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Abstract Humans can naturally and effectively find
salient regions in complex scenes. Motivated by this
observation, attention mechanisms were introduced
into computer vision with the aim of imitating
this aspect of the human visual system. Such an
attention mechanism can be regarded as a dynamic
weight adjustment process based on features of the
input image. Attention mechanisms have achieved
great success in many visual tasks, including image
classification, object detection, semantic segmentation,
video understanding, image generation, 3D vision, multi-
modal tasks, and self-supervised learning. In this survey,
we provide a comprehensive review of various attention
mechanisms in computer vision and categorize them
according to approach, such as channel attention, spatial
attention, temporal attention, and branch attention; a
related repository https://github.com/MenghaoGuo/
Awesome-Vision-Attentions is dedicated to collecting
related work. We also suggest future directions for
attention mechanism research.
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1 Introduction
Methods for diverting attention to the most important
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regions of an image and disregarding irrelevant
parts are called attention mechanisms; the human
visual system uses one [1–4] to assist in analyzing
and understanding complex scenes efficiently and
effectively. This in turn has inspired researchers
to introduce attention mechanisms into computer
vision systems to improve their performance. In
a vision system, an attention mechanism can be
treated as a dynamic selection process that is realized
by adaptively weighting features according to the
importance of the input. Attention mechanisms have
provided benefits in very many visual tasks, e.g., image
classification [5, 6], object detection [7, 8], semantic
segmentation [9, 10], face recognition [11, 12], person
re-identification [13, 14], action recognition [15, 16],
few-shot learning [17, 18], medical image processing
[19, 20], image generation [21, 22], pose estimation
[23], super resolution [24, 25], 3D vision [26, 27], and
multi-modal task [28, 29].

In the past decade, the attention mechanism has
played an increasingly important role in computer
vision; Fig. 1 briefly summarizes the history of
attention-based models in computer vision in the
deep learning era. Progress can be coarsely divided
into four phases. The first phase begins from
RAM [31], pioneering work that combined deep neural
networks with attention mechanisms. It recurrently
predicts the important region and updates the whole
network in an end-to-end manner through a policy
gradient. Later, various works [21, 35] adopted a
similar strategy for attention in vision. In this phase,
recurrent neural networks (RNNs) were necessary
tools for an attention mechanism. At the start of the
second phase, Jaderberg et al. [32] proposed the STN
which introduces a sub-network to predict an affine
transformation used to to select important regions in
the input. Explicitly predicting discriminatory input
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Fig. 1 Brief summary of key developments in attention in computer vision, which have loosely occurred in four phases. Phase 1 adopted
RNNs to construct attention, a representative method being RAM [31]. Phase 2 explicitly predicted important regions, a representative method
being STN [32]. Phase 3 implicitly completed the attention process, a representative method being SENet [5]. Phase 4 used self-attention
methods [15, 33, 34].

features is the major characteristic of the second
phase; DCNs [7, 36] are representative works. The
third phase began with SENet [5] that presented
a novel channel-attention network which implicitly
and adaptively predicts the potential key features.
CBAM [6] and ECANet [37] are representative works
of this phase. The last phase is the self-attention
era. Self-attention was firstly proposed in Ref. [33]
and rapidly provided great advances in the field of
natural language processing [33, 38, 39]. Wang et
al. [15] took the lead in introducing self-attention
to computer vision and presented a novel non-local
network with great success in video understanding
and object detection. It was followed by a series of
works such as EMANet [40], CCNet [41], HamNet [42],
and the Stand-Alone Network [43], which improved
speed, quality of results, and generalization capability.
Recently, various pure deep self-attention networks
(visual transformers) [27, 34, 44–49] have appeared,
showing the huge potential of attention-based models.
It is clear that attention-based models have the
potential to replace convolutional neural networks
and become a more powerful and general architecture
in computer vision.

