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Abstract: Deep neural network models perform well in a variety of domains, such as computer vision,
recommender systems, natural language processing, and defect detection. In contrast, in areas such
as healthcare, finance, and defense, deep neural network models, due to their lack of explainability,
are not trusted by users. In this paper, we focus on attention-map-guided visual explanations for
deep neural networks. We employ an attention mechanism to find the most important region of an
input image. The Grad-CAM method is used to extract the feature map for deep neural networks,
and then the attention mechanism is used to extract the high-level attention maps. The attention
map, which highlights the important region in the image for the target class, can be seen as a visual
explanation of a deep neural network. We evaluate our method using two common metrics: average
drop and percentage increase. For a more effective experiment, we also propose a new metric to
evaluate our method. The experiments were carried out to show that the proposed method works
better than the state-of-the-art explainable artificial intelligence method. Our approach can provide a
lower average drop and higher percent increase when compared to other methods and find a more
explanatory region, especially in the first twenty percent region of the input image.

Keywords: explainable artificial intelligence; visual explanation; attention mechanism

1. Introduction

Deep neural networks (DNNs) have enabled tremendous improvements in a number
of computer vision tasks, such as image classification [1,2], object detection [3–5], and
semantic segmentation [6]; and in some other tasks, such as visual question answering [7]
and autonomous driving [8]. However, DNNs are difficult to analyze and behave as
black boxes. When designing a deep neural network model, most researchers emphasize
the model’s framework and the many internal parameters of the model, but they cannot
provide a correct explanation of the model’s output when the model makes mistakes. This
also makes users unable to trust the network’s decisions in industries such as healthcare,
finance, and security. It is important that we construct transparent models so that they can
show users their reasoning. This will help with understanding failures, debugging, and
identifying potential biases in training data.

To solve these problems, explainable artificial intelligence (XAI) technology has been
proposed, and more and more researchers are working on this technology every year.
XAI technology focuses on how to make a DNN model’s decisions more transparent,
understandable, and trustworthy to humans. To interpret a deep neural network model,
it would be useful to generate an explanation map that highlights important regions
that are most related to the model’s decision. One common approach for interpreting
deep neural network models is relying on the changes in the model output, such as the
changes in prediction scores concerning the input images [9]. RISE [10] advocated a
general approach that probes the model with randomly masked versions of the image and
obtains the corresponding outputs without requiring access to its internals for each network
architecture. LIME [11] draws random samples and builds an approximated linear decision

Appl. Sci. 2022, 12, 3846. https://doi.org/10.3390/app12083846 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083846
https://doi.org/10.3390/app12083846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5455-0487
https://orcid.org/0000-0002-8435-0395
https://doi.org/10.3390/app12083846
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083846?type=check_update&version=1


Appl. Sci. 2022, 12, 3846 2 of 11

model to interpret deep neural networks. However, it depends on super-pixels, which may
or may not capture the relevant areas. Another approach, Grad-CAM [12], relies on the
gradients by back-propagating the prediction score through the last convolutional layer and
applying them as weights to combine the forward feature maps to produce explanations.
However, an explanation using Grad-CAM has too much meaningless information, since
the feature maps are not necessarily related to the target class.

In this paper, we propose an attention-map-guided visual explanation method for deep
neural networks. We use an attention mechanism to generate the attention map from the
feature map, which is generated using Grad-CAM. Herein, we compare our approach with
other state-of-the-art XAI methods. We evaluate our method using three metrics, and the
experimental results show that our method can provide a better explanation than the other
methods. Figure 1 shows an overview of our methods. In experiments, we demonstrated
the effectiveness of our method using the Imagenet dataset. Our method found the most
important region for the deep neural network. Our methodology achieved a lower average
drop and a higher percent increase, and uncovered a more explanatory region.

Figure 1. An overview of attention map-guided visual explanations for deep neural networks.

