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Abstract

We propose a novel attention-based framework for 3D

human pose estimation from a monocular video. Despite

the general success of end-to-end deep learning paradigms,

our approach is based on two key observations: (1) tem-

poral incoherence and jitter are often yielded from a sin-

gle frame prediction; (2) error rate can be remarkably re-

duced by increasing the receptive field in a video. Therefore,

we design an attentional mechanism to adaptively identify

significant frames and tensor outputs from each deep neu-

ral net layer, leading to a more optimal estimation. To

achieve large temporal receptive fields, multi-scale dilated

convolutions are employed to model long-range dependen-

cies among frames. The architecture is straightforward to

implement and can be flexibly adopted for real-time ap-

plications. Any off-the-shelf 2D pose estimation system,

e.g. Mocap libraries, can be easily integrated in an ad-

hoc fashion. We both quantitatively and qualitatively eval-

uate our method on various standard benchmark datasets

(e.g. Human3.6M, HumanEva). Our method consider-

ably outperforms all the state-of-the-art algorithms up to

8% error reduction (average mean per joint position er-

ror: 34.7) as compared to the best-reported results. Code

is available at: (https://github.com/lrxjason/

Attention3DHumanPose)

1. Introduction

Articulated 3D human pose estimation is a classic vision

task enabling numerous applications from activity recog-

nition to human-robot interaction. Traditional approaches

often use specialized devices under highly controlled envi-

ronments, such as multi-view capture [1], marker systems

[26] and multi-modal sensing [32], which requires a labori-

ous setup process that limits their practical uses. This work

focuses on 3D pose estimation from an arbitrary monocu-

(a) Result from [35] (b) Ground truth (c) Ours

Figure 1: Comparison results: Top: side-by-side views of

motion retargeting results on a 3D avatar; the source is from

frame 857 of walking S9 and frame 475 of posing S9 in

Human3.6M. Bottom: the average joint error comparison

across all the frames of the video walking S9 [19, 35].

lar video, which is challenging due to the high-dimensional

variability and nonlinearity of human dynamics. Recent

efforts of using deep architectures have significantly ad-

vanced the state-of-the-art in 3D pose reasoning [41, 29].

The end-to-end learning process alleviates the need of using

tailor-made features or spatial constraints, thereby minimiz-

ing the characteristic errors such as double-counting image

evidence [15].

In this work, we aim to utilize an attention model to fur-

ther improve the accuracy among existing deep networks

while preserving natural temporal coherence in videos. The
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concept of “attention” is to learn optimized global align-

ment between pairwise data and has gained recent suc-

cess in the integration with deep networks for processing

mono/multi-modal data, such as text-to-speech matching

[12] or neural machine translation [3]. To the best of our

knowledge, our work is the first to use the attention mech-

anism in the domain of 3D pose estimation to selectively

identify important tensor through-puts across neural net lay-

ers to reach an optimal inference.

While vast and powerful deep models on 3D pose pre-

diction are emerging (from convolutional neural network

(CNN) [34, 40, 22] to generative adversarial networks

(GAN) [43, 10]), many of these approaches focus on a sin-

gle image inference, which is inclined to jittery motion or

inexact body configuration. To resolve this, temporal in-

formation is taken into account for better motion consis-

tency. Existing works can be generally classified into two

categories: direct 3D estimation and 2D-to-3D estimation

[50, 9]. The former explores the possibility of jointly ex-

tracting both 2D and 3D poses in a holistic manner [34, 42];

while the latter decouples the estimation into two steps:

2D body part detection and 3D correspondence inference

[8, 5, 50]. We refer readers to the recent survey for more

details of their respective advantages [27].

Our approach falls under the category of 2D-to-3D es-

timation with two key contributions: (a) developing a sys-

tematic approach to design and train of attention models for

3D pose estimation and (b) learning implicit dependencies

in large temporal receptive fields using multi-scale dilated

convolutions. Experimental evaluations show that the re-

sulting system can reach almost the same level of estima-

tion accuracy under both causal or non-causal conditions,

making it very attractive for real-time or consumer-level ap-

plications. To date, state-of-the-art results on video-based

2D-to-3D estimation can be achieved by a semi-supervised

approach [35] or a layer normalized LSTM approach [19].