The goal of this paper is to summarize and classify
current attention methods in computer vision. Our
approach is shown in Fig. 2 and further explained
in Fig. 3: it is based around data domain. Some
methods consider the question of when the important
data occurs, or others where it occurs, etc., and
accordingly try to find key time or locations in the
data. We divide existing attention methods into

Fig. 2 Attention mechanisms can be categorised according to
data domain. These include four fundamental categories of channel
attention, spatial attention, temporal attention, and branch attention,
and two hybrid categories, combining channel & spatial attention and
spatial & temporal attention. ∅ means such combinations do not (yet)
exist.

six categories which include four basic categories:
channel attention (what to pay attention to [50]),
spatial attention (where to pay attention), temporal
attention (when to pay attention), and branch channel
(which to pay attention to), along with two hybrid
combined categories: channel & spatial attention and
spatial & temporal attention. These ideas are further
briefly summarized together with related works in
Table 1.
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Table 1 Brief summary of attention categories and key related works

Attention category Description Related work

Channel attention Generate attention mask across the channel domain and use
it to select important channels.

[5, 25, 37, 53–60]

Spatial attention Generate attention mask across spatial domains and use it
to select important spatial regions (e.g., [15, 61]) or predict
the most relevant spatial position directly (e.g., [7, 31]).

[8, 9, 15, 20–22, 26, 27, 31, 32, 34, 35, 41–47, 61–109]

Temporal attention Generate attention mask in time and use it to select key
frames.

[110–112]

Branch attention Generate attention mask across the different branches and
use it to select important branches.

[113–116]

Channel & spatial
attention

Predict channel and spatial attention masks separately
(e.g., [6, 117]) or generate a joint 3-D channel, height, width
attention mask directly (e.g., [118–120]) and use it to select
important features.

[6, 10, 13, 14, 50, 101, 117–119, 121–130]

Spatial & temporal
attention

Compute temporal and spatial attention masks separately
(e.g., [16, 131]), or produce a joint spatiotemporal attention
mask (e.g., [132]), to focus on informative regions.

[131, 133–140]

Fig. 3 Channel, spatial, and temporal attention can be regarded
as operating on different domains. C represents the channel domain,
H and W represent spatial domains, and T means the temporal
domain. Branch attention is complementary to these. Reproduced
with permission from Ref. [30], c© Springer Science+Business Media,
LLC, part of Springer Nature 2019.

The main contributions of this paper are:
• a systematic review of visual attention methods,

covering the unified description of attention
mechanisms, the development of visual attention
mechanisms as well as current research,

• a categorisation grouping attention methods
according to their data domain, allowing us to
link visual attention methods independently of
their particular application, and

• suggestions for future research in visual attention.
Section 2 considers related surveys, and then

Section 3 is the main body of our survey. Suggestions
for future research are given in Section 4 and finally,
we give conclusions in Section 5. Symbols appearing
in the paper are summarized in Table 2.

Table 2 Key notation in this paper. Other minor notation is
explained where used

Symbol Description

X input feature map, X ∈ R
C×H×W

Y output feature map

W learnable kernel weight

FC fully-connected layer

Conv convolution

GAP global average pooling

GMP global max pooling

[ ] concatenation

δ ReLU activation [51]

σ sigmoid activation

tanh tanh activation

Softmax softmax activation

BN batch normalization [52]

Expand expan input by repetition
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2 Other surveys
In this section, we briefly compare this paper
to various existing surveys which have reviewed
attention methods and visual transformers. Chau-
dhari et al. [141] provided a survey of attention models
in deep neural networks which concentrates on their
application to natural language processing, while our
work focuses on computer vision. Three more specific
surveys [142–144] summarize the development of
visual transformers while our paper reviews attention
mechanisms in vision more generally, not just self-
attention mechanisms. Wang and Tax [145] presented
a survey of attention models in computer vision, but
it only considers RNN-based attention models, which
form just a part of our survey. In addition, unlike
previous surveys, we provide a classification which
groups various attention methods according to their
data domain, rather than according to their field of
application. Doing so allows us to concentrate on
the attention methods in their own right, rather than
treating them as supplementary to other tasks.

3 Attention methods in computer vision
In this section, we first sum up a general form for
the attention mechanism based on the recognition
process of human visual system in Section 3.1. Then
we review various categories of attention models given
in Fig. 2, with a subsection dedicated to each category.
In each, we tabularize representative works for that
category. We also introduce that category of attention
strategy more deeply, considering its development in
terms of motivation, formulation, and function.

