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The responses of sensory neurons are variable, and laboratory  
studies typically deal with this variability by averaging responses to 
many stimulus presentations. In the real world, however, people and 
animals must respond to individual stimulus events, and the brain is 
thought to compensate for neuronal variability by encoding sensory  
information in the responses of large populations of neurons. To 
understand the way sensory information guides behavior in every-
day life, we need to understand the way information is encoded in 
populations of neurons.

One way to identify the important aspects of a population code 
is to look at the differences between the neuronal representation 
of a sensory stimulus when it is used to guide behavior and when 
it is behaviorally irrelevant. Tasks that control attention provide a 
powerful way to manipulate behavioral relevance. Attention allows 
observers to select the most important stimuli and greatly improves 
perception of the attended location or feature. Attention modulates 
the firing rates of sensory neurons, typically increasing responses to 
attended stimuli1–4. This increased rate of firing acts to improve the 
signal-to-noise ratio of individual neurons5,6 and a recent study found 
that attention can cause a small additional reduction in the mean-
normalized variance (Fano factor) of the responses of some neurons 
in visual area V4 (ref. 7). However, the net effect of attention on the 
signal-to-noise ratio of single neurons is modest, suggesting that 
attention causes large improvements in psychophysical performance 
by affecting population responses in ways that cannot be measured 
in single neurons.

Attention could also alter the reliability of neuronal representations 
by affecting the amount of noise that is shared across a population of 
neurons. Variability in a population partly depends on the variability 
of single neurons, but can depend greatly on the extent to which 
variability is shared across the population. The effect of correlated 
variability on population sensitivity depends on the way in which 

the population is read out8,9, but its effect can be far greater than the 
effect of independent variability of single neurons. If the noise in 
individual neurons is independent, averaging the responses of many 
neurons will lead to a very accurate estimate of the mean, no matter 
how noisy the individual neurons are. If, however, there are positive 
correlations in the trial-to-trial fluctuations of the responses of pairs 
of neurons, then the shared variability can never be averaged out, 
leading to a more variable (and less accurate) estimate of the mean 
activity in the population10–12.

We found that attention adaptively decreased correlated variability 
in a population of neurons in visual area V4 in a change-detection 
task. Furthermore, we found that this decrease accounted for the vast 
majority of the attentional improvement in the amount of sensory 
information encoded by the population and is probably the major 
 contributor to the improved psychophysical performance. These 
results indicate that studies that focus on a single neuron, which 
 necessarily ignore interactions between neurons, miss the most critical 
aspect of the way sensory information is encoded in populations  
of neurons.

RESULTS
We investigated the effect of attention on both single neuron responses 
and correlated variability by recording from populations of neurons 
in V4 using chronically implanted microelectrode arrays in two rhesus 
monkeys (Macaca mulatta). Each monkey had two arrays, allowing 
us to monitor populations of neurons in both hemispheres simulta-
neously. The diameter of V4 receptive fields is approximately equal 
to eccentricity13,14, so the receptive fields the neurons recorded in 
a hemisphere typically overlapped at least partially (Fig. 1a). We 
recorded from 376 single units and 2,746 multiunit clusters during 
41 d of recording (including 66,578 simultaneously recorded pairs 
in the same hemisphere and 59,990 pairs in opposite hemispheres).  
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Attention improves performance primarily by reducing 
interneuronal correlations
Marlene R Cohen & John H R Maunsell

Visual attention can improve behavioral performance by allowing observers to focus on the important information in a complex 
scene. Attention also typically increases the firing rates of cortical sensory neurons. Rate increases improve the signal-to-noise 
ratio of individual neurons, and this improvement has been assumed to underlie attention-related improvements in behavior. 
We recorded dozens of neurons simultaneously in visual area V4 and found that changes in single neurons accounted for only a 
small fraction of the improvement in the sensitivity of the population. Instead, over 80% of the attentional improvement in the 
population signal was caused by decreases in the correlations between the trial-to-trial fluctuations in the responses of pairs of 
neurons. These results suggest that the representation of sensory information in populations of neurons and the way attention 
affects the sensitivity of the population may only be understood by considering the interactions between neurons.
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We did not find any important differences between single and multiunits 
or between the two monkeys, and our population analyses required 
large neural populations, so we combined single and multiunits  
(see Supplementary Results). However, the statistics that we used 
for single units are based on a subset of 187 single units that we were 
confident are unique (if there was a single unit on a given electrode 
on multiple days, it was only counted once).

The monkeys performed an orientation change–detection task 
in which spatial attention was manipulated (Fig. 1b). Two Gabor 
stimuli flashed on and off and the monkey’s task was to detect a 
change in the orientation of either stimulus. We manipulated atten-
tion in blocks by cueing the monkey as to which stimulus was more 
likely to change (see Online Methods). Each day, the location, size, 
orientation and spatial frequency of the Gabors were optimized 
for a selected single unit in each hemisphere. The two stimuli  
were therefore different, so directing attention to one of the two 
stimuli probably modulated both feature-based and spatial attention. 
Because we recorded from neurons with a wide range of receptive 
field locations and tuning, most neurons were not well driven 
by the stimulus (mean driven rate was 8.2 spikes per s for single 
units and 21.5 spikes per s for multiunits, compared with mean 
 spontaneous rate 5.8 spikes per s for single units and 14.1 spikes per s  
for multiunits).