Our model can further improve the performance in both

quantitative accuracy and qualitative evaluation. Figure 1

shows an example result from Human3.6M measured by

the Mean Per Joint Position Error (MPJPE). To visually

demonstrate the significance of the improvement, anima-

tion retargeting is applied to a 3D avatar by synthesizing the

captured motion from the same frame of the Walking S9 and

posing S9 sequences. From the side-by-side comparisons,

one can easily see the differences of the rendered results

against the ground truth. Specifically, the shadows of the

legs and the right hand are rendered differently due to the er-

roneous pose estimated, while ours stay more aligned with

the ground truth. The histogram on the bottom demonstrates

the MPJPE error reduction on individual joints. More ex-

tensive evaluation can be found in our supplementary mate-

rials.

2. Related Works

Articulated pose estimation from a video has been stud-

ied for decades. Early works relied on graphical or re-

strictive models to account for the high degree of freedom

and dependencies among body parts, such as tree-structures

[2, 1, 44] or pictorial structures [2]. These methods often in-

troduced a large number of parameters that required careful

and manual tuning using techniques such as piecewise ap-

proximation. With the rise of convolutional neural networks

(CNNs) [34, 38], automated feature learning disentangles

the dependencies among output variables and surpasses the

performance of tailor-made solvers. For example, Tekin et

al. trained an auto-encoder to project 3D joints to a high di-

mensional space to enforce structural constraints [40]. Park

et al. estimated the 3D pose by propagating 2D classifica-

tion results to 3D pose regressors inside a neural network

[33]. A kinematic object model was introduced to guaran-

tee the geometric validity of the estimated body parts [49].

A comprehensive list on CNNs-based systems can be found

in the survey [38].

Our contribution to this rich body of works lies in the in-

troduction of attention mechanism that can further improve

the estimation accuracy on traditional convolutional net-

works. Prior work on attention in deep learning (DL) mostly

addresses long short-term memory networks (LSTMs) [18].

For example, a LSTM encodes context within a sentence

to form attention-based word representations that boost the

word-alignment between two sentences [36]. A similar at-

tentional mechanism was successfully applied to improve

the task of neural machine translation by jointly translating

and aligning words [3]. Given the success in the language

domain, we utilize the attention model for visual data com-

puting through training a temporal convolutional network

(TCN) [45].

Compared to LSTMs, TCNs have the advantage of effi-

cient memory usage without storing a large number of pa-

rameters introduced by the gates of LSTMs [31, 4]. In ad-

dition, TCNs enable parallel processing on the input frames

instead of sequentially loading them into memory [19],

where an estimation failure on one frame might affect the

subsequent ones. Our work bears some similarity to the

semi-supervised approach that uses a voting mechanism to

select important frames [35]. But ours has three distinct

features: first, instead of selectively choosing a subset of

frames for estimation, our approach systematically assign a

weight distribution to frames, all of which might contribute

to the inference. Furthermore, our attention model enables

automated weight assignment to all the network tensors and

their internal channels that significantly improve the accu-

racy. Last but not least, our dilation model aims at enhanc-

ing the temporal consinstency with large receptive field,

while the semi-supervised approach focuses on speeding up

the computation by reusing pre-processed frames [35].
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Figure 2: Left: An example of 4-layers architecture for attention-based temporal convolutional neural network. In this exam-

ple, all the kernel sizes are 3. In practice, different layers can have different kernel sizes. Right: The detailed configuration

of Kenrnel Attention Module.

