposed attention gate - - - - - O

Table 5 shows the dehazing quality metrics of the six models and their corresponding
numbers of trainable parameters. From model 2 and model 3, the inception-like block
and the pyramid pooling improve the dehazing quality. Model 4 shows that an attention
gate can increase SSIM and PSNR without adding too many trainable parameters, and
model 5 uses the image preprocessing block without adding trainable parameters. Model
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6 uses the proposed attention gate instead of the original attention gate, resulting the best
dehazing quality among these approaches.

4.4. Performance and Discussion

In the study, PyTorch was applied for developing the deep learning architecture with
a central processing unit (CPU) of a 3.00 GHz Intel Core i5-8500 CPU. The GPU processor
used a GeForce GTX 1660 Super 6G for training, the batch size was set to 8, and the loss
function of Equation (13) was adopted. A learning rate of 0.0001 and 150 epochs were used
for the Adam optimizer [30]. A total of 90% of the training dataset was used for training,
and 10% was used for verification, which can be used to confirm the loss trend and ensure
that the model does not overfit.

Table 5. Result of ablation analysis on RESIDE SOTS outdoor dataset.

Methods SSIM PSNR Trainable Parameters

Model 1 0.9587 25.04 123.539 K
Model 2 0.9602 26.01 175.107 K
Model 3 0.9644 26.50 191.619 K
Model 4 0.9673 27.31 196.885 K
Model 5 0.9718 28.64 196.885 K
Model 6 0.9736 29.15 207.267 K

The image-dehazing CNN results were analyzed and compared using two metrics,
namely, PSNR and SSIM, introduced in the previous section. Table 6 compares the image
quality metrics of the different methods applied to the RESIDE SOTS indoor and outdoor
testing datasets. The datasets contain images of various scenes with different haze concen-
trations. From Table 6, the proposed image-dehazing CNN leads to better results than the
prior-based methods and learning-based methods that have been proposed in recent years.
Compared to the latest approach, TheiaNet [20], the average SSIM of the indoor dehazing
results increased by 5.65%, and the average PSNR increased by 7.73%, whereas the average
SSIM of the outdoor dehazing results increased by 2.83%, and the average PSNR increased
by 14.09%.

Table 6. Comparison of dehazing results on RESIDE SOTS dataset.

Categories Indoor Outdoor

Method SSIM (% inc) PSNR (%inc) SSIM (% inc) PSNR (% inc)

DCP [4] 0.8179 (17.75) 16.62 (66.79) 0.8148 (19.49) 19.13 (52.38)
CAP [5] 0.8364 (15.15) 19.05 (45.51) 0.8514 (14.35) 22.46 (29.79)

DehazeNet [9] 0.8472 (13.68) 21.14 (31.13) 0.8630 (12.82) 22.57 (29.15)
AOD-Net [10] 0.8504 (13.25) 19.06 (45.44) 0.8765 (11.07) 20.29 (43.67)
HIDeGAN [17] 0.8680 (10.96) 24.71 (12.18) 0.8780 (10.89) 25.54 (14.13)
ReViewNet [28] 0.8946 (7.66) 23.61 (17.41) 0.9137 (6.56) 23.64 (23.31)
TheiaNet [20] 0.9116 (5.65) 25.73 (7.73) 0.9468 (2.83) 25.55 (14.09)

Proposed Method 0.9631 (best) 27.72 (best) 0.9736 (best) 29.15 (best)

Table 7 compares the image quality metrics of the different methods applied to the RE-
SIDE HSTS testing dataset. Compared to TheiaNet [20], the average SSIM of the dehazing
results increased by 2.47%, and the average PSNR increased by 8.09%.
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Table 7. Comparison of dehazing results on RESIDE HSTS dataset.

