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ABSTRACT Brain tumor segmentation technology plays a pivotal role in the process of diagnosis and
treatment of MRI brain tumors. It helps doctors to locate and measure tumors, as well as develop treatment
and rehabilitation strategies. Recently, MRI brain tumor segmentation methods based on U-Net architecture
have become popular as they largely improve the segmentation accuracy by applying skip connection to
combine high-level feature information and low-level feature information. Meanwhile, researchers have
demonstrated that introducing attention mechanism into U-Net can enhance local feature expression and
improve the performance of medical image segmentation. In this work, we aim to explore the effectiveness of
a recent attention module called attention gate for brain tumor segmentation task, and a novel Attention Gate
Residual U-Net model, i.e., AGResU-Net, is further presented. AGResU-Net integrates residual modules
and attention gates with a primeval and single U-Net architecture, in which a series of attention gate
units are added into the skip connection for highlighting salient feature information while disambiguating
irrelevant and noisy feature responses. AGResU-Net not only extracts abundant semantic information to
enhance the ability of feature learning, but also pays attention to the information of small-scale brain
tumors. We extensively evaluate attention gate units on three authoritative MRI brain tumor benchmarks,
i.e., BraTS 2017, BraTS 2018 and BraTS 2019. Experimental results illuminate that models with attention
gate units, i.e., Attention Gate U-Net (AGU-Net) and AGResU-Net, outperform their baselines of U-Net and
ResU-Net, respectively. In addition, AGResU-Net achieves competitive performance than the representative
brain tumor segmentation methods.

INDEX TERMS MRI, brain tumor segmentation, U-Net, attention gate, residual module.

I. INTRODUCTION
Brain tumors are caused by abnormal cells growing in human
brain. The current incidence of malignant brain tumors is
relatively high, and this occurs a huge influence to humans
and society [1]. The most common malignant brain tumors
are gliomas, which can be further classified into high-grade
gliomas (HGG) and low-grade gliomas (LGG). Magnetic
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resonance imaging (MRI), a typical non-invasive imaging
technique that produces high-quality brain images without
injury and skull artifacts while provides more comprehensive
information of brain tumors, is regarded as the main technical
means of diagnosing and treating brain tumors [2]. With the
assistance of multimodal brain images, doctors can make
quantitative analyses of the brain tumors so as to measure
the maximum diameter, volume and quantity of brain lesions,
thus developing the optimal diagnosis and treatment plan for
patients to quantify the response of brain tumors before and
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after treatment. In summary, brain tumor segmentation is a
key step in the diagnosis and treatment of brain tumors [3].
Owing to the needs of clinical application and scientific
research, brain tumor segmentation has become an important
component in the field ofmedical images and has beenwidely
concerned for a long time [4].

In recent years, deep neural network models represented
by AlexNet [5], VGGNet [6], ResNet [7] and DenseNet [8]
have been successfully utilized to a variety of computer
vision tasks, which have received widespread attention from
both academia and industry. In view of the strong ability of
automatic extraction of high discriminant features shown by
deep neural networks, they are quickly applied to the field
of medical image processing and analysis [9]–[11]. In the
meantime, computer-aided diagnosis of MRI brain tumor
based on deep learning has also received extensive attention.
Particularly, Multimodal Brain Tumor Segmentation chal-
lenge (BraTS), in conjunction with the International Associ-
ation for Medical Image Computing and Computer Assisted
Intervention (MICCAI) since 2012 [3], greatly promotes the
development of deep learning based brain tumor segmen-
tation methods. Generally speaking, current deep learning
based brain tumor segmentation methods mainly consist of
two typical types, i.e., convolutional neural network (CNN)-
based methods and fully convolutional network (FCN)-based
methods. CNN-based brain tumor segmentation networks
utilize the idea of patch classification in small-scale images
for the segmentation of brain tumor images. Pereira et al. [12]
explore a small 3 × 3 convolution kernel model based on
VGGNet to construct an automatic segmentation network,
which wins the first place in the BraTS 2013 Challenge.
Havaei et al. [13] construct a dual-path 2D CNN brain tumor
segmentation network, which contains local and global paths
by employing different size convolution kernels to extract
different context feature information. However, patch-wise
architectures lack spatial continuity and need large storage
space, leading to low efficiency. Based on the conception
of encoding and decoding, FCN-based brain tumor seg-
mentation networks classify and predict each pixel in the
whole brain image to complete the segmentation, which obvi-
ously improve the segmentation efficiency of brain tumors.
FCN [14], an end-to-end semantic segmentation model that
utilizes full convolution to solve the problem of pixel-by-
pixel prediction, is an important milestone of image seman-
tic segmentation task. Based on the architecture of FCN,
Ronneberger et al. [15] propose a symmetric fully convo-
lutional network called U-Net, which has been widely used
in various medical image segmentation tasks. U-Net con-
tains a contracting path to capture context information and
an expanding path that ensures accurate location, largely
improving the performance of medical image segmentation
task. Researchers also introduce U-Net based architecture
into the field of brain tumor segmentation. Dong et al. [16]
develop a 2D U-Net based segmentation network and employ
real-time data augmentation to refine the segmentation
performance of brain tumors. Kong et al. [17] introduce

feature pyramid module into U-Net architecture to integrate
multi-scale semantic and location information, which effec-
tively improves the segmentation accuracy. To achieve further
performance improvement, dense block, dilated convolution,
MultiRes block and up skip connection are also drawn into
the brain tumor segmentation networks [18]–[21].