3. The Attention-based Approach

3.1. Network Design

Figure 2 (left) depicts the overall architecture of our

attention-based neural network. It takes a sequence of n

frames with 2D joint positions as the input and outputs the

estimated 3D pose for the target frame as labeled. The

framework involves two types of processing modules: the

Temporal Attention module (indicated by the long green

bars) and the Kernel Attention module (indicated by the

gray squares). The kernel attention module can be further

categorized as TCN Units (in dark grey color) and Linear

Projection Units (in light grey color) [17]. By viewing the

graphical model vertically from the top, one can notice the

two attention modules distribute in an interlacing pattern

that a row of kernel attention modules situate right below

a temporal attention module. We regard these two adjacent

modules as one layer, which has the same notion as a neural

net layer. According to the functionalities, the layers can be

grouped as top layer, middle layers, and bottom layer. Note

that the top layer only has TCN units for the kernel mod-

ule, while the bottom layer only has a linear projection unit

to deliver the result. It is also worth mentioning that the

number of middle layers can be varied depending on the re-

ceptive field setting, which will be discussed in section 5.3.

3.2. Temporal Attention

The goal of the temporal attention module is to provide

a contribution metric for the output tensors. Each attention

module produces a set of scalars, {ω
(l)
0 , ω

(l)
1 , . . . }, weighing

the significance of different tensors within a layer:

W
(l) ⊗T

(l) ∆
=

{
ω
(l)
0 ⊗ T

(l)
0 , . . . , ω

(l)
λl−1 ⊗ T

(l)
λl−1

}
(1)

where l and λl indicate the layer index and the number of

tensors output from the l(th) layer. We use T
(l)
u to denote

the uth tensor output from the lth layer. The bold format of

W⊗T is a compacted vector representation used in Algo-

rithm 1. Note for the top layer, the input to the TCN units

is just the 2D joints. The choice for computing their atten-

tion scores can be flexible. A commonly used scheme is the

multilayer perceptron strategy for optimal feature set selec-

tion [37]. Empirically, we achieve desirable result by sim-

ply computing the normalized cross-correlation (ncc) that

measures the positive cosine similarity between Pi and Pt

on their 2D joint positions [46]:

W
(0) = [ncc(P0,Pt), . . . , ncc(Pn−1,Pt)]

T
(2)

where P0, . . . ,Pn−1 are the 2D joint positions. t indicates

the target frame index. The output W(0) is forwarded to

the attention matrix θt
(l) to produce tensor weights for the

subsequent layers.

W
(l) = sig

(
θt

(l)T
W

(l−1)
)

, for l ∈ [1, L− 2] (3)

where sig(·) is the sigmoid activation function. We require

the dimension of θt
(l) ∈ RF ′

×F matching the number of

output tensors between layers l − 1 and l, s.t. F ′ = λl−1

and F = λl.
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3.3. Kernel Attention

Similar to the temporal attention that determines a ten-

sor weight distribution W(l) within layer l, the kernel at-

tention module assigns a channel weight distribution within

a tensor, denoted as W̃
(l)

. Figure 2 (right) depicts the steps

on how an updated tensor T
(l)
final is generated through the

weight adjustment. Given an input tensor T(l) ∈ RC×F ,

we generate M new tensors T̃
(l)
m using M TCN units with

different dilation rates. These M tensors are fused together

through element-wise summation: T̃(l) =
∑M

m=1 T̃
(l)
m ,

which is fed into a global average pooling layer (GAP) to

generate channel-wise statistics T̃
(l)
c ∈ RC×1. The channel

number C is acquired through a TCN unit as discussed in

the ablation study. The output T̃
(l)
c is forwarded to a fully

connected layer to learn the relationship among features of

different kernel sizes: T̃
(l)
r = θr

(l)T̃
(l)
c . The role of ma-

trix θr
(l) ∈ Rr×C is to reduce the channel dimension to r.