2. Related Work
2.1. CAM-Based XAI Methods

There are now many ways of using class activation mapping (CAM) [13] based meth-
ods for explaining the output of a model. These XAI methods use CAM methods as
their basis, and some researchers upgrade CAM methods with a mix of backpropagation
gradients and feature maps of a certain convolutional layer to generate an explanation
map. To generate the explanation map, they have mainly used prior position information,
such as part-level bounding boxes and segmentation masks [14]. The CAM is essentially a
weighted linear sum of these visual patterns’ existence in various spatial regions. It can
determine the images’ most important regions for the given category by simply upsampling
the class activation map to the size of the input image. In Figure 2, the global average
pooling (GAP) layer is used to convert the feature map into a feature vector, and each layer
of the feature map can be represented as a numerical value. CAM methods multiply the
weights corresponding to the bull mastiff class by the layers corresponding to the feature
map, making a weighted linear sum. Using a CAM method, it is possible to observe which
area the model is looking at. However, the CAM method has some shortcomings; e.g., it
needs to change the model’s structure from a fully connected layer to a global average
pooling layer. Users are cautious to explain DNN models using the CAM technique, since
it requires changing the model’s basic structure. Changing the model’s internal structure is
not convenient for the user.
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Figure 2. The framework of the CAM method. A series of feature maps are obtained by a forward
propagation; then, a global average pooling layer and a trained classifier are used to obtain the output.
The CAM method obtains a class activation map by multiplying these weights with the feature maps.

To address these problems of CAM methods, Selvaraju et al. [12] proposed using
gradient calculations instead of GAP. Grad-CAM is a new method for combining feature
maps using the gradient weights without any modifications to the network structure. It
allows any gradients to flow into the final convolutional layer to build a coarse localization
map that highlights the regions essential in the image for the predicting class. Grad-CAM
assigns priority values to each neuron for a specific choice using the gradient information
flowing into the last convolutional layer of the CNN model.

CAM and Grad-CAM use a linear combination of activation to produce a fine-grained
explanation. Grad-CAM++ is a Grad-CAM enhancement that provides a visual explanation
for the associated class by using a weighted mixture of the positive partial derivatives of
the target layers’ feature maps concerning a predetermined class score as weights. To create
an enhanced visual explanation of multiple objects in a single image, SmoothGrad-CAM
was created [15], which is a simple method that can help visually sharpen gradient-based
sensitivity maps. Additionally, it can visually brighten gradient-based sensitivity maps,
which obtain random samples in the neighbor of an input x and average the sensitivity
maps. The gradient of the class score function for the input image is a good starting point for
SmoothGrad-CAM. Omeiza, D et al. [16] proposed SmoothGrad-CAM++, which combines
SmoothGrad-CAM and Grad-CAM++. Smooth Grad-CAM++ creates visual explanations
of the input images that are more visually sharp. Smooth Grad-CAM++ allows one to
visualize a layer, a subset of feature maps, or a subset of neurons inside a feature map at
each occurrence. Although these XAI methods can provide reasonable visualizations, the
majority of them lack obvious and sufficient theoretical backing. XGrad-CAM [17] was
proposed to satisfy those needs as much as is feasible, and the studies on it show that ot is
a more sensitive and conservation-oriented variant of Grad-CAM. However, because the
feature maps are not always connected to the target class, the outputs of activation-based
approaches may collect too much worthless information.

2.2. Attention-Based Methods

Attention mechanisms are widely used in the field of natural language processing
(NLP) as a way to improve the performances of models [18,19]. They have been employed
extensively in sequential models using recurrent neural networks and long short-term
memory (LSTM). Evermore research is applying attention mechanisms to computer vision
tasks [20,21]. Researchers can use an attention method to extract high-level features to
improve the performance of a deep learning model. An attention mechanism in computer
vision tasks can be thought of as a dynamic selection process that is implemented by
adaptively weighting characteristics based on their relevance to the input. In the past
few years, researchers have found that focusing the attention mechanism on many image
recognition tasks can provide good results. Some created a global-and-local attention
(GALA) module and incorporated it into a DNN model, and the experimental results show
the module can improve visual recognition performance [22]. Increasingly, the attention
mechanism is being used in the XAI field. The authors of [23,24] offer spatial attention
maps of visual sections that the network attends to, which can be shown in a user-friendly
manner. However, attention maps are only one element of the puzzle. Non-salient picture
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content is filtered away using the attention technique. Attention networks, on the other
hand, must locate all potentially salient visual areas and forward them to the primary
recognition network for a final decision, just as a human would utilize peripheral vision to
determine that “something is there” before visual fixating on the item to determine what it is
Kim et al. [25] used a visual attention model that highlights image regions that potentially
influence a network’s output then applies a causal filtering step to determine which input
regions actually influence the output. This produces more succinct visual explanations and
more accurately exposes the network’s behavior than do other methods. Their research first
showed that training with attention does not degrade the performance of the end-to-end
network. However, they used a convolutional feature extractor to directly extract the
low-level feature map from the image. Thus, the explanation of the deep learning model
is based on another deep learning model, and whether the low-level features extracted
directly from the input image are the same.