3.1 General form

When seeing a scene in our daily life, we will focus on
the discriminative regions, and process these regions
quickly. The above process can be formulated as

Attention = f(g(x), x) (1)
Here, g(x) can represent to generate attention which
corresponds to the process of attending to the
discriminative regions. f(g(x), x) means processing
input x based on the attention g(x) which is
consistent with processing critical regions and getting
information.

With the above definition, we find that almost all
existing attention mechanisms can be written into the
above formulation. Here we take self-attention [15]
and squeeze-and-excitation (SE) attention [5] as

examples. For self-attention, g(x) and f(g(x), x) can
be written as

Q, K, V = Linear(x) (2)
g(x) = Softmax(QK) (3)

f(g(x), x) = g(x)V (4)
For SE, g(x) and f(g(x), x) can be written as

g(x) = Sigmoid(MLP(GAP(x))) (5)
f(g(x), x) = g(x)x (6)

In the following, we will introduce various
attention mechanisms and specify them to the above
formulation.

3.2 Channel attention

In deep neural networks, different channels in different
feature maps usually represent different objects [50].
Channel attention adaptively recalibrates the weight
of each channel, and can be viewed as an object
selection process, thus determining what to pay
attention to. Hu et al. [5] first proposed the concept
of channel attention and presented SENet for this
purpose. As Fig. 4 shows, and we discuss shortly,
three streams of work continue to improve channel
attention in different ways.

In this section, we first summarize the represen-
tative channel attention works and specify process
g(x) and f(g(x), x) described as Eq. (1) in Table 3
and Fig. 5. Then we discuss various channel atten-
tion methods along with their development process.
3.2.1 SENet
SENet [5] pioneered channel attention. The core of
SENet is a squeeze-and-excitation (SE) block which
is used to collect global information, capture channel-
wise relationships, and improve representation ability.

SE blocks are divided into two parts, a squeeze
module and an excitation module. Global spatial
information is collected in the squeeze module by
global average pooling. The excitation module
captures channel-wise relationships and outputs an
attention vector by using fully-connected layers and
non-linear layers (ReLU and sigmoid). Then, each
channel of the input feature is scaled by multiplying
the corresponding element in the attention vector.
Overall, a squeeze-and-excitation block Fse (with
parameter θ) which takes X as input and outputs Y

can be formulated as

s = Fse(X, θ) = σ(W2δ(W1GAP(X))) (7)

Y = sX (8)
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Fig. 4 Developmental context of visual attention.

SE blocks play the role of emphasizing important
channels while suppressing noise. An SE block
can be added after each residual unit [146] due
to their low computational resource requirements.
However, SE blocks have shortcomings. In the
squeeze module, global average pooling is too simple
to capture complex global information. In the
excitation module, fully-connected layers increase the
complexity of the model. As Fig. 4 indicates, later
works attempt to improve the outputs of the squeeze
module (e.g., GSoP-Net [54]), reduce the complexity
of the model by improving the excitation module (e.g.,

ECANet [37]), or improve both the squeeze module
and the excitation module (e.g., SRM [55]).
3.2.2 GSoP-Net
An SE block captures global information by only using
global average pooling (i.e., first-order statistics),
which limits its modeling capability, in particular
the ability to capture high-order statistics.

To address this issue, Gao et al. [54] proposed
to improve the squeeze module by using a global
second-order pooling (GSoP) block to model high-
order statistics while gathering global information.