Besides, attention mechanism, which plays an important
role in human perception, can effectively highlight the use-
ful information while suppress the redundant one. Recently,
attention mechanism has been receiving wide attention in a
variety of computer tasks, such as natural language process-
ing for machine translation [22], [23], natural image classifi-
cation [24]–[26], salient object detection [27], [28], natural
image segmentation [29]–[33] and video object segmenta-
tion [34] in computer vision fields, and medical image classi-
fication [35], [36] and medical image segmentation [37]–[41]
in medical image analysis fields. There are many attempts
that have embedded attention module into deep neural net-
work architecture for improving the performance of image
classification and image segmentation. Wang et al. [25] build
a Residual Attention Network to generate attention-aware
features from different modules, which change adaptively as
layers going deeper and effectively improve the classification
accuracy. Hu et al. [26] propose an attention module of
Squeeze-and-Excitation (SE) block that focuses on the chan-
nel relationship and performs dynamic channel-wise feature
recalibration to enhance feature expression. Li et al. [32]
and Yu et al. [33] feed the features of deep layers with
stronger semantics into SE-like attention block to provide
high-level category information, which helps to precisely
recovery details in the upsampling stage of image segmen-
tation. Different from above attention neural networks that
re-weight the important information, some researches mainly
focus on capturing the long-range dependency of context.
Wang et al. [42] firstly propose a family of pioneering
non-local neural networks(NL-Nets) to capture long-range
dependencies by aggregating query-specific global context
to each query position, which has also been quickly applied
into image segmentation tasks. Zhao et al. [29] design a
location-sensitive module based non-local operation given
in NL-Nets [42] to obtain the context long-range depen-
dency, which achieves impressive segmentation results on
several competitive scene parsing datasets. Zhang et al. [30]
exploit a prior distribution to extend the non-local module and
construct an ensemble of non-local operation with weights
to pursue better segmentation performance. Fu et al. [31]
employ dual attention modules composing of spatial and
channel attention for semantic segmentation, in which the
attention modules are similar to the non-local operation.
In the meantime, attention mechanism has been gradually
introduced into the field of medical image segmentation.
Zhou et al. [39] explore a cross-task guided attention module
to adaptively recalibrate channel-wise feature responses for
brain tumor segmentation. Oktay et al. [37] propose attention
gate module to make attention coefficients more specific
to local regions, achieving promising results in pancreas

58534 VOLUME 8, 2020



J. Zhang et al.: Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation

FIGURE 1. The end-to-end network architecture of AGResU-Net. AGResU-Net integrates residual modules and attention gates with a primeval and
single U-Net architecture, in which a series of attention gate units are added into the skip connection for highlighting salient feature information
while disambiguating irrelevant and noisy feature responses. AGResU-Net not only extracts abundant semantic information to enhance the ability
of feature learning, but also pays attention to small-scale brain tumors, leading to the potential performance improvement of brain tumor
segmentation task.

segmentation. Qi et al. [40] design a non-local opera-
tion called Feature Similarity Module to capture long-range
dependencies and provide more effective context informa-
tion for brain stroke lesion segmentation problem. Besides,
Zhang et al. [43] introduce multiple attention modules that
consist of region attention, spatial attention and channel atten-
tion into a modified fully convolutional network, achieving
excellent performance in the ventricle segmentation field.

U-Net has achieved great success in the field of medical
image segmentation, and it is also the mainstream of current
MRI brain tumor segmentation methods. However, during
the process of downsampling, U-Net constantly reduces the
dimension of the image, which results in the poor segmen-
tation accuracy for the small-scale tumors. It is noted that
brain tumors have complex shapes and diverse sizes leading
to the existence of small-scale tumors in the task of brain
tumor segmentation. Considering that attention mechanism
can enhance local feature expression, to solve the insuffi-
cient segmentation accuracy of small-scale tumors by U-
Net, we aim to explore the effectiveness of attention gate,
an efficient attention module for image segmentation task
[37], for brain tumor segmentation problem, and a novel
Attention Gate Residual U-Net model, i.e., AGResU-Net,
is also put forward for this task. Experimental results on
three brain tumor segmentation benchmarks illuminate that
attention gate is benefit for the brain tumor segmentation
task. The main contributions of this paper are summarized
in three folds: (1) We propose an end-to-end AGResU-Net
model for MRI brain tumor segmentation task, and its archi-
tecture is shown in Fig. I. AGResU-Net not only extracts
more abundant semantic information, but also pays more