Attention greatly improved behavioral performance in this task.  
To motivate the monkeys to attend to the cued location, we changed 
the stimulus at the attended location on 80% of trials (trials in which  
the attentional cue was valid). On the remaining 20% of trials (invalid  
trials), we tested performance at the unattended location using only a 
single orientation change (11°), which allowed us obtain reliable esti-
mates of behavior and neural responses despite there being relatively few 
invalid trials. In an example of a typical recording session, the proportion 
of trials in which the monkey successfully detected an 11° orientation 
change was substantially greater on trials when the attended, rather than 
the unattended, stimulus changed orientation (Fig. 1c).

To compute the effects of attention on neural responses during the 
period in which the monkey’s attentional state was most likely to affect 
its behavioral performance, we focused our analyses on the stimu-
lus presentation directly preceding the orientation change (Fig. 1b).  
On a given day, the stimuli immediately before the orientation change 
were identical, regardless of the attentional condition, validity of the 
attentional cue or size of the orientation change. Invalid trials were 
randomly interleaved with valid trials, so the neuronal effects of atten-
tion were indistinguishable on valid and invalid trials. We observed 

some adaptation of V4 responses between the first and the second 
stimulus presentation on each trial, but the average responses to the 
second through tenth stimuli were statistically indistinguishable  
(t test, P > 0.5). Because the orientation change occurred no sooner 
than the third stimulus presentation, the responses to the stimulus 
directly before the change were unaffected by the length of the trial.

Consistent with previous studies3,15–18, we found that attention 
increased V4 firing rates (Fig. 2a). To quantify the increase, we calcu-
lated a standard modulation index (MIrates), which was the differ-
ence between the average firing rates on trials in which the attended 
stimulus was inside of or outside of the neuron’s receptive field trials 
divided by the sum (see Supplementary Results). The mean MIrates 
was 0.049 for single units and 0.042 for multiunits, both of which 
were significantly greater than zero (t test, P < 10−6 for single units, 
P < 10−20 for multiunits).

We also found that attention reduces the trial-to-trial variability of 
individual neurons over a similar time course to its effects on firing 
rate. As is common to stimulus responses in many cortical areas19,  
we observed a drop in the Fano factor (the ratio of the variance of 
the firing rates to the mean) following stimulus onset (Fig. 2b). 
Following the drop associated with the response transient, the Fano 
factor remained at a significantly lower level in the attended than in 
the unattended condition (mean MIFF during the sustained response 
was −0.011 for single units and −0.017 for multiunits, P < 0.05 and  
P < 10−3, respectively). Because the Fano factor (Fig. 2b) was calculated 
using subdistributions of neurons such that the mean firing rates were 
the same for each time point and attentional condition19,20, the time 
course and attentional dependence of the Fano factor were independ-
ent of changes in firing rate (see Online Methods).

Attention improved the signal-to-noise ratio of individual  
V4 neurons (Fig. 2a,b), but we found that the effect of attention on the 
correlated variability in pairs of neurons was even more important. 
For each pair of simultaneously recorded neurons and each attentional 
condition, we calculated the correlation coefficient between spike 
count responses to the stimulus preceding the orientation change. This 
metric, termed noise correlation, measures the correlation in trial-
to-trial fluctuations in responses and therefore has a very different  
timescale than the millisecond timescale synchrony that has been 
shown to increase with attention21. We did not focus on synchrony 
here because no more pairs exhibited significant synchrony than 
would be expected by chance (out of 66,578 pairs, 3,609 had signifi-
cant synchrony in the attended condition and 3,634 had significant 
synchrony in the unattended condition, 5.4% and 5.5%, respectively; 
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Figure 1 Methods and behavior. (a) Center of 
visual receptive fields for the multiunit signals 
from one monkey. (b) Orientation change–
detection task. Two Gabor stimuli synchronously 
flashed on for 200 ms and off for a randomized 
200–400-ms period. At an unsignaled and 
randomized time, the orientation of one of the 
stimuli changed, and the monkey was rewarded 
for making a saccade to the stimulus that 
changed. Attention was cued in blocks, and 
the cue was valid on 80% of trials, meaning 
that on an ‘attend-left’ block of trials (depicted 
here), 80% of the orientation changes were to 
the left stimulus. The monkey was rewarded for 
correctly detecting any change, even on the unattended side. Unless otherwise stated, all analyses were performed on responses to the stimulus before 
the orientation change (black outlined panel). (c) Psychometric performance from a typical example experiment. The percent correct as a function 
of orientation change in degrees for trials in which the change occurred at the attended (black points) or unattended (gray point) location is shown. 
Unattended changes occurred only at the middle difficulty level (11°). Attentional improvement in behavior was quantified as the lateral shift between 
the percent correct on unattended trials and the fitted psychometric curve for attended trials.
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P < 0.05, bootstrap test described in Online Methods) and synchrony 
in the attended and unattended conditions was not different (paired  
t test, P = 0.46). Many spikes are needed to detect statistically significant  
synchrony and even more are needed to detect modulation of syn-
chrony by processes such as attention. Synchrony has therefore been 
observed in some studies of visual cortex (for example, see refs. 21,22), 
but not in others10,23,24 (see ref. 21 for a discussion of the statistical 
power needed to detect synchrony). The absence of synchrony in our 
study is probably a result of a combination of the low firing rates of 
many of our cells caused by stimuli that were suboptimal for most 
cells, the fact that we calculated synchrony using pairs of spiking neu-
rons rather than correlating spike times with local field potentials21 
and the fact that most neuron pairs were separated by millimeters in 
the cortex. The correlations that we observed were fluctuations on a 
longer timescale than millisecond-level synchrony. One possibility is 
that the same mechanisms that cause low-frequency oscillations in  
electroencephalography and local field potentials (which have been 
shown to desynchronize with attention25–28) caused the correlations 
we measured.