Like an SE block, a GSoP block also has a squeeze
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Table 3 Representative channel attention mechanisms ordered by category and publication date. Their key aims are to emphasize important
channels and capture global information. Application areas include: Cls = classification, Det = detection, SSeg = semantic segmentation, ISeg =
instance segmentation, ST = style transfer, Action = action recognition. g(x) and f(g(x), x) are the attention process described by Eq. (1).
Ranges means the ranges of attention map. S or H means soft or hard attention. (A) Channel-wise product; (I) emphasize important channels,
(II) capture global information

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals

Squeeze-and-
excitation
network

SENet [5] CVPR2018 Cls,
Det

global average pooling → MLP
→ sigmoid

(A) (0, 1) S (I), (II)

Improve
squeeze
module

EncNet [53] CVPR2018 SSeg encoder → MLP → sigmoid (A) (0, 1) S (I), (II)

GSoP-Net [54] CVPR2019 Cls 2nd-order pooling → convo-
lution & MLP → sigmoid

(A) (0, 1) S (I), (II)

FcaNet [57] ICCV2021 Cls,
Det,
ISeg

discrete cosine transform →
MLP → sigmoid

(A) (0, 1) S (I), (II)

Improve
excitation
module

ECANet [37] CVPR2020 Cls,
Det,
ISeg

global average pooling →
conv1d → sigmoid

(A) (0, 1) S (I), (II)

Improve both
squeeze and
excitation
module

SRM [55] ICCV2019 Cls,
ST

style pooling → convolution &
MLP → sigmoid

(A) (0, 1) S (I), (II)

GCT [56] CVPR2020 Cls,
Det,
Action

compute l2-norm on spatial →
channel normalization → tanh

(A) (−1, 1) S (I), (II)

Fig. 5 Various channel attention mechanisms. GAP = global average pooling, GMP = global max pooling, FC = fully-connected layer,
Cov pool = Covariance pooling, RW Conv = row-wise convolution, CFC = channel-wise fully connected, CN = channel normalization,
DCT = discrete cosine transform.

module and an excitation module. In the squeeze
module, a GSoP block firstly reduces the number of
channels from c to c′ (c′ < c) using a 1×1 convolution,
and then computes a c′ × c′ covariance matrix for the
different channels to obtain their correlation. Next,
row-wise normalization is performed on the covariance
matrix. Each (i, j) in the normalized covariance
matrix explicitly relates channel i to channel j.

In the excitation module, a GSoP block
performs row-wise convolution to maintain structural
information and output a vector. Then a fully-
connected layer and a sigmoid function are applied
to get a c-dimensional attention vector. Finally, it

multiplies the input features by the attention vector,
as in an SE block. A GSoP block can be formulated
as

s = Fgsop(X, θ) = σ(WRC(Cov(Conv(X)))) (9)
Y = sX (10)

Here, Conv(·) reduces the number of channels, Cov(·)
computes the covariance matrix, and RC(·) means
row-wise convolution.

By using second-order pooling, GSoP blocks have
improved the ability to collect global information
over the SE block. However, this comes at the cost of
additional computation. Thus, a single GSoP block
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is typically added after several residual blocks.
3.2.3 SRM
Motivated by successes in style transfer, Lee et al. [55]
proposed the lightweight style-based recalibration
module (SRM). SRM combines style transfer with
an attention mechanism. Its main contribution
is style pooling which utilizes both mean and
standard deviation of the input features to improve
its capability to capture global information. It also
adopts a lightweight channel-wise fully-connected
(CFC) layer, in place of the original fully-connected
layer, to reduce the computational requirements.

Given an input feature map X ∈ R
C×H×W ,

SRM first collects global information by using
style pooling (SP(·)) which combines global average
pooling and global standard deviation pooling. Then
a channel-wise fully connected (CFC(·)) layer (i.e.,
fully connected per channel), batch normalization
BN, and sigmoid function σ are used to provide the
attention vector. Finally, as in an SE block, the
input features are multiplied by the attention vector.
Overall, an SRM can be written as

s = Fsrm(X, θ) = σ(BN(CFC(SP(X)))) (11)
Y = sX (12)

The SRM block improves both squeeze and excitation
modules, yet can be added after each residual unit
like an SE block.

3.2.4 GCT
Due to the computational demand and number
of parameters of the fully connected layer in the
excitation module, it is impractical to use an SE block
after each convolution layer. Furthermore, using
fully connected layers to model channel relationships
is an implicit procedure. To overcome the above
problems, Yang et al. [56] proposed the gated
channel transformation (GCT) to efficiently collect
information while explicitly modeling channel-wise
relationships.