Guided by the compacted feature descriptor T̃
(l)
r , M vec-

tors are generated (indicated by the yellow cuboids) through

a second fully connected layer across channels. Their ker-

nel attention weights are computed by a softmax function:

W̃
(l) ∆

=

{
W̃

(l)
1 , ..., W̃

(l)
M

∣∣∣∣∣W̃
(l)
m =

eθm

(l)
T̃

(l)
r

∑M

m=1 e
θm

(l)T̃
(l)
r

}

(4)

where θm
(l) ∈ RC×r are the kernel attention parameters

and
∑M

m=1 W
(l)
m = 1. Based on the weight distribution, we

finally obtain the output tensor:

T
(l)
final

∆
=

M∑

m=1

W̃ (l)
m ⊗ T̃ (l)

m (5)

The channel update procedure can be further decomposed

as:

W̃ (l)
m ⊗ T̃ (l)

m =
{
ω̃
(l)
1 ⊗ T̃

(l)
1 , . . . , ω̃

(l)
C ⊗ T̃

(l)
C

}
(6)

This shares the same format as the tensor distribution pro-

cess (equation 1) in the temporal attention module but fo-

cuses on the channel distribution. The temporal atten-

tion parameters θt
(l) and kernel attention parameters θr

(l),

θm
(l) for l ∈ [1, L − 2] are learned through mini-batch

stochastic gradient descent (SGD) in the same manner as

the TCN unit training [6].

4. Integration with Dilated Convolutions

For the proposed attention model, a large receptive

field is crucial to learn long range temporal relationships

across frames, thereby enhancing the estimation consis-

tency. However, with more frames feeding into the network,

Figure 3: The model of temporal dilated convolution net-

work. As the level index increases, the receptive field over

frames (layer index = 0) or tensors (layer index ≥ 0) in-

creases.

the number of neural layers increases together with more

training parameters. To avoid vanishing gradients or other

superfluous layers problems [27], we devise a multi-scale

dilation (MDC) strategy by integrating dilated convolutions.

Figure 3 shows our dilated network architecture. For

visualization purpose, we project the network into an xyz

space. The xy plane has the same configuration as the net-

work in Figure 2, with the combination of temporal and

kernel attention modules along the x direction, and layers

layout along the y direction. As an extension, we place the

dilated convolution units (DCUs) along the z direction. Ter-

minologically, this z-axis is labeled as levels to differ from

the layer concept along the y direction. As the level index

increases, the receptive field grows with increasing dilation

size while reducing the number of DCUs.

Algorithm 1 describes the data flow on how these DCUs

interact with each other. For notation simplicity, we use

U
(l)
v to denote a DCU from layer l and level v. With the

extra dimension introduced by the dilation levels, the ten-

sor’s weights from the attention module in equation (1) are

extended to three dimensional. We format them as a set

of matrices: {W̄(0), . . . ,W̄(L−2)}. Accordingly, the pre-

learned attention parameters in equation (3) are upgraded to

a tensor format {θ̂t
(1)

, . . . , θ̂t
(L−2)

}. Lines 4∼5 of the Al-

gorithm 1 provide the details about the dimension of a con-

volution unit, i.e. kernel × dilation × stride. For tensor

product convenience, we impose the following dimension

constraints to U
(l)
v :

– The dilation size of unit U
(l)
v equals to the kernel size

of the unit U
(l+1)
0 : d

(l)
v := k

(l+1)
0 . In other words, the
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Algorithm 1: Multi-scale Dilation Configuration

input: Number of layers: L

kernel sizes: {k0, k1, . . . , kL−2, 1}
2D joints: {P0,P1, . . . ,Pn−1}

Result: configure the input/output for each U
(l)
v

1 V := L− 2 ; // level size

2 for l← 0 to L− 2 do

3 for v ← 0 to V − 1 do

4 d
(l)
v := k

(l+1)
0 ; // dilation size for U

(l)
v

5 s
(l)
v := k

(l)
v × d

(l)
v ; // stride size

6 U
(l)
v = DCU(d

(l)
v , s

(l)
v ) if l = 0 then

7 {P1, . . . ,Pn} U
(0)
v ; // input

8 U
(0)
v ⇒ T

(0)
v ; // output

9 else

10 W̄
(l)
v = sig(θ̂t

(l)T
W̄(l−1))