To obtain accurate estimates of noise correlation, we did not  
calculate a time course of correlation as we did for rate and Fano factor 
because, over short periods, the distributions of spike counts became 
non-Gaussian (because spike counts can never be negative) and discrete. 
Skewed, discrete distributions pose a problem for second-order statistics 
such as correlation, causing noise correlations to approach zero as the 
mean number of spikes decreases22,29,30. We therefore calculated noise 
correlation over the entire 200-ms interval (Fig. 2c).

Because the stimuli produced a wide range of responses across the 
population of neurons, we binned the neuron pairs by their mean 
evoked response across both attentional conditions (driven rate–  
baseline; Fig. 2c). Noise correlations were highest for pairs of neurons 
in the same hemisphere that both responded strongly to the stimu-
lus. This result can be explained by the fact that correlations tend to 
increase with firing rate30 and the observation that noise correla-
tions are highest for neurons with similar tuning10,22,24,29. Our dataset 
included neurons with a broad range of preferences for orientation 
and other stimulus properties and different receptive field locations, 
so two neurons that were both strongly modulated by the stimulus 
likely had similar tuning.

To test the effect of tuning similarity on noise correlation more 
directly, we calculated noise correlation as a function of signal  
correlation (Fig. 2d). In a separate set of trials, we presented Gabor 
stimuli at a variety of locations and orientations while the monkey 
performed a change-detection task far outside the neurons’ recep-
tive fields (see Online Methods). We calculated signal correlation 
by computing a correlation between the mean responses of each 
neuron to each stimulus. Consistent with previous results10,22–24, 
we found that noise correlation is highest for neurons with similar 
tuning (large, positive signal correlation) and lowest for neurons 
with opposite tuning (negative signal correlation). Unlike a recent 
study of noise correlations in V1 using the same electrode arrays that 
we used here29, we found that noise correlation did not depend on 
cortical distance. We suspect that the greater retinotopic and tuning 
organization of V1 compared with V4 accounts for the differences 
in our results.

We found that even for the least responsive neurons (Fig. 2c) and pairs 
of neurons with dissimilar stimulus preferences (Fig. 2d), correlations 
within a hemisphere were on average positive, indicating that there is 
shared variability throughout the population. In contrast, we found that 
noise correlations for pairs of neurons in opposite hemispheres were 
close to zero (Fig. 2c), meaning that trial-to-trial fluctuations in the two 
hemispheres are independent within an attentional condition.

The biggest physiological effect of attention in our dataset was a 
large decrease in the correlations between pairs of neurons in the 
same hemisphere (Fig. 2c,d). On average, attention reduced noise 
correlations by about half (mean MIcor = −0.35 for single units and  
−0.29 for multiunits, P < 10−5 for single units and P < 10−9 for multi-
units). Attentional modulation of correlation depended strongly on 
how much the neurons were driven by the stimulus; for the most 
responsive pairs of neurons, noise correlation in the attended condi-
tion was roughly one-third the correlation in the unattended condition  
(Fig. 2c). In contrast, the effect of attention on correlations did not 
depend on the degree of tuning similarity between the two cells  
(Fig. 2d). This observed decrease in correlation as a result of atten-
tion is the opposite result predicted by the mathematical relation-
ship between firing rate and correlation30. Attention tends to increase  
firing rates (Fig. 2a), which makes the distributions of spike counts 
more Gaussian and less discretized, leading to a predicted increase 
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Figure 2 Attentional modulation of firing rate, Fano factor and noise 
correlation. (a) Attention increased firing rates. A peristimulus time 
histogram of firing rates for all 3,498 single neurons and multiunit clusters 
on trials in which the stimulus in the same hemifield as the neuron’s 
receptive field was attended (black line) or unattended (gray line) is shown. 
Line width represents the s.e.m. Ripples reflect the 85-Hz frame rate of the 
video display. (b) Attention decreased mean-matched Fano factor. Plotting 
conventions are as described in a. (c) Attention decreased noise correlation. 
Spike count noise correlation (for responses over the period from 60 to 260 ms  
following stimulus onset) is plotted as a function of the mean stimulus 
modulation for the pair of neurons (firing rate during the stimulus–firing 
rate during the interstimulus blank period). For pairs of neurons in the 
same hemisphere, correlation was lower when the stimulus in the neurons’ 
receptive field was attended (black line) than when it was unattended 
(gray line). Pairs of neurons in opposite hemispheres (dashed lines) had 
correlations that were close to zero. Error bars represent s.e.m. (d) Raw noise 
correlation, but not attentional modulation, depended on signal correlation. 
Mean noise correlation is plotted as a function of signal correlation, which 
can be thought of as the similarity in spatial and feature tuning of the two 
neurons (see Online Methods). As has been previously reported, noise 
correlation increases with signal correlation. However, the difference in 
correlation between the attended (black line) and unattended (gray line) 
conditions did not depend on signal correlation. Error bars represent s.e.m.
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in correlation. Therefore, decreases in correlation cannot be a simple 
mathematical consequence of increases in firing rate.