3. Methods
3.1. Grad-CAM

Grad-CAM uses gradient calculations instead of GAP. As shown in Figure 3, Grad-
CAM is a method for combining feature maps using gradient weights without any modifi-
cations to the network structure. It allows any gradients to flow into the final convolutional
layer to build an explanation map that highlights the regions essential in the image for
predicting the class. We found through our experiments that using Grad-CAM as a base
gave the best results, so we built on it for our subsequent research.

Figure 3. Grad-CAM overview. The input image is processed by the CNN model, and a raw score
for the specific class is obtained. The gradients were set to 0, and the “bull mastiff” class was set
to 1. Then, it back-propagates the gradient to the rectified convolutional feature maps, which were
combined to produce the coarse red heat map that depicts where the model looking.

The Grad-CAM technique computes the gradient of the class score yc with respect to
the feature map of the last convolution layer:

∂yc

∂Ak
ij

(1)

It uses global-average-pooling gradients to get weights Wc
k .

Wc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(2)

Grad-CAM generalizes visual explanations using a weighted combination of feature
maps with ReLU.
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Lc
Grad-CAM = ReLU

(
∑
k

Wc
k Ak

)
(3)

In Equation (4), weight αc
k represents a partial linearization of the deep network

downstream from A, Z is the total number of feature map cells, yc is an activation class
score for class c, and Ak

ij represents activation of the cell at spatial location i.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(4)

Grad-CAM assigns priority values to each neuron for a specific choice using the
gradient information flowing into the last convolutional layer of the CNN model.

3.2. Attention Mechanism
3.2.1. General Form

When we become aware of a scene in our lives, we focus our attention on discrimi-
native areas and process them quickly, and almost all existing attention mechanisms can
be summed up by Equation (5). g(x) reflects the process of attending to discriminative
regions, which corresponds to the process of providing attention. Here, f (g(x), x) denotes
that input x is processed based on the attention g(x), which is compatible with processing
crucial sections and obtaining information.

Attention = f (g(x), x) (5)

3.2.2. Channel–Spatial Attention Module

Inspired by Woo et al. [26], we designed our channel–spatial attention module. Distinct
channels in different feature maps typically represent different objects in deep neural
networks [27]. Channel attention adjusts the weight of each channel as needed, and can
be thought of as an objective selection process that determines what to pay attention to.
By utilizing the inter-channel relationship of features, we create a channel attention map,
wherein each channel of the feature map acts as a feature detector. As shown in Figure 4,
we aggregate the spatial information of a feature map by using both average-pooling
and max-pooling operations, thereby generating average-pooled feature AvgPool(F) and
max-pooled feature MaxPool(F). Both descriptors are then forwarded to a multi-layer
perceptron (MLP) to produce a channel attention map Mc. In short, the channel attention is
computed as in Equation (6).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (6)

Figure 4. The overview of the channel-attention module, which utilizes both max-pooling outputs
and average-pooling outputs with an MLP.

We created a spatial attention module that is distinct from channel attention in that it
focuses on where there is an informative component, which is complementary to channel
attention. As shown in Figure 5, we use average-pooling and max-pooling procedures along
the channel axis, and then we use a convolution layer to generate a spatial attention map.
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Pooling procedures along the channel axis have been shown to help identify informative
regions [28]. We use two pooling operations: average-pooled features AvgPool(F) and max-
pooled features MaxPool(F). After that, a convolution layer convolves them to generate
our 2D spatial attention map. In Equation (7), σ denotes the sigmoid function, and f 7×7

represents a convolution operation with the filter size 7 × 7. The benefit of the channel–
spatial attention module is that it can adaptively identify essential objects and regions. Our
attention module leverages both channel and spatial relationships of features to instruct
the network on what to focus on and where to focus by sequentially combining channel
and spatial attention. It highlights helpful channels while also increasing informative
local locations.