11 if v = 0 then

12 im := l − 1 ; // max level index

13 {W̄
(l−1)
0 ⊗T

(l−1)
0 ⊕ W̄

(l−1)
1 ⊗

T
(l−2)
1 ⊕ · · · ⊕ W̄

(l−1)
im

⊗T
(0)
im
}

U
(l)
v ; // ⊕ is element-wise add

14 U
(l)
v ⇒ T

(l)
v ;

15 else

16 W̄
(l−1)
im

⊗T
(l−1)
0  U

(l)
v ;

17 U
(l)
v ⇒ T

(l)
v ;

18 end

19 end

20 end

21 end

dilation size of all the units from layer l is defined by

the kernel size of the 0th unit of the next layer l + 1.

– The stride size of U
(l)
v equals to the product of its cor-

responding kernel and dilation sizes: s
(l)
v := k

(l)
v ×d

(l)
v .

Lines 6 - 18 configure the input (denoted by “”) and out-

put (denoted by “⇒”) data flows for the unit U
(l)
v . For the

input flow, we consider two cases according to the layer in-

dices: l = 0 and l ≥ 1. All the units from layer l = 0 share

the same n video frames as the input. For all the units from

subsequent layers (l ≥ 1), their input tensors are from:

input(U(l)
v )

∆
=

{
{T

(l−1)
0 ,T

(l−2)
1 , . . . ,T

(0)
V } if v = 0;

T
(l−1)
0 otherwise.

(7)

where T
(l−1)
v are the output tensors from the previous layer.

Element-wise multiplication is applied to these input ten-

sors with their weights W̄
(l−1)
v , as described in line 13.

5. Experiments

We have implemented the proposed approach in native

Python without parallel optimization. The test system runs

on a single NVIDIA TITAN RTX GPU. For real-time in-

ference, it can reach 3000 FPS, approximately 0.3 millisec-

onds to process a video frame. For training and testing, we

have built three prototypes n = 27, n = 81, and n = 243,

where n is the receptive field on input frames. The details

about n’s selection is discussed in the ablation study section

5.3. All the prototypes present similar convergence rates in

training and testing, as shown in Figure 4. We train our

model using a ranger optimizer for 80 epochs with an ini-

tial learning rate of 1e-3, followed by a learning rate decay

with cosine annealing decrease to 1e-5 [47, 24]. Data aug-

mentation is applied to both the training and testing data

by horizontally flipping poses. We also set the batch size,

dropout rate, and activation function to 1024, 0.2, and Mish,

respectively [35, 28].

Figure 4: Convergence and accuracy performance for train-

ing and testing on the three prototypes.

5.1. Datasets and Evaluation Protocols

Our training images are from two public datasets: Hu-

man3.6M [7] and HumanEva [39], following the same train-

ing and validation policy as existing works [27, 43, 19, 35].

Specifically, the subjects S1, S5, S6, S7, and S8 from Hu-

man3.6M are used for training, and S9 and S11 are applied

for testing. In the same manner, we conduct training/testing

on the HumanEva dataset with the “Walk” and “Jog” ac-

tions performed by subjects S1, S2, and S3. For both

datasets, we use the standard evaluation metrics (MPJPE

and P-MPJPE) to measure the offset between the estimated

result and ground-truth (GT) relative to the root node in

millimeters [7]. Two protocols are involved in the experi-

ment: Protocol#1 computes the mean Euclidean distance

for all the joints after aligning the root joints (i.e. pelvis)

between the predicted and ground-truth poses, referred as

MPJPE [14, 21, 34, 25]. Protocol#2 applies an additional

similarity transformation (Procrustes analysis) [20] to the

predicted pose as an enhancement, referred as P-MPJPE
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Method Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. ICCV’17 [27] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Fang et al. AAAI’18 [14] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Yang et al. CVPR’18 [43] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Pavlakos et al. CVPR’18 [34] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Luvizon et al. CVPR’18 [25] 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2

Hossain et al. ECCV’18 [19] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Lee et al. ECCV’18 [21] 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Dabral et al. ECCV’18 [13] 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1