Previous studies have shown that attention modulates firing rate 
more for neurons with the biggest response to the stimulus (whose 
responses may be more informative for the task)15–18. Furthermore, 
a recent study found that fast-spiking neurons with high firing rates 
(putative interneurons, separated from putative excitatory neurons 
on the basis of waveform width) had larger differences in Fano  
factor than regular-spiking neurons7. Our hardware filters prevented 
us from distinguishing these neuron types on the basis of waveform, 
but consistent with this study and studies of attentional modulation 
of firing rate, we found that attention had a bigger effect on the 
rates, Fano factors and noise correlations of neurons that responded 
strongly to the stimulus (Fig. 3). Neurons (or pairs of neurons) 
that were most strongly driven by the stimulus (biggest difference 
between evoked and baseline firing rate) probably have receptive 
field locations and tuning properties that make them well suited for 
this task, and these neurons showed the largest effects of attention 
by all three measures.

Recording from both hemispheres simultaneously allows us to 
be sure that the correlation changes that we observed were spatially 
specific effects of attention. The same block of trials that yielded low 
correlations in one hemisphere gave high correlations in the other, so 
nonspecific factors such as arousal or motivation cannot account for 
the changes in correlation that we observed. The fact that trial-to-trial 
variability in the two hemispheres was virtually independent is further 
evidence that the correlation changes we observed in a hemisphere 
are spatially specific.

Consistent with many previous studies (for examples, see refs. 21,31–34),  
we found that attention primarily affected the sustained part of the 
response rather than the onset transient (Fig. 2a,b). In our data, 
attentional modulation of firing rate became statistically significant 
122 ms after stimulus onset (the first time point at which the 95% 
confidence intervals for the means of the two attentional conditions 
did not overlap). In addition to examining the effect of attention on 
rates, Fano factor and correlations during the entire stimulus period, 
we calculated the attentional effects for all three measures during the 
sustained response of the response (122–260 ms after stimulus onset). 
As expected, attentional effects were larger during the sustained period 
by what appeared to be a fairly constant factor (Fig. 3).

Attention changed the responses of both single neurons and cor-
related variability in ways that could allow each to contribute to 
improvements in population sensitivity (Figs. 2 and 3). A primary 
goal of our study was to determine the relative importance of changes 
in firing rates, Fano factor and noise correlations. Because Fano fac-
tor measures the variability of single neurons without regard to the 
source of that variability, the decrease in Fano factor that we observed  

(Figs. 2b and 3b) could arise from a decrease in 
the independent variability of individual neu-
rons, a decrease in shared variability across the 
population or a combination of both. Noise 
correlation measures the degree of shared 
variability. We therefore focused on the other 
aspect of variability captured by the Fano 
factor and asked how much of a decrease in 
independent variability that was large enough 
to account for the full decrease in Fano factor 
would improve population sensitivity.

We compared the effects of attentional 
modulation of firing rates, independent vari-
ability and noise correlation and found that 

the modulation of correlation had by far the greatest influence on 
the attentional improvement in population sensitivity (Fig. 4). We 
first quantified the degree to which attention improved the sensitivity  
of the groups of neurons that we recorded (Fig. 4a,c) and then  
determined the amount of that improvement that was caused by 
attentional modulation that affected only rate, only independent 
variability or only correlation (Fig. 4d,e).

We quantified how much attention improved neuronal sig-
nals in our recorded populations (schematized for a hypothetical  
two-neuron dataset in Fig. 4a and shown for a real 38-neuron dataset in 
Fig. 4c). The monkey’s task was to detect a change in the orientation of 
the stimulus, so we defined population sensitivity as the discriminability  
between the distributions of responses to the original orienta-
tion and the changed orientation. For each of the single and multi-
units that we recorded from a given hemisphere on a given day 
(mean of 39.5 neurons, range of 14–74), we calculated responses 
to the stimulus preceding the change from 60 ms to 260 ms  
following stimulus onset and the changed stimulus starting 60 ms 
after onset and continuing for either 200 ms or until 60 ms before the 
monkey’s response, whichever came first. The mean time from the 
onset of the changed stimulus to the onset of the monkey’s response 
was 251 ms, and 260 ms fell at least 60 ms before the saccade on 
39% of trials. We experimented with other intervals for computing 
spike counts (including identical periods for the original and changed 
stimuli (200 ms each) and also cutting off the response to the changed 
stimulus 100 ms or 0 ms before the saccade) and these did not quali-
tatively affect the proportion of the improvement in population sen-
sitivity accounted for by each of the three factors that we considered. 
Using this time period, attentional modulation during the changed 
stimulus was indistinguishable from modulation during the previous 
stimulus (Supplementary Fig. 1).

We plotted one point for each stimulus in each trial in an  
n-dimensional space in which each dimension corresponds to the 
response of one of the n neurons that we recorded in a given hemi-
sphere (Fig. 4a). We then calculated the mean response for each 
stimulus and projected all responses onto an ‘axis of discrimination’ 
drawn through the two means. This was done separately for the two 
attention conditions, producing pairs of one-dimensional distribu-
tions of projections for each attention condition (Fig. 4c).