attention to the information of small-scale brain tumors,
which improves the segmentation effect of brain tumors.
(2) AGResU-Net integrates residual modules and attention
gates with a primeval and single U-Net architecture, in which
a series of attention gate units are added into the skip con-
nection for highlighting salient feature information while
disambiguating irrelevant and noisy feature responses. On the
one hand, residual modules enhance the ability of feature
extraction and expression, and contribute to the classification
in the process of downsampling. On the other hand, attention
gates pays more attention to small-scale tumors and obtain
more information about the location of small-scale tumors,
so that the upsampling process is helpful to restore the loca-
tion information of small-scale tumors. (3) We extensively
evaluate AGResU-Net on three brain tumor segmentation
benchmarks of BraTS 2017, BraTS 2018 and BraTS 2019.
In addition, we also perform experiments of embedding atten-
tion gates into the basic U-Net model. Experimental results
illuminate that models with attention gate units, i.e., Attention
Gate U-Net (AGU-Net) and AGResU-Net, outperform their
baselines of U-Net and ResU-Net, respectively. In addition,
AGResU-Net achieves competitive performance than typical
brain tumor segmentation methods.

II. METHODS
In this section, we first review the basic principle of attention
gate. Then, we introduce the details of our AGResU-Net
for brain tumor segmentation. Finally, the combined loss
function adopted for supervising the learning of AGResU-Net
is described.
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FIGURE 2. The basic schematic of attention gate. The gi and xl are represented as the gating signal vector and the feature
map of the layer l , respectively. The σ1 and σ2 denote the Relu function and Sigmoid function. Wx , Wg and ψ are linear
transformations. The αi indicates the attention coefficient.

A. ATTENTION GATE
The attention gate is relative to the human visual attention
mechanism, which automatically focuses on the target region
and learns to suppress irrelevant feature responses in feature
maps while highlighting salient feature information critical
for a specific task. Recent researches have proved that deep
learning models trained with the attention gate implicitly
improve the performance of networks [25], [37], [38]. A typ-
ical architecture of attention gate unit can be illuminated
in Fig. 2.

Given xl be the feature map of the l layer, a gating signal
vector gi is taken advantage of each pixel i to choose the focus
regions from a coarser scale. α is the attention coefficient
ranging from 0 to 1, and it exports feature responses related to
the target task and curbs useless feature information. The out-
put xout is the element-wise multiplication between xl and α,
whose specific formula is as follows:

xout = xl · αi (1)

Here, the gating coefficient α is obtained by using additive
attention instead of multiplicative attention as [37]. Although
additive attention requires a high computational cost, it can
obtain more promising segmentation results. Due to that
brain tumor segmentation is a multiple semantic classes task,
we employ multi-dimensional attention coefficient [44] to
focus on a subset of target regions. The multi-dimensional
attention coefficient can be computed as:

αi = σ2

(
ψT

(
σ1

(
W T
x xl +W

T
g gi + bg

))
+ bψ

)
(2)

where σ1 is often chosen as Relu function σ1(r) = max(0, r),
and σ2 is the Sigmoid function σ2(r) = 1

1+e−r . Wx , Wg
and ψ are linear transformations, and bg and bψ are bias
terms. We utilize 1 × 1 channel-wise convolution to per-
form linear transformation on the feature map xl and the
gating signal vector gi. Besides, the xavier initialization
approach [45] is employed to normalize parameters, followed
by the back-propagation algorithm to update parameters in
the model training.

B. ATTENTION GATE ResU-Net (AGResU-Net)
Due to the complex structures and diverse dimensional
changes of brain tumors, some small-scale tumors exist in
brain images. At the deeper stage of downsampling, the
U-Net network has a richer feature representation capabil-
ity as it learns more context information. However, spatial
information and location details of the high-level output
maps tend to get lost in the procedure of continuously cas-
caded convolutions and non-linearities transformations. This
makes it difficult to improve the segmentation accuracy for
small-scale brain tumors. To address this issue, we utilize
attention gate units to propagate the relevant spatial details
and location information of low-level feature maps in the
process of upsampling. Besides, to purse more promising
segmentation performance, we integrate attention gates and
residual modules into U-Net architecture to produce Atten-
tion Gate ResU-Net (AGResU-Net) model, which can extract
more precise dense feature information in the downsampling
and well restore the spatial information and location details
in the process of upsampling. Fig. I demonstrates the overall
architecture of AGResU-Net, and the details of AGResU-Net
are introduced as follows.

As shown in Fig. I, AGResU-Net has an encoder-decoder
architecture that consists of a contracting path (an encoder on
the left side) and an expanding path (a decoder on the right
side). The size of the input for the network is 128× 128× 4,
in which the size of each image is 128×128 and the number of
channels is 4. The contracting path consists of three residual
blocks to replace the plain blocks in the original U-Net, and
each residual block has two convolutional units. The size of
the first layer is 128×128×64 in the contracting path. For an
individual convolutional unit, it includes a Batch Normaliza-
tion (BN) layer, a Parametric Rectified Linear Unit (PReLU)
as activation function [46]) instead of the ReLU function
employed in the original U-Net architecture [15], and a con-
volutional layer with 3×3 filter. We utilize 3×3 convolution
kernel with a stride of 2 for the downsampling. Meanwhile,
the channel number of feature maps is doubled while the size
of feature maps is reduced by half. The contracting path is

58536 VOLUME 8, 2020



J. Zhang et al.: Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation

followed by the fourth residual unit with size of 16×16×512,
which serves as a bridge connecting the two paths.