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (7)

Figure 5. The spatial attention module pools two outputs along the channel axis and sends them to a
convolution layer.

4. Experiments
4.1. Experimental Setup

Our experiments were conducted on the commonly-used computer vision dataset Im-
ageNet. They involved the objective evaluation of our method and its compared with Grad-
CAM, Grad-CAM++, XGrad-CAM, and SmoothGrad-CAM++. We first tested VGG19 [29],
Resnet-50 [30], and Googlenet [31] models, which are pre-trained on ImageNet. After the
test, we chose the best-performing model as our black-box model to be explained. All
datasets were resized to 3 × 224 × 224 pixels, then transformed to tensors, and finally,
normalized to the range [0, 1]. As shown in Table 1, AMD Ryzen 7 3700X was used as
the CPU, and a total of 64 GB of memory was used. We used the GeForce RTX 2080 Ti as
the GPU. We also used Python 3.6, Pytorch 1.8.1, Torchvision 0.9.1, and other libraries as
our environment.

Table 1. Workstation configuration.

Software or Hardware Specification

CPU AMD Ryzen 7 3700X
GPU GeForce RTX 2080 Ti
RAM DDR4 64 GB

Python 3.6
Pytorch 1.8.1

Torchvision 0.9.1

First, we tested the above pre-trained models and selected the best-performing model
for the following experiments. According to Table 2, the Resnet-50 model performs best
on the ImageNet dataset, so we chose the Resnet-50 model as the black-box model to
be explained.
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Table 2. The performance of Resnet-50, Googlenet, and Vgg19.

Resnet-50 Googlenet Vgg19

Mean accuracy 0.9496 0.9363 0.9372
top5-error 5.38 8.26 9.21

4.2. Evaluation Metrics

We leveraged the study presented in [32] for the objective evaluation of our proposed
method. A heatmap was created for each image using a visualization approach such as
Grad-CAM. The most relevant discriminative regions were highlighted in red on this heat
map. The primary concept behind a heat map is to create an image that only contains the
sub-regions of the original image that are highlighted using a visualization technique. To
evaluate the explanation map, the generated heat map was modified so that the top 5, 10,
20, 25, and 50% of pixels were 1 and the rest 0. By multiplying the original image point
by point with the adjusted localization heat map, a visual explanation map was created.
Figure 6 displays the visual explanation map generated by our method, which modified
25% of the original image’s pixels. We examined the effectiveness of heatmaps created by
XAI method using the top x percent pixels, rather than the visual explanation maps of other
XAI methods. This guaranteed that one technique would outperform another not only in
terms of highlighting more pixels but also in terms of capturing more relevant information
for the same number of pixels.

Figure 6. (a) Original image of a bull mastiff. (b) The heat map generated by the proposed method.
(c) The attention-map-guided visual explanation map.

We evaluated the performances of explanation maps produced by our method and
other XAI methods using three metrics: (a) Average drop in activation score. (b) Percent
increase in activation score. (c) Percentage in metric. All the results were computed on the
ImageNet dataset using Resnet-50 models.

4.2.1. Average Drop in Activation Score

An excellent explanation map will cover the majority of the elements of the object in
the image that are important for making a choice. As a result, a better explanation map,
rather than a whole image, should result in a small decline in the model’s output scores. In
Equation (8), the metric is given as the percentage drop in the model’s score when only an
explanation map is provided as input.