We measured population sensitivity by calculating d  (the difference 
in the means divided by their root mean square s.d.), which is mono-
tonically related to theoretical performance on classifying stimuli, so 
attention should increase d  to improve behavioral performance. We 
quantified the attentional improvement in population sensitivity as the  
difference in d  between the attended and unattended conditions. We 
then normalized the d  values to reflect the measured improvement. 
The amount of attentional improvement in our d  measure correlated 
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strongly with the monkey’s behavioral improvement resulting 
from attention. For each hemisphere day, we quantified behavioral 
improvement as the lateral shift between measured performance in 
the unattended condition and the fitted psychometric curve in the 
attended condition (Fig. 1c and Online Methods). Attention shifted 
the psychometric curve by 7.7°, which was typical for our datasets 
(7.6° ± 0.5°, mean ± s.e.m.; Fig. 1c). Attentional improvement in 
neuronal d  (attended-unattended) for each hemisphere day was 
highly correlated with behavioral improvement (R = 0.69, P < 10−12;  
Fig. 4c). This strong correlation suggests that our d  metric cap-
tures the important aspects of the improvements in population  
sensitivity that lead to improvements in behavior.

Each of the physiological changes that we observed in rate, Fano 
factor and correlation could have contributed to the improvement 
in population sensitivity. We next compared how much attentional 
modulation of each factor alone and the three factors together con-
tributed to the actual improvements in d  that we calculated. To iso-
late the contribution of each factor, we simulated the responses of 
populations of neurons using the same mean rates, noise correlations, 
Fano factors and number of neurons as the groups of neurons that we 
recorded (see Online Methods) and compared the calculated d  for 
each simulation to the real data in the unattended condition. In this 
example dataset, attentional modulation of all three factors together 
(Fig. 4c) accounted for 95% of the attentional improvement that we 
observed in the real data. We then calculated the contribution of each 
factor separately by simulating attentional modulation of the factor 

of interest and using the values observed in the unattended condi-
tion for the other two factors (Fig. 4c). Correlation alone accounted 
for 79% of the attentional improvement, rate accounted for 9% and 
modulation of independent variability accounted for 4%.

This example is typical of the 82 datasets (Fig. 4c). On average, 
attentional modulation of the three factors together accounted for 
92% of the attentional improvement that we observed in the actual 
populations (Fig. 4d). Notably, this result means that population 
sensitivity is well modeled by accounting only for rate, independent 
variability and pair-wise noise correlation, and that any other factors 
(including any higher-order correlations) account for no more than 
8% of the observed improvement in population sensitivity. Consistent 
with this, population responses in the retina are well described by 
the responses of individual neurons and pair-wise correlations35,36. 
Overall, modulation of noise correlation was by far the most impor-
tant factor in explaining the improvement in population sensitivity. 
Attentional modulation of noise correlation accounted for 81% of 
the observed improvement, rate accounted for 10% and independ-
ent variability accounted for only 0.3% (which was not significantly 
different than 0.0, t test, P = 0.82).

Unsurprisingly, we found that both the observed raw population d  
and the improvement in d  resulting from attention depended on the 
number of neurons that we recorded. Because there is no a priori way 
of knowing how many neurons are involved in the task, we examined 
the dependence of these measures on population size by sampling, 
with replacement, the firing rates, Fano factors and correlations of all 
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Figure 4 Modulation of noise correlation accounts for the majority of 
the attentional improvement in population sensitivity. (a). Procedure 
for calculating the sensitivity of the population. For each trial and 
attentional condition, the firing rate response of the n neurons recorded 
simultaneously in a given hemisphere to the stimulus immediately before 
the orientation change (open circles) and the changed stimulus (filled 
circles) is plotted as a point in an n-dimensional space (a fictional  
two-neuron example is plotted here). Each point is projected onto the  
axis connecting the center of mass of the cloud of points for each 
time period (X’s), leaving a one-dimensional distribution of projected 
values for each time period (dashed and solid curves). The sensitivity 
of the population to the change in the stimulus is quantified as the 
discriminability of the two distributions in units of d . (b). Population  
d  and behavioral improvement were highly correlated. For each 
hemisphere day, population d  is plotted as a function of the behavioral 
improvement (quantified as the lateral shift between performance at the 
unattended location and the fitted psychometric curve for the attended 
condition). (c). Procedure for calculating the amount of the observed 
attentional improvement explained by each factor for a representative 
example dataset. Histograms of projections onto the axis defined in a are 
plotted for the real data (left column, for attended and unattended trials) 
and for simulations (right column). We defined the observed attentional 
improvement as the difference between d   for the two attentional 
conditions (d  = 2.40 for the attended condition and 1.15 for the 
unattended condition, giving an improvement of 1.25 in this example). 
The left axis represents d  and the right axis represents normalized 
proportion of attentional improvement (by definition 1.0 for the attended 
condition and 0.0 for the unattended condition). We calculated the 
fraction of the observed attentional improvement explained by each 
factor(s) by comparing the simulated d  (right column of distributions, 
see Online Methods) to the d   for the real unattended data. (d). Average 
proportion of actual attentional improvement for all 82 datasets (one 
dataset for each hemisphere day). Error bars represent s.e.m. (e). Population 
sensitivity as a function of the number of neurons involved in the task. 
Population d  was calculated using the method described in a and  
b, except that data in both the attended and the unattended conditions were simulated. For each population size, we sampled, with replacement, from 
the entire population of neurons from all datasets combined. Each simulation was run 100 times for 10,000 trials on each run. The inset plots the 
relative contribution of each factor (which is the ratio of the improvement in d  for that factor alone to the improvement in d   for all three factors) as a 
function of population size.
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of the neurons that we recorded over all recording sessions (see Online 
Methods and refs. 11,24). We calculated population d  for simulations 
in which attention modulated either all three factors, one factor indi-
vidually or none of the factors (Fig. 4e). In all cases, d  increased with 
population size. Because noise correlations are on average positive for 
both attentional conditions, d  asymptotes for large populations9–11. 
Modulation of noise correlation accounted for most of the atten-
tional improvement in sensitivity for population sizes greater than five  
neurons (Fig. 4e). For very small populations, however, this was neces-
sarily not true (Fig. 4e). If performance depends on a single neuron, 
there can be no correlation, and the small attentional improvement 
depends almost entirely on modulation of firing rate. In our simula-
tions, noise correlations became dominant for populations of more 
than five neurons. If anything, this estimate may be high because we 
recorded from many neurons with stimulus preferences that were not 
well matched to the stimuli that we presented, resulting in low firing-
rate responses and low noise correlations (Fig. 2c). If we had recorded 
from neurons that were better matched to the stimuli, correlations 
would probably have been higher (Fig. 2c), shifting the point at which 
correlation becomes most important to population sizes even lower 
than five neurons. Many more than five neurons are thought to be 
involved in virtually every task, so changes in correlation probably 
dominate attentional improvement in nearly all situations.