Model SSIM (% inc) PSNR (% inc)

DCP [4] 0.7609 (29.36) 14.84 (120.69)
CAP [5] 0.8726 (12.75) 21.53 (52.11)

HIDeGAN [17] 0.8940 (10.10) 28.04 (16.80)
AOD-Net [10] 0.8973 (9.70) 20.55 (59.37)
DehazeNet [9] 0.9153 (7.54) 24.48 (33.78)

ReViewNet [28] 0.9582 (2.72) 27.50 (19.09)
TheiaNet [20] 0.9606 (2.47) 30.30 (8.09)

Proposed Method 0.9843 (best) 32.75 (best)

To estimate the average execution time per frame, 500 hazy images with the original
resolution of 620× 460 were processed by the trained dehazing CNN. It only took 0.018 s per
frame, on average, through the GPU, which fulfills the real-time application requirement,
and it took only 0.24 s, on average, through the CPU. Tables 8 and 9 compare the average
execution time per frame of the dehazing models by ReViewNet [28] and TheiaNet [20].
Since DehazeNet [9] and AOD-Net [10] did not produce satisfactory dehazing quality,
as listed in Table 6, the corresponding average execution times of both methods are not
included in Tables 8 and 9.

Table 8. Comparison of average execution time per frame on CPU.

Model ReViewNet [28] TheiaNet [20] Proposed Method

CPU 3.6 GHz 3.6 GHz 3.0 GHz
AET 1 0.28 s 0.247 s 0.244 s

1 Average execution time.

Table 9. Comparison of average execution time per frame on GPU.

Model ReViewNet [28] TheiaNet [20] Proposed Method

GPU NVIDIA TITAN V 12
GB

NVIDIA TITAN V 12
GB GTX 1660 Super 6 GB

AET 0.025 s 0.018 s 0.018 s

Some comparisons between the dehazing results of the RESIDE SOTS indoor and
outdoor testing datasets and ground truth are demonstrated as follows. Figure 8 illustrates
the indoor dehazing results. The box indicates the key recovery area where the image
is not clear due to the haze. It can be seen from the results of the image dehazing that
people and furniture in the distance were affected by color deviation and low contrast
were well-restored and were almost the same as the ground truth. Similarly, Figure 9
shows the restoration of traffic signs, cars, and sky regions blurred by haze in the outdoor
environment. AOD-Net [10] and DehazeNet [9] cannot recover the color deviation or the
contrast well. ReViewNet [28] generates a darker image than ground truth and cannot
restore the appearance of the no parking sign. The proposed method effectively removes
the haze on buildings, sky, and traffic signs. The same dehazing effect was also achieved
for images with buildings and trees, as shown in Figure 10. It shows that ReViewNet [28]
generates a darker dehazing result due to a color deviation problem. As illustrated in
Figure 11, removing haze for objects far in the distance is a limitation of TheiaNet [20].
Obviously, the proposed method generates a clearer dehazing result for distant buildings
than the other models. For a real hazy image, the proposed method achieves a visually
pleasing result compared to those of the other models, as shown in Figure 12.
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5. Conclusions

The pros and cons of the image-dehazing methods in recent years as well as the
proposed method are summarized as follows. The DCP and CAP dehazing methods based
on statistical experience are training-free methods. They obtain a certain degree of image-
dehazing quality, but the resulting quality is poor compared to other approaches. AOD-Net
uses a simple CNN architecture to learn a function composed of the transmission map and
atmospheric light. Although the model is lightweight, efforts are still required to improve
its dehazing quality. Without requiring knowledge of the physical model, ReViewNet and
TheiaNet use the U-Net architecture as a prototype and integrate the appropriate CNN
blocks to produce quality dehazing images. However, the dehazing quality for objects far in
the distance may become a drawback of using TheiaNet. Based on the U-Net architecture,
the proposed approach integrates image preprocessing blocks, inception-like blocks, SPP
blocks, and AGs to achieve a better image-dehazing quality, even for images with sky
and objects far in the distance. For a real hazy image, it also produces clearer dehazing
results. The proposed model can be considered as a lightweight and real-time model for
dehazing applications.
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