Zhao et al. CVPR’19 [48] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Pavllo et al. CVPR’19 [35] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Ours (n=243 CPN causal) 42.3 46.3 41.4 46.9 50.1 56.2 45.1 44.1 58.0 65.0 48.4 44.5 47.1 32.5 33.2 46.7

Ours (n=243 CPN) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1

Martinez et al. ICCV’17 [27] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Hossain et al. ECCV’18 [19] 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2

Lee et al. ECCV’18 [21] 32.1 36.6 34.4 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 37.6 30.3 35.5 38.4

Zhao et al. CVPR’19 [48] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Pavllo et al. CVPR’19 [35] 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8

Ours (n=243 GT) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7

Table 1: Protocol#1 with MPJPE (mm): Reconstruction error on Human3.6M. Top-table: input 2D joints are acquired by

detection. Bottom-table: input 2D joints with ground-truth. (CPN) - cascaded pyramid network; (GT) - ground-truth.

Method Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. ICCV’17 [27] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. AAAI’18 [14] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Hossain et al. ECCV’18 [19] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Pavlakos et al. CVPR’18 [34] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Yang et al. CVPR’18 [43] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7

Dabral et al. ECCV’18 [13] 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3

Pavllo et al. CVPR’19 [35] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Ours (n=243 CPN) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

Table 2: Protocol#2 with P-MPJPE (mm): Reconstruction error on Human3.6M with similarity transformation.

[27, 19, 43, 35]. Compared to Protocol#1, this protocol is

more robust to individual joint prediction failure. Another

commonly used protocol (N-MPJPE) is to apply a scale

alignment to the predicted pose. Compared to Protocol#2,

this protocol involves a relatively less degree of transforma-

tion, resulting in a smaller error range than Protocol#2.

Thus it should be sufficient to combine Protocols#1&#2
for the accuracy analysis.

5.2. Comparison with StateoftheArt

We compare our approach with state-of-the-art tech-

niques on the two datasets Human3.6M and HumanEva, as

shown in Tables 1-3. The best and second best results are

highlighted in bold and underline formats respectively. The

last column of each table shows the average performance

on all the testing sets. Our approach achieves the minimum

errors with 45.1mm in MPJPE and 35.6mm in P-MPJPE. In

particular, under Protocol#1, our model reduces the best

reported error rate of MPJPE [35] by approximate 8%.

2D Detection: a number of widely adopted 2D detec-

tors were investigated. We tested the Human3.6M dataset

starting with the pre-trained Stacked Hourglass (SH) net-

Walk Jog

S1 S2 S3 S1 S2 S3 Avg

Pavlakos et al. [34] 22.3 19.5 29.7 28.9 21.9 23.8 24.4

Martinez et al. [27]∗ 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Lee et al. [21] 18.6 19.9 30.5 25.7 16.8 17.7 21.5

Pavllo et al. [35] 13.4 10.2 27.2 17.1 13.1 13.8 15.8

Ours (n=27 CPN) 13.1 9.8 26.8 16.9 12.8 13.3 15.4

Table 3: Protocol#2 with P-MPJPE (mm): Reconstruction

error on HumanEva. (∗) - single action model.

work (SH) to extract 2D point locations within the ground-

truth bounding box, the results of which were further fine-

tuned through the SH model [30]. Several automated meth-

ods without ground-truth bounding box were also investi-

gated, including ResNet-101-FPN [23] with Mask R-CNN

[16] and Cascaded Pyramid Network (CPN) [11]. Table 4

demonstrates the results with 2D directors by pre-trained

SH, fine-tuned SH, and fine-tuned CPN models [35]. Fur-

ther evaluation on 2D detectors can also be found in the

second part of Table 1, where a comparison is shown with
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either the CPN estimation or the ground-truth (GT) as the

input. For both cases, our attention model demonstrates

clear advantages.