DISCUSSION
Why do changes in shared variability have a bigger effect on popula-
tion sensitivity than changes in the signal-to-noise ratio of single 
neurons? One answer is that the changes in correlated variability that 
we observed were larger than the changes in firing rate or Fano factor. 
However, we re-ran the simulations (Fig. 4e), assuming that the three 
factors all had the same modulation index as the changes in rate (see 
Supplementary Results), and correlation still dominated for popula-
tion sizes greater than 30 neurons. Instead, the explanation lies in the 
fact that no matter how noisy individual neurons are, independent 
variability can be averaged out if the population of neurons is large 
enough. Correlated variability, however, can never be averaged out 
by simply adding neurons to the population.

Noise correlation can either improve or reduce population sen-
sitivity, depending on the algorithm by which neural responses are  
read out8,9, and our simulations could, in principle, have revealed that 
the observed correlation decreases acted to reduce population sensi-
tivity. However, theoretical studies have shown that decreased correla-
tion improves discrimination if the difference between the responses 
to the stimuli to be discriminated (the original and changed stimuli 
in our task) are of the same sign for most neurons8,9, which turned 
out to be the case in our dataset.

Most of the neurons that we recorded (92%) responded more 
strongly to the changed than the previous stimulus, presumably 
reflecting adaptation to the series of identical stimuli preceding the 
change. Therefore, the optimal quantity to be read out is similar to 
a (positively) weighted mean of the responses of the population and 
the axis of discrimination that we determined (Fig. 4a) was close 
to the weighted population mean. The attention-related decrease in 
correlation therefore improved the sensitivity of the population by 
reducing the amount of shared variability that could not be removed 
by averaging. In contrast, a recent study found no effect of attention 
on noise correlations in a situation in which correlations were shown 
to have no effect on the sensitivity of the population37. There are 
further situations (such as those in which the optimal readout algo-
rithm is more similar to a subtraction of two populations of cells) in 
which an increase in correlation would improve the sensitivity of the 

population8,9. Whether attention would increase correlations in such 
tasks remains to be determined.

It is likely, of course, that the brain uses a different algorithm 
for extracting stimulus information from the responses of many  
neurons than the very simple decoding scheme that we used (Fig. 4).  
However, the observation that attentional modulation of noise  
correlation explains most of the attentional improvement in popula-
tion sensitivity is probably true for any sensible decoding algorithm. 
First, the difference in the amount of attentional improvement 
explained by pair-wise correlations was very large compared with 
the amount explained by the changes in the responses of single 
neurons, suggesting that noise correlations will dominate using 
any decoding algorithm. Furthermore, correlation was by far the 
most important factor using any of several linear discriminators 
that we tried, including the single axis projection described here, 
Fisher discriminants and support vector machines (data not shown). 
Higher-order decoders that explicitly read out interneuronal  
correlations38–41 will be even more affected by attentional modu-
lation of correlation than linear discriminators. Finally, any sort 
of decoding algorithm that incorporates a mean (or weighted 
mean) of the responses of many neurons will be greatly affected by  
noise correlations10–12.