Average drop =
1
N

N

∑
i=1

max
(
0, Yc

i − Oc
i
)

Yc
i

∗ 100 (8)

where Yc
i is the activation score when original image i is provided as input and Oc

i is the
activation score when explanation map is provided as input. N is the total number of
images in the data.
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4.2.2. Percent Increase in Activation Score

When the context acts as noise for the class, it has been discovered that presenting the
explanation map instead of the whole image boosts the output activation scores. When
only an explanation map is provided as input for a whole dataset, this measure is defined
as the rate at which the model’s output score rises. Formally, this can be expressed as:

Rate of increase in scores =
N

∑
i=1

(
1Yc

i < Oc
i

N

)
∗ 100 (9)

where 1Yc
i < Oc

i is an indicator function that returns 1 when an argument is true. Table 3
indicates that our method has a lower average drop and higher percent increase.

Table 3. Comparison between average drop and percent increase.

Metric Grad-CAM Grad-CAM++ SmoothGrad-CAM++ XGrad-CAM Ours

Average drop 45.27% 44.35% 44.82% 46.33% 42.52%
Percent increase 23.06% 23.15% 23.75% 22.15% 25.35%

4.2.3. Percentage in Metric

We created a new metric to demonstrate the results of our experiments. One of the
key reasons we created this metric is because it allows a more intuitive view of how well
the XAI method performs. The percentage specifies how much to mask the input image,
and this image is fed into the original Resnet-50 model to check the performance of the XAI
method. Using this metric, it is possible to visualize how well the XAI method performs
and provide a visualization of the results from the user’s perspective. Table 4 shows the
results of our experiment.

Table 4. The results of using the percentage in metric.

Metric Grad-CAM Grad-CAM++ SmoothGrad-CAM++ XGrad-CAM Ours

5% 0.2846 0.2715 0.4997 0.2915 1.0229
10% 0.3954 0.3841 0.7814 0.4521 1.2898
20% 4.5524 4.5001 4.8335 4.7527 5.5308
25% 6.6328 7.1551 6.7879 7.6782 9.5161
50% 8.9952 8.9876 8.7792 8.6304 11.5334

5. Results

As shown in Figure 7, the proposed method gave the clearest explanation of particular
features the model learned. For instance, proposed method was able to find the most
important portion of the bull mastiff’s head. Additionally, the proposed method captured
a larger amount of the class object (as seen in the dog image in Figure 7) and performed
localization well. Table 3 shows that if we use average drop and percent increase to evaluate
our method, it is better than the other XAI methods. A good explanation map will focus
on most of the relevant parts of the object in the image. As a result, when we input an
explanation map to the DNN model, it is expected to result in a low average drop and
high percent increase. The full explanation map is used as the input, and the Resnet-50
model will provide a class score. If the explanation map concentrates on the most essential
area in the image, the Resnet-50 model will provide a high-class score. According to
Equations (8) and (9), as the explanation map performs better, the average drop will be
lower and the percent increase will be higher.
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Figure 7. The results of the percentage in metric with 5%, 10%, 20%, 25%, and 50%.

6. Discussion

The computing time needed to create a single attention-map-guided visual explanation
map is longer than that required by other XAI methods. The reason for this is that we
employ the attention mechanism to get a higher-level feature region for each feature map.
Second, as seen in Tables 3 and 4, when we try to explain models such as Resnet-50, which
do not have any fully-connected layers, our methods perform only slightly better than other
XAI methods. As shown in Figure 7, our method focused on more of the important region
than the other XAI methods. The bull-mastiff’s head was totally obtained in the five-percent
and ten-percent images. This indicates that for the Resnet-50 model, the features expressed
in the head region of the bull-mastiff are most important.

7. Conclusions

In this work, we proposed a novel technique—attention-map-guided visual
explanation—to produce explanation maps to explain the individual decisions of CNN-
based models. It uses the Grad-CAM method to extract the feature map for a deep learning
model, and then uses the attention mechanism to extract the high-level attention map. We
showed through objective evaluations that our method performs better than the existing
state-of-the-art XAI methods. In the future, we hope to apply the proposed method to
medical diagnostics, and by explaining deep learning models, we hope to persuade doctors
and patients of the veracity of good deep learning models’ decisions. Our study has some
limitations, in light of which our findings need to be interpreted carefully. First, as in most
empirical studies, the research presented here was limited by the black-box used. Second,
the attention mechanism highlights some image regions which are true influences, but
some are spurious.
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