Different from the existing MRI brain tumor segmentation
models, the expanding path is composed of three residual
blocks and three attention gate units to enhance the salient
feature information while disambiguate the irrelevant and
noisy feature responses. The gating signal vector is obtained
by the residual block of each layer in the expanding path.
The feature maps of the bottom level are taken as the initial
gating signal of the expanding path. Then, the gating signal
and the feature map obtained by the third residual block are
combined through the attention gate unit, achieving more rel-
evant location information of small-scale tumors to improve
the performance of brain tumor segmentation. Prior to the
individual residual block, there is an upsampling operation
that increases the size of featuremap by bilinear interpolation,
subsequent a concatenation with the output feature map of
attention gate and a 3× 3 convolution. For each upsampling
operation, the number of feature channel is reduced by half
and the size of images is doubled. At the last layer of the
expanding path, the multi-channel feature map is mapped to
the desired number of classes utilizing a 1 × 1 convolution
with Softmax activation function.

C. COMBINED LOSS FUNCTION
The MRI brain tumor segmentation task exhibits severe
class imbalance where the healthy voxels comprise 98.46%
of total voxels, 0.23% voxels belong to necrosis and non-
enhancing, 1.02% to edema and 0.29% to enhancing tumor.
Generalized Dice Loss (GDL) [47] is a commonly used loss
function which helps narrow the gap between training sam-
ples and evaluation metric, and it is also immune to the data
imbalance problem. Additionally, the weighted cross entropy
(WCE) [48] has proved to be effective for multi-task training
and class imbalance problem. Therefore, to provide better
supervision for the model training, we utilize the combination
of generalized dice loss LGDL and weighted cross entropy
loss LWCE as a union loss function L as follows:

L = LGDL + λ · LWCE (3)

where LGDL and LWCE represent the generalized dice loss and
the weighted cross entropy loss, and are defined as Eq. (4) and
Eq. (5), respectively.

LGDL = 1− 2

∑N
i wi

∑
k gikpik∑N

i wi
∑

k (gik + pik)
(4)

LWCE = −
∑
k

N∑
i

wigik log (pik) (5)

where N is the total number of labels, and wi denotes the
weight assigned to the ı̇ th label. As for the generalized dice
loss, we set wi to 1

(
∑

k gik)2
. pik and gik represent the value

of the (ı̇ th, kth) pixel of the segmented binary image and
of the binary ground truth image, respectively. Besides, λ in
Eq. (3) is the hyper-parameter for controlling the balance of
two functions.

III. EXPERIMENTS
In this section, we first introduce three brain tumor segmen-
tation benchmarks utilized for model evaluation, followed
by a simple description of the data preprocessing method.
Then, evaluationmetric and implementation details are given.
Finally, compared experiment results on three benchmarks
are reported and discussed.

A. DATASETS
We evaluate the effectiveness of attention gate and
AGResU-Net on three benchmarks of BraTS 2017,
BraTS 2018 and BraTS 2019 from Multimodal Brain Tumor
Segmentation Challenge (BraTS). The BraTS 2017 database
contains training dataset of 285 glioma patients, comprising
of 210 HGG cases and 75 LGG cases. The validation dataset
contains 46 patient subjects of unknown grade. The ground
truths of the training dataset are manually labeled via expert
and provided by the BraTS organizers. However, the ground
truths of the validation dataset are not accessible to the public,
and evaluation results on the validation dataset can only
be obtained via the BraTS online website. All of the brain
images are skull stripped and have the same orientation. For
each patient case, there are four MRI modalities, i.e., Flair,
T1, T1ce, and T2. To homogenize these data, all modalities
are registered together to the T1c sequence, and then these
images are resampled to 1 mm isotropic resolution on a
normalized axis using a linear interpolator [3]. The labels are
divided into four classes, namely healthy tissues (label 0),
necrosis and non-enhancing (label 1), edema (label 2), and
enhancing tumor (label 4). Fig. 3 illuminates a typical case of
MRI brain image along with the ground truth.

The BraTS 2018 database is slightly different from the
BraTS 2017 database. The BraTS 2018 database shares the
same training data with BraTS 2017 database but has different
validation dataset. It consists of 66 unlabeled patient sub-
jects for the validation dataset, on which experimental results
can only be evaluated through the BraTS website. For the
BraTS 2019 database, it includes more patient cases than the
BraTS 2017 and 2018 databases. Its training dataset contains
335 glioma patients, where 259 cases are HGG cases and the
remaining cases are 76 LGG cases. Besides, the number of
patient cases in BraTS 2019 validation dataset is expanded
to 125.