Mathematically, correlation is invariant to the mean response (the 
correlation coefficient is the ratio of the covariance to the square 
root of the product of the individual variances, so both the numera-
tor and denominator are proportional to the product of the means), 
so underlying noise correlations cannot be changed by a simple  
scaling of neural responses (that is, a gain change). Instead, noise 
correlations in cortex are thought to arise primarily from common, 
noisy inputs10,22,23,29. The fact that attention primarily decreased 
correlations provides clues about the mechanisms by which atten-
tion affects populations of sensory neurons. A decrease in correla-
tion combined with an increase in firing rates is consistent with a 
decrease in the strength of an effectively inhibitory input that is 
common across the population. One possibility is that attention 
results in a decrease in the weights or activity of inputs that cause 
divisive normalization, a mechanism that normalizes responses to 
many stimuli in a receptive field and has recently been proposed to 
underlie attention34,42,43. In fact, we found a correlation between 
the mean attentional modulation of the firing rates of a pair of 
neurons and modulation of their noise correlation (R = −0.32,  
P < 10−4) and also between the average rate and correlation changes 
in a hemisphere day (R = −0.61, P < 10−9; see Supplementary Fig. 2),  
which is consistent with the idea that the two attentional changes 
may be mediated by the same mechanism.

Attention improves perception of the attended location or feature, 
so studying the effects of attention on populations of sensory neurons 
reveals the aspects of the population code that are most important for 
accurately encoding information about a behaviorally relevant stimulus.  
Here we found that attention improved population sensitivity  
primarily by changing noise correlations and even the small pair-wise 
correlations that we observed had a marked effect on the sensitivity 
of the population. Therefore, understanding the interactions between 
pairs of neurons is critical for understanding population coding (see 
also refs. 8–11,38–41,44).

Rather than examining mean responses over many trials, the brain 
makes decisions on the basis of the responses of many neurons over 
a short period. Our results indicate that studies of average responses 
of single neurons miss interactions between neurons that have 
critical effects on behavior. Together, these results suggest that the 
future of studying population coding will rely on multi-electrode or 
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 imaging technologies that allow glimpses of population coding on the  
timescale of a single behavioral decision.

Note added in proof: A recent study in area V4 confirmed that attention 
reduces noise correlations45.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
The subjects in this experiment were two adult male rhesus monkeys (Macaca 
mulatta, 9 and 12 kg). All animal procedures were in accordance with the 
Institutional Animal Care and Use Committee of Harvard Medical School. Before 
training, each monkey was implanted with a head post and a scleral search coil for 
monitoring eye movements. After the monkey learned the behavioral task (3–4 
months), we implanted a 6 × 8 array of microelectrodes (Blackrock Microsystems) 
in V4 in each cerebral hemisphere. Each electrode was 1 mm long and the distance 
between adjacent electrodes was 400 m. The two arrays were connected to a 
percutaneous connector that allowed electrophysiological recordings.

We placed the arrays between the lunate and superior temporal sulci, which 
were visible during surgery. The center of the receptive field for the multiunit 
signal from each functional electrode from Monkey 1 is shown in Figure 1a. 
Monkey 2 underwent an unscheduled explantation of both arrays before record-
ings began, so we implanted new arrays several millimeters dorsal to the sites of 
the original implants. Consequently, Monkey 2 had more eccentric receptive fields 
than Monkey 1. Other than the receptive field distributions, the main physiologi-
cal results were indistinguishable for the two monkeys.

The data presented here are from 41 d of recording (20 from Monkey 1 and 21  
from Monkey 2), each comprising at least four blocks of each attentional  
condition (125 successfully completed trials per block). We recorded useful 
data from 376 unique single neurons (192 from Monkey 1 and 184 from 
Monkey 2) and 2,746 multiunit clusters (1,070 from Monkey 1 and 1,676 from 
Monkey 2). All spike sorting was done manually offline using commercial 
spike-sorting software (Plexon). The dataset consisted of 66,578 simultane-
ously recorded pairs of neurons (single and multiunits combined) in the same 
hemisphere and 59,990 pairs in opposite hemispheres. Figure 4b,c is based on 
populations of neurons recorded simultaneously in a single hemisphere.

The monkeys performed an orientation change–detection task. The trial began 
when the monkey fixed a small spot in a 1.5° square fixation window in the center 
of a video display (85-Hz refresh rate, 1,024 × 768 pixels, gamma corrected). Two  
achromatic Gabor stimuli whose size, location, spatial frequency and orientation 
were each optimized for one neuron in each hemisphere (new optimized neurons and 
stimuli each day) flashed on for 200 ms and off for a randomized period (200–400 ms  
picked from a uniform distribution between each stimulus presentation). At an 
unsignaled time picked from an exponential distribution (minimum of 1,000 ms,  
mean of 3,000 ms and maximum of 5,000 ms), the orientation of one of the stimuli 
changed. The monkey was given a liquid reward for making a saccade to the stimu-
lus that changed within 500 ms of its appearance. To account for saccadic latency 
and to avoid rewarding the monkey for guessing, we rewarded the monkey only 
for saccades beginning at least 100 ms after the change. If no change occurred 
within the maximum 5,000 ms, the monkey was rewarded simply for maintaining 
fixation. Attention was cued to one stimulus location or the other in blocks of  
125 trials. Before the start of each block, the monkey performed ten instruction 
trials (which were not included in any of the analyses presented here) in which there 
was only a single stimulus. In the upcoming block of trials, 80% of the orientation 
changes occurred on the same side as the stimulus in the instruction trials, meaning 
that on an ‘attend-left’ block of trials, 80% of the orientation changes were to the left 
stimulus. Only one change occurred on each trial and the monkey was rewarded 
for correctly detecting any change, even on the unattended side.