Method SH PT SH FT CPN FT GT

Martinez et al. [27] 67.5 62.9 - 45.5

Hossain et al. [19] - 58.3 - 41.6

Pavllo et al. [35] 58.5 53.4 46.8 37.8

ours(n=243) 57.3 52.0 45.1 34.7

Pavllo et al.[35] - - 49.0 -

Ours(n=27) 62.5 56.4 49.4 39.7

Ours(n=81) 60.3 55.7 47.5 37.1

Ours(n=243) 59.2 54.9 46.7 35.5

Table 4: Top-table: Performance impacted by 2D detec-

tors under Protocol#1 with MPJPE (mm). Bottom-table:

Causal sequence processing performance in terms of the

different 2D detectors. PT - pre-trained, FT - fine-tuned,

GT - ground-truth, SH - stacked hourglass, CPN - cascaded

pyramid network.

Causal Performance: To facilitate real-time applica-

tions, we investigated the causal setting that has the archi-

tecture similar to the one described in Figure 2, but only

considers the frames in the past. In the same manner,

we implemented three prototypes with different receptive

fields: n = 27, n = 81, and n = 243. Table 4 (bottom)

demonstrates our causal model can still reach the same level

of accuracy as state-of-the-art. For example, compared to

the semi-supervised approach, the prototypes n = 81 and

n = 243 yield smaller MPJPE [35]. It is worth mention-

ing even without the input of frames in the future, the tem-

poral coherence is not compromised in the casual setting.

The qualitative results are provided in our supplementary

videos.

5.3. Ablation Studies

To verify the impact and performance of each component

in the network, we conducted ablation experiments on the

Human3.6M dataset under Protocol#1.

TCN Unit Channels: we first investigated how the

channel number C affects the performance between TCN

units and temporal attention models. In our test, we used

both the CPN and GT as the 2D input. Starting with a re-

ceptive field of n = 3 × 3 × 3 = 27, as we increase the

channels (C ≤ 512), the MPJPE drops down significantly.

However, the MPJPE changes slowly when C grows be-

tween 512 and 1024, and remains almost stable afterwards.

As shown in Figure 5, with the CPN input, a marginal im-

provement is yielded from MPJPE 49.9mm at C = 1024
to 49.6mm at C = 2048. A similar curve shape can be ob-

served for the GT input. Considering the computation load

with more parameters introduced, we chose C = 1024 in

our experiments.

Figure 5: The impact of channel number on MPJPE. CPN:

cascaded pyramid network and GT: ground-truth.

Kernel Attention: Table 5 shows how the setting of

different parameters inside the Kernel Attention module im-

pact the performance under Protocol#1. The left three

columns list the main variables. For validation purposes,

we divide the configuration into three groups in row-wise.

Within each group, we assign different values in one vari-

able while keeping the other two fixed. The items in bold

represent the best individual setting for each group. Em-

pirically, we chose the combination of M = 3, G = 8,

and r = 128 as the optimal setting (labeled in box). Note,

we select G = 8 instead of the individual best assignment

G = 2, which introduces a larger number of parameters

with negligible MPJPE improvement.

Kernels Groups Channels Parameters P1

M=1 G=1 - 16.95M 37.8

M=2 G=8 r=128 9.14M 37.1

M=3 G=8 r=128 11.25M 35.5

M=4 G=8 r=128 13.36M 38.0

M=3 G=1 r=128 44.28M 37.4

M=3 G=2 r=128 25.41M 35.3

M=3 G=4 r=128 15.97M 35.6

M=3 G = 8 r=128 11.25M 35.5
M=3 G=16 r=128 8.89M 37.3

M=3 G=8 r=64 10.20M 35.9

M=3 G=8 r=128 11.25M 35.5

M=3 G=8 r=256 13.35M 36.2

Table 5: Ablation study on different parameters in our ker-

nel attention model. Here, we are using receptive field

n = 3× 3× 3× 3× 3 = 243. The evaluation is performed

on Human3.6M under Protocol#1 with MPJPE (mm).

In Table 6, we discuss the choice of different types of

receptive fields and how it affects the network performance.