B. DATA PREPROCESSING
As aforementioned, due to the contrast variations, uneven
intensity and noise effects,MRI brain tumor segmentation is a
challenging problem. Although deep learning based methods
are more robust to the noise, data processing is still a criti-
cal and essential step. Additionally, in this work, we adopt
multi-modality 3DMRI brain scan datasets, i.e., BraTS 2017,
BraTS 2018 and BraTS 2019. However, multi-label brain
tumor segmentation suffers from class imbalance problem,
where the normal area occupying 98.46% pixels while 1.54%
of pixels belong to the abnormal area. In BraTS database,
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FIGURE 3. Example of the brain MRI data from the BraTS 2017 database. From left to right: Flair, T1, T1ce, T2 and the Ground Truth. Each
color represents a tumor class: red—necrosis and non-enhancing, green—edema and yellow—enhancing tumor.

each 3D MRI image data has a volume dimension of 240 ×
240 × 155. Considering that the axial brain image has the
highest resolution and most of the volume in the dataset is
obtained along the axial plane, we utilize 3D axial brain
image to produce a number of 2D image slices with the size
of 240 × 240. Before cutting 3D image into a series of 2D
slice images, we first remove 1% highest and 1% lowest
voxel intensities of the 3D images. Meanwhile, to solve class
imbalance problem, we further process these 2D image slices
in a patch manner by cropping each slice into several small
patches whose size is 128× 128.
Moreover, to reduce the influence of device noise, enhance

the image contrast and alleviate over-fitting phenomenon,
we also employ z-score normalization and Gaussian regular-
ization [49] on 2D images. Z-score normalization operation
processes each image by using mean value and standard
deviation of intensities, and it can be computed as

z′ =
z− µ
δ

, (6)

where z and z′ are the input image and normalized image,
respectively. µ is the mean value of the input image, and
δ is the standard deviation of the input image. Besides,
Gaussian regularization is the addition of Gauss noise on
image to improve accuracy formodel training. It penalizes the
noise-generated interference items for decreasing the weight
square which achieves the similar effect as L2 regularization
does, effectively mitigating the over-fitting phenomenon in
the process of model training. After the data preprocessing,
these 2D patch images are taken as the input of the brain
tumor segmentation network to balance data voxels. This data
preprocessing step could standardize the data and effectively
mitigate the class imbalance problem, thereby improving the
segmentation performance to a certain extent.

C. EVALUATION METRICS
In this work, we mainly utilize the Dice Similarity Coef-
ficient (DSC) and Hausdorff distance (HD) for the model
evaluation, which are the two most commonly used evalua-
tion metrics for brain tumor segmentation. Between the two
metrics, the DSC metric can be calculated as following.

DSC =
2TP

FN + FP+ 2TP
(7)

In the above equation, TP, FP and FN respectively represent
true positive, false positive and false negative prediction. DSC
mainly measures the area of overlap between the predicted
lesion area and the actual labeled area.

Besides, the Hausdorff distance (HD) can be computed
by

HD(T ,P) = max

{
sup
t∈T

inf
p∈P

d(t, p), sup
p∈P

inf
t∈T

d(t, p)

}
, (8)

where sup denotes the supremum, and inf represents the
infimum. t and p represent the points on the surface T of
the ground truth regions and the surface P of the predicted
regions, respectively. d(., .) is the function that computes the
distance between points t and p. Hausdorff distance estimates
the distance between the surface of the real area and the
surface of the predicted area. In addition, Hausdorff95 is a
pivotal metric of the Hausdorff distance, and it is used to
measure 95% quantile of the surface distance.

Due to practical clinical applications, the evaluation system
generally separates the tumor structure into three regions for
performance evaluation, and they are (a) the whole tumor
region containing all intratumor areas with labels 1, 2, 4,
(b) the core tumor region including whole tumor region but
excluding edema region (labels 1, 4), and (c) the enhancing
tumor region measuring label 4.

D. IMPLEMENTATION DETAILS
Our models are implemented using the Keras library with
TensorFlow [50] as the backend. Each brain tumor seg-
mentation model is trained with standard back-propagation
with SGD as optimizer and Parametric Rectified Linear
Unit (PReLU) function as activation function. During the
training phase, we employ the patch-slice batch size for
training and utilize the combined loss function given in
Subsec. II-C to guide the learning of the model. Each of
the MRI images is normalized by subtracting the mean and
dividing by the standard deviation to alleviate the voxel inten-
sity variance. Besides, the initial learning rate is set to 0.086,
the momentum parameter is 0.97, and the hyper-parameter λ
of the combined loss function is 1. All of the programs
are carried out on a PC equipped with a single GeForce
GTX 1080 GPU.
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E. EXPERIMENT RESULTS AND DISCUSSION
Our experiments mainly consist of four parts, which are
performed on BraTS 2017 training dataset, BraTS 2017 val-
idation dataset, BraTS 2018 validation dataset, and BraTS
2019 validation dataset, respectively. Experiment results
obtained on BraTS 2017 training dataset are the average value
of five individual runs with cross validation. Meanwhile,
evaluation results of BraTS 2017, BraTS 2018 and BraTS
2019 validation datasets are obtained via BraTS online web-
site. In addition, the baseline results are recurrent with the
same protocol utilized for the proposed model, and the other
compared results are directly quoted from the literature.