Unless otherwise stated, all analyses were performed on responses to the stimu-
lus presentation immediately before the orientation change. The mean-matching 
procedure for Fano factor (Fig. 2b) is described in detail elsewhere19,20. Briefly, 
the mean spike count and variance (and thereby the Fano factor) were calculated 
for each neuron, attentional condition and 20-ms time interval. The goal was to 
have the same distribution of mean firing rates (but not variances) at each time 
point and attentional condition, so we used a different subdistribution of neurons 
at each time point and condition. We compared distributions of means at each 
time point and condition and selected the greatest common distribution. We 
then subsampled our neurons at each time point and condition to match that 
distribution and then plotted average Fano factor (ratio of the variance to the 
mean) for those subdistributions.

The analyses in Figures 2c, 3 and 4 are based on spike count stimulus responses 
calculated from the period between 60 and 260 ms after stimulus onset. For 
the analyses in Figure 4, firing rates to the changed stimulus were obtained for 
spikes from 60 ms after stimulus onset to 260 ms after onset or 60 ms before the  
saccade, whichever came first. All analyses used only correctly completed trials. 

The analyses in Figure 4 are based only on trials that had an 11° orientation 
change because there were responses to the changed stimulus in both the attended 
and unattended condition for this difficulty level (see Fig. 1c).

Tuning and signal correlation. To assess the tuning of the V4 neurons that we 
recorded, we measured responses to a variety of Gabor stimuli either before or 
after the primary experiments on a given day. As the monkey performed a single 
stimulus version of the usual orientation change–detection task on a stimulus in 
the upper visual field (far outside the receptive fields of the neurons being studied), 
we synchronously flashed two additional Gabor stimuli in the lower visual field 
(one in the left and one in the right hemifield) for 100 ms each. The test Gabor 
stimuli were the same size and spatial frequency as the Gabor stimuli in the main 
attention task that day. We varied the azimuth (five locations per hemifield), eleva-
tion (eight locations) and orientation (six orientations) of the test Gabor stimuli 
(at least ten repetitions per unique stimulus). We obtained spike count responses 
during the period from 60–160 ms following stimulus onset. To minimize any 
effects of adaptation, we only analyzed responses to the stimuli that occurred after 
the first stimulus and before the changed stimulus in the orientation change task. 
To compute signal correlation (Fig. 2d), we computed the average response of each 
neuron to each of the 240 unique test Gabor stimuli and computed a correlation 
coefficient between the average responses.

Simulation of population responses. The analyses in Figure 4 required us to simu-
late the responses of populations of V4 neurons whose properties were identical to 
the ones that we recorded except that attention modulated only one physiological 
factor (independent variability, firing rate or pair-wise noise correlation) at a time 
(Fig. 4b–d) and the number of neurons in the population was varied (Fig. 4d). We 
used methods similar to those described previously24,11 to impose correlations on 
simulated populations of neurons. We measured the mean firing rate, Fano factor 
(as an upper bound for independent variability) and noise correlation for each 
neuron or pair of neurons and attentional condition. We then simulated responses 
of neurons with Gaussian distributions of firing rates and the same mean rates and 
Fano factors as the neurons that we recorded. We imposed correlations in the trial-
to-trial fluctuations in responses to match our recorded correlation structure.

To isolate the contribution of attentional modulation of the three physiologi-
cal factors, we used the measured values of the isolated factor in the attended 
condition and the other factors in the unattended condition. For example, to 
isolate the contribution of attentional modulation of firing rate, we used the 
measured firing rates from the attended condition and the measured Fano factors 
and noise correlations from the unattended condition. For the simulations in 
Figure 4b,c, we simulated responses to the average number of trials the monkey 
performed in the attended and unattended conditions in that dataset.

To vary population size in Figure 4d, we sampled, with replacement, from the 
entire population of neurons that we recorded in all datasets. For pairs of neurons 
that were not recorded simultaneously or when we resampled the same neuron 
more than once in a simulated population, we simulated noise correlation as 
the average noise correlation for pairs of neurons with a given mean firing rate  
(Fig. 2c). For each population size, we resampled the full set of neurons 1,000 
times and simulated responses on 10,000 trials per population.

Synchrony. In addition to noise correlation, which primarily measures correla-
tions on the timescale of tens of milliseconds, we tested for attentional modula-
tion of millisecond-timescale synchrony. We first determined whether each of 
our 66,578 simultaneously recorded pairs of neurons in a hemisphere exhibited 
significant synchrony by comparing the measured cross-correlogram (CCG) to 
a shuffled CCG in each attentional condition. We computed CCGs from the 
responses during a 60–260-ms time period following the onset of the stimulus 
preceding the orientation change. To compute the shuffled CCGs, we randomized 
the trial order for each neuron and then calculated the mean and 95% confidence 
interval for these shuffled CCGs (1,000 reshuffles). We found that only 3,609 pairs 
(5.4%) showed significant synchrony from −3 to +3 ms in the attended condi-
tion (the integral from −3 to +3 ms of the measured CCG fell outside the 95% 
confidence interval for the shuffled CCGs) and only 3,634 pairs (5.5%) showed 
significant synchrony in the unattended condition, which is close to the number 
expected by chance. We performed a paired t test on the differences between the 
measured integrals in the two conditions for each pair and found that the distri-
butions for the two attention conditions were statistically indistinguishable.
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