The first column shows various layer configurations, which

generates different receptive fields, ranging from n = 27 to

n = 1029. To validate the impact of n, we fix the other

parameters, i.e. M = 3, G = 8, r = 128. Note that for
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a network with lower number of layers (e.g. L = 3), a

larger receptive field may reduce the error more effectively.

For example, increasing the receptive field from n = 3 ×
3 × 3 = 27 to n = 3 × 3 × 7 = 147, the MPJPE drops

from 40.6 to 36.8 . However, for a deeper network, a larger

receptive field may not be always optimal, e.g. when n =
1029, MPJPE = 37.0. Empirically, we obtained the best

performance with the setting of n = 243 and L = 5, as

indicated in the last row.

Receptive fields Kernels Groups Channels Parameters P1

3×3× 3 = 27 M=1 G=1 - 8.56M 40.6

3×3× 3 = 27 M=2 G=4 r=128 6.21M 40.0

3×5× 3 = 45 M=2 G=4 r=128 6.21M 39.9

3×5× 5 = 75 M=2 G=4 r=128 6.21M 38.5

3×3× 3 = 27 M=3 G=8 r=128 5.69M 39.5

3×5× 3 = 45 M=3 G=8 r=128 5.69M 39.2

3×5× 5 = 75 M=3 G=8 r=128 5.69M 38.2

3×7× 7 = 147 M=3 G=8 r=128 5.69M 36.8

3×3× 3× 3 = 81 M=3 G=8 r=128 8.46M 37.8

3×5× 5× 5 = 375 M=3 G=8 r =128 8.46M 36.6

3×7× 7× 7 = 1029 M=3 G=8 r=128 8.46M 37.0

3×3× 3× 3× 3 = 243 M=3 G=8 r=128 11.25M 35.5

Table 6: Ablation study on different receptive fields in our

kernel attention model. The evaluation is performed on Hu-

man3.6M under Protocol#1 with MPJPE (mm).

Multi-Scale Dilation: To evaluate the impact of the di-

lation component on the network, we tested the system with

and without dilation and compared their individual out-

comes. In the same way, the GT and CPN 2D detectors are

used as input and being tested on the Human3.6M dataset

under Protocol#1. Table 7 demonstrates the integration

of attention, and multi-scale dilation components surpass

their individual performance with the minimum MPJPE for

all the three prototypes. We also found the attention model

makes an increasingly significant contribution as the layer

number grows. This is because more layers lead to a larger

receptive field, allowing the multi-scale dilation to capture

long-term dependency across frames. The effect is more

noticeable when fast motion or self-occlusion present in

videos.

Qualitative Results We also further evaluate our ap-

proach on a number of challenging wide videos, such as

activities of fast motion or low-resolution human images,

which are extremely difficult to obtain a meaningful 2D de-

tection. For example, in Figure 6, the person playing sword

not only has quick body movement also has a long casual

dress with partial occlusion; the skating girl has fast speed

generating blur regions. Our approach achieves a high level

of robustness and accuracy in these challenging scenarios.

More results can be found in the supplementary material.

Method

Model
n = 27 n = 81 n = 243

Attention model (CPN) 49.1 47.2 46.3

Multi-Scale Dilation model (CPN) 48.7 47.1 45.7

Attention and Dilation (CPN) 48.5 46.3 45.1

Attention model (GT) 39.5 37.8 35.5

Multi-Scale Dilation model (GT) 39.3 37.2 35.3

Attention and Dilation (GT) 38.9 36.2 34.7

Table 7: Ablation study on different components in our

method. The evaluation is performed on Human3.6M un-

der Protocol#1 with MPJPE (mm).

Figure 6: Qualitative results on wide videos.

6. Conclusion

We presented an attentional approach for 3D pose es-

timation from 2D videos. Combining multi-scale dilation

with the temporal attention module, our system is able to

capture long-range temporal relationships across frames,

thereby significantly enhancing temporal coherency. Our

experiments show a robust, high-fidelity prediction that

compares favorably to related techniques. We believe our

system substantially advances the state-of-the-art in video-

based 3D pose estimation, making it practical for real-time

applications.
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