1) EXPERIMENTS ON BraTS 2017 TRAINING DATASET
We first evaluate the attention gate module and AGResU-Net
using the whole training dataset. We randomly split
285 labeled cases into training set, validation set and testing
set at an approximate ratio of 6:2:2 [51], that is, 171 samples
are taken as the training set, 57 cases are chosen for the
validation set, and the remaining 57 cases are the testing set.
Table 1 reports the compared segmentation results of four
models, i.e., U-Net, ResU-Net, AGU-Net and AGResU-Net,
where AGU-Net and AGResU-Net are the enhanced models
of U-Net, ResU-Net by embedding attention gate modules.
For fair comparisons, we report results of methods marked
with * through publicly released codes of authors and try our
best to fine-tune their parameters.

TABLE 1. Compared segmentation results with baselines on
BraTS 2017 training dataset.

As shown in Table 1, AGResU-Net achieves the optimal
segmentation performance among the four models, which
obtains dice similarity coefficient(DSC) of 0.876, 0.772 and
0.720 on the whole tumor, core tumor and enhancing tumor
segmentation, respectively. It is superior to the basic U-Net
with 0.6%, 1.0% and 1.7% accuracy improvement on the
whole tumor, core tumor and enhancing tumor, respec-
tively. Compared with ResU-Net, AGResU-Net outperforms
ResU-Net with 0.3-0.4% gains on average. When it comes to
AGU-Net, AGU-Net gains 0.4%, 1.0% and 0.8% accuracy
improvement over U-Net on the whole tumor, core tumor
and enhancing tumor, respectively. The compared experiment
results illuminate that embedding attention gates into U-Net
and ResU-Net benefits the brain tumor segmentation.

Subsequently, we perform experiment using the high-grade
glioma (HGG) cases of BraTS 2017 training dataset. HGG
cases are the most common malignant brain tumors in adults,
which tend to grow rapidly and spread faster than tumors of
low-grade. As described in Subsec. III-A, there are 210 HGG
cases in BraTS 2017 training dataset. In this experiment,

we randomly divide the HGG cases into two parts, where
168 cases are taken as the training set and the remaining
42 cases are the testing set. Table 2 tabulates the compared
results of U-Net, ResU-Net, AGU-Net and AGResU-Net.
In addition, we also compare our AGResU-Net with other
typical brain tumor segmentation methods to evaluate its
performance, whose results are given in Table 3.

TABLE 2. Compared segmentation results with baselines on HGG cases
of BraTS 2017 training dataset.

TABLE 3. Compared segmentation results with typical methods on HGG
cases of BraTS 2017 training dataset.

Table 2 illuminate that our AGResU-Net still obtains
the best segmentation performance among the four models.
It achieves mean DSC scores of 0.891, 0.865 and 0.830 on
the whole tumor, core tumor and enhancing tumor, respec-
tively. It outperforms U-Net by a large margin, and it is also
superior to ResU-Net andAGU-Net with gains of 0.67-0.77%
on average. Additionally, AGU-Net also has 0.70% average
performance improvement over its baseline of U-Net, which
mainly contributes to the embedded attention gate units.
Compared with other typical methods, as shown in Table 3,
AGResU-Net gains the optimal mean DSC scores on both
of core tumor and enhancing tumor, and it is only inferior
to the method proposed by Kamnitsas et al. [53] on whole
tumor. In [53], the authors optimize the network structure
by building two almost identical pathways to predict voxels
of the final feature map. Compared with Chen et al. [52]
and Kermi et al. [48] methods, our AGResU-Net model
acquires a better segmentation performance. For models of
Pereira et al. and Zhao et al., they apply 2D CNN mod-
els with 33 × 33 patches as inputs to predict center voxel
[12], [54]. In addition, Zhao et al. [54] additionally
employ conditional random field as post-processing to
improve the prediction performance. Without utilizing any
post-processing strategy, our AGResU-Net achieves 2.40%,
3.04% and 7.05% gains over [54] on the whole tumor, core
tumor and enhancing tumor, respectively. Comparison to the
typical U-Net brain tumor segmentation network proposed
in [16], our AGResU-Net outperforms it by a large margin
with 6.0%, 6.4% and 8.0% gains on whole tumor, core tumor
and enhancing tumor, respectively. The above comparison
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FIGURE 4. Examples of segmentation results on the HGG subset of BraTS 2017 training dataset. From left to right: Ground Truth,
U-Net, AGU-Net, ResU-Net and AGResU-Net results overlaid on Flair image. Each color represents a tumor class: red—necrosis and
non-enhancing, green—edema and yellow—enhancing tumor.

once again demonstrates the effect of AGResU-Net on brain
tumor segmentation. Note that although these experiments
are completed on the training dataset, as we split the dataset
into two or three uncrossed separated datasets for independent
training and testing, compared results are meaningful for
evaluating the effectiveness of AGResU-Net in the segmen-
tation of brain tumors.

Moreover, we also visualize the brain tumor segmentation
results of the four models. We utilize various colors to rep-
resent different tumor classes for the segmented images, and
then overlay the segmentation regions on the original brain
image. Fig. 4 illuminates several typical samples with the
corresponding segmentation results. In this figure, the red
regions are necrosis and non-enhancing, the green regions
represent edema, and the yellow regions indicate enhancing
tumor. Meanwhile, images from left to right are Ground
Truth, U-Net, AGU-Net, ResU-Net and AGResU-Net seg-
mentation results overlaid on Flair image, respectively. From
Fig. 4, it is seen that AGResU-Net achieves the best seg-
mentation results of brain tumors. Then, we amplify the
tumor region of the second patient case given in Fig. 4 and
overlay one tumor region each time on the original Flair
image, aiming to provide a more comprehensive comparison.
The amplified images can be shown in Fig. 5, where the
rectangle in blue is manually added to indicate the obviously
different segmentation regions of the fourmodels. It is clear to

TABLE 4. Compared segmentation results with baselines on BraTS 2017
validation dataset.

see that AGResU-Net achieves the best segmentation results
of brain tumors. These segmentation results further indicate
that attention gates focus on the small-scale tumor regions
which help improve the performance of three tumor regions,
especially for core and enhancing tumor.

2) EXPERIMENTS ON BraTS 2017 VALIDATION DATASET
As the online evaluation of testing dataset is unavailable after
the BraTS 2017 challenge, we evaluate the proposed models
on the online validation dataset in this experiment. Here,
We use whole training dataset of 285MRI images to train our
brain tumor segmentation models. Compared segmentation
results with baselines are listed in Table 4, and comparison
results with other typical methods are given in Table 5.

As shown in Table 4, AGU-Net is superior to U-Net with
2.50%, 1.10% and 2.60% gains on whole tumor, core tumor
and enhancing tumor, respectively. Meanwhile, AGResU-Net
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FIGURE 5. Refined segmentation results of one HGG case in BraTS 2017 training dataset. From left to right: Ground Truth,
U-Net, AGU-Net, ResU-Net and AGResU-Net results overlaid on Flair image. Each color represents a tumor region:
red—whole tumor, green—core tumor and yellow—enhancing tumor. Where the rectangle in blue is manually added for
demonstration purpose, indicating the obviously different segmentation regions of the four models.

TABLE 5. Compared segmentation results with typical methods on BraTS 2017 validation dataset.

respectively obtains DSC scores of 0.880, 0.781 and 0.749
on the whole tumor, core tumor and enhancing tumor,
which respectively outperforms ResU-Net by 1.80%, 0.70%
and 1.70%, proving the effectiveness of the attention gate
modules again. Besides, AGResU-Net achieves significant
performance improvement over the baseline of U-Net with
the average gain of 3.7%. Specially, it outperforms U-Net
by a large margin of 5.1% on enhancing tumor segmenta-
tion. Therefore, these compared results well establish the
brain tumor segmentation capability of AGResU-Net. When
it comes to Table 5, AGResU-Net outperforms other top
entries in the DSC value of enhancing tumor. By integrating

multiple models to boost performance, Kamnitsas et al. [57]
achieve the optimal DSC accuracy on whole tumor and core
tumor segmentation. Compared with other latest models on
DSC metric, AGResU-Net consistently has a large perfor-
mance improvement than models of Islam and Ren [55] and
Hu and Xia [60]. Meanwhile, AGResU-Net slightly lower
than Jesson et al. [56] and Pereira et al. [58] on the DSC
value ofwhole tumor. Jesson et al. utilize a FCNwithmultiple
prediction layers and loss functions in different scales, which
may lead to higher DSC value on the whole tumor. For Haus-
dorff95 metric evaluation results, our AGResU-Net achieves
the Hausdorff95 distance value of 6.87, 9.31 and 3.74 on the
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TABLE 6. Compared segmentation results with baselines on BraTS
2018 validation dataset.

whole tumor, core tumor and enhancing tumor segmentation,
respectively. Specially, it gains the optimal Hausdorff95 met-
ric on enhancing tumor segmentation. Although the best dis-
tance value on whole tumor and core tumor are respectively
obtained by Jesson et al. [56] and Kamnitsas et al. [57],
the compared Hausdorff95 results to a certain extent prove
the effectiveness of AGResU-Net on segmenting small-scale
tumors. Overall, our AGResU-Net model can achieve com-
petitive performance and outperform several state-of-the-art
methods. The comparisons also illustrate the effectiveness of
our networks in conjunction with attention gate modules.

3) EXPERIMENTS ON BraTS 2018 VALIDATION DATASET
To further demonstrate the effectiveness of our method,
we also perform experiment on the BraTS 2018 database.
We employ the whole 285 MRI data from BraTS 2018 train-
ing dataset for models training and evaluate the models on
its validation dataset. The experimental results are shown
in Table 6 and Table 7.

On the one hand, Table 6 shows that comparison results
among U-Net, AGU-Net, ResU-Net, and AGResU-Net are
similar to those in Table 4. AGU-Net still achieves better
performance than U-Net. Though it has 0.40% and 0.50%
gains over U-Net on whole tumor and core tumor seg-
mentation, it improves the enhancing tumor accuracy by
2.00%, well illuminating its effect on segmenting small-scale
tumors. As the optimal model, AGResU-Net outperforms
ResU-Net and AGU-Net by 0.67% and 0.40% on aver-
age, respectively. However, by embedding attention gates
into ResU-Net, AGResU-Net also achieves 1.2% accuracy
improvement on the enhancing tumor segmentation. In com-
parison, attention gate modules can improve the performance
of U-Net and ResU-Net in terms of DSC scores. On the
other hand, as shown in Table 7, AGResU-Net achieves
very competitive performance compared with other typical
brain tumor segmentation methods. AGResU-Net gains DSC

values of 87.2%, 80.8% and 77.2% on whole tumor, core
tumor and enhancing tumor, respectively. Comparison to
some recent methods of Wang et al. [64], Chandra et al. [65]
and Marcinkiewicz et al. [66], our AGResU-Net illuminates
better segmentation performance on DSC metric. Due to
Hu et al. [67] apply conditional random fields (CRFs) to fine
segmentation results in multi-cascaded convolutional neural
network, our AGResU-Net is slightly lower than it on whole
tumor segmentation. When it comes to Hausdorff95 metric
results, Hausdorff95 distances gained by our AGResU-Net
are 5.62, 8.36 and 3.57 on the whole tumor, core tumor and
enhancing tumor segmentation, respectively. The same with
DSC results, it has the optimal Hausdorff95 distance value
on enhancing tumor segmentation. Though AGResU-Net is
inferior to Wang et al. [64] and Chandra et al. [65] on whole
tumor and core tumor segmentation, it has the lowest Haus-
dorff95 distance value on average. Due to the whole tumor
area is larger than the core tumor region and the enhancing
tumor region, it is easier to segment whole tumors for U-Net
model. When embedding residual structures and attention
gate units individually, the performance will not be greatly
improved. Meanwhile, we mainly employ attention gate units
to improve the segmentation performance of small tumors,
i.e., core tumor and enhancing tumor. Besides, in view of
the limitation of memory size of GPU devices, we currently
can only utilize 2D slices of brain image to segment brain
tumors, which degrades its performance to some extent. Nev-
ertheless, it is worth noting that though our 2D AGResU-Net
is inferior to several 3D brain tumor segmentation methods
on whole tumor and core tumor regions, AGResU-Net out-
performs them on enhancing tumor segmentation. Therefore,
AGResU-Net overall still achieves comparable performance
compared with 3Dmodels [61]–[63]. The above comparisons
justify the effectiveness of attention gates. It can be concluded
that AGResU-Net effectively improves the segmentation per-
formance of small-scale tumors.

4) EXPERIMENTS ON BraTS 2019 VALIDATION DATASET
The last experiment is performed on the recent BraTS 2019
database. We adopt the similar protocol on BraTS 2017
and 2018 validation datasets to perform experiments. The
differences are there are more patient cases in BraTS 2019
Database. As few results have been reported by other works,
we only list the compared performance results with baselines

TABLE 7. Compared segmentation results with typical methods on BraTS 2018 validation dataset.
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TABLE 8. Compared segmentation results with baselines on BraTS
2019 validation dataset.

FIGURE 6. Comparison of DSC scores based on 125 patients in the BraTS
2019 validation dataset. For each tumor region, from left to right: U-Net,
AGU-Net, ResU-Net and the AGResU-Net.

as in Table 8. Besides, Fig. 6 depicts bar plots of the average
DSC scores for the three tumor regions onBraTS 2019 valida-
tion dataset. In this experiment, AGU-Net achieves superior
segmentation performance compared to its baseline U-Net
for the three tumor regions. Meanwhile, AGU-Net respec-
tively outperforms U-Net by 0.60% (whole tumor), 1.40%
(core tumor) and 0.40% (enhancing tumor). Then, com-
pared ResU-Net with AGResU-Net, after embedding atten-
tion gates into ResU-Net, its DSC scores on three tumor
segmentation regions increase by 0.30%, 1.70% and 0.50%,
respectively. In particular, two models with attention gates
averagely gain accuracy improvement of 1.55% over their
baselines on core tumor segmentation, which is also due to
the effectiveness of attention gates in improving small-scale
brain tumor segmentation.

IV. CONCLUSION
In this paper, we mainly explore the effectiveness of attention
gate for brain tumor segmentation task and also propose an
AGResU-Net model which integrates residual modules and
attention gates with a primeval and single U-Net architecture
for this task. AGResU-Net adds a series of attention gate units
into the skip connection for highlighting salient feature infor-
mation while disambiguating irrelevant and noisy feature
responses, which benefits the segmentation of small-scale
brain tumors. We extensively evaluate attention gate units
on three authoritative brain tumor benchmarks of BraTS
2017-2019. Experimental results illuminate that AGU-Net
and AGResU-Net outperform their baselines of U-Net and
ResU-Net, respectively. Additionally, AGResU-Net achieves
competitive performance with typical brain tumor segmenta-
tion methods. As the 2D U-Net model has limitation on fully

utilizing 3D information of MRI data, AGResU-Net loses
an amount of context information and local details among
different slices. In the future, we will try to explore 3D net-
work architecture to improve segmentation performance of
AGResU-Net, and extend the improved architecture to more
datasets to show its generalization. Besides, as brain tumor
segmentation is still a challenging task due to the complexity
of MRI brain images, as well as the limitation of labeled
samples for deep learning models, there is still a certain gap
between our brain tumor segmentation method and current
MRI scanning systems. Therefore, pursuing a clinic brain
tumor segmentation model is also our future work.
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