Unlike previous methods, GCT first collects global
information by computing the l2-norm of each
channel. Next, a learnable vector α is applied to
scale the feature. Then a competition mechanism is
adopted by channel normalization to interact between
channels. Like other common normalization methods,
a learnable scale parameter γ and bias β are applied to
rescale the normalization. However, unlike previous
methods, GCT adopts tanh activation to control the

attention vector. Finally, it not only multiplies the
input by the attention vector but also adds an identity
connection. GCT can be written as
s = Fgct(X, θ) = tanh(γCN(αNorm(X)) + β) (13)

Y = sX + X (14)
where α, β, and γ are trainable parameters. Norm(·)
indicates the l2-norm of each channel. CN is channel
normalization.

A GCT block has fewer parameters than an SE
block, and as it is lightweight, it can be added after
each convolutional layer of a CNN.
3.2.5 ECANet
To avoid high model complexity, SENet reduces
the number of channels. However, this strategy
fails to directly model correspondence between
weight vectors and inputs, reducing the quality
of results. To overcome this drawback, Wang et
al. [37] proposed the efficient channel attention
(ECA) block which instead uses a 1D convolution to
determine the interaction between channels, instead
of dimensionality reduction.

An ECA block has similar formulation to an SE
block including a squeeze module for aggregating
global spatial information and an efficient excitation
module for modeling cross-channel interaction.
Instead of indirect correspondence, an ECA block
only considers direct interaction between each
channel and its k-nearest neighbors to control model
complexity. Overall, the formulation of an ECA block
is

s = Feca(X, θ) = σ(Conv1D(GAP(X))) (15)
Y = sX (16)

where Conv1D(·) denotes 1D convolution with a
kernel of shape k across the channel domain, to
model local cross-channel interaction. The parameter
k decides the coverage of interaction, and in ECA
the kernel size k is adaptively determined from the
channel dimensionality C instead of by manual tuning,
using cross-validation:

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

(17)

where γ and b are hyperparameters. |x|odd indicates
the nearest odd function of x.

Compared to SENet, ECANet has an improved
excitation module, and provides an efficient and
effective block which can readily be incorporated
into various CNNs.
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3.2.6 FcaNet
Only using global average pooling in the squeeze
module limits representational ability. To obtain a
more powerful representation ability, Qin et al. [57]
rethought global information captured from the
viewpoint of compression and analysed global average
pooling in the frequency domain. They proved that
global average pooling is a special case of the discrete
cosine transform (DCT) and used this observation to
propose a novel multi-spectral channel attention.

Given an input feature map X ∈ R
C×H×W , multi-

spectral channel attention first splits X into many
parts xi ∈ R

C′×H×W . Then it applies a 2D DCT
to each part xi. Note that a 2D DCT can use
pre-processing results to reduce computation. After
processing each part, all results are concatenated
into a vector. Finally, fully connected layers, ReLU
activation, and a sigmoid are used to get the attention
vector as in an SE block. This can be formulated as

s = Ffca(X, θ) = σ(W2δ(W1[(DCT(Group(X)))]))
(18)

Y = sX (19)
where Group(·) indicates dividing the input into
many groups and DCT(·) is the 2D discrete cosine
transform.

This work based on information compression
and discrete cosine transforms achieves excellent
performance on the classification task.
3.2.7 EncNet
Inspired by SENet, Zhang et al. [53] proposed
the context encoding module (CEM) incorporating
semantic encoding loss (SE-loss) to model the
relationship between scene context and the
probabilities of object categories, thus utilizing
global scene contextual information for semantic
segmentation.

Given an input feature map X ∈ R
C×H×W , a

CEM first learns K cluster centers D = {d1, . . . , dK}
and a set of smoothing factors S = {s1, . . . , sK}
in the training phase. Next, it sums the difference
between the local descriptors in the input and the
corresponding cluster centers using soft-assignment
weights to obtain a permutation-invariant descriptor.
Then, it applies aggregation to the descriptors of
the K cluster centers instead of concatenation for
computational efficiency. Formally, CEM can be
written as

ek =

N∑
i=1

e−sk||Xi−dk||2
(Xi − dk)

K∑
j=1

e−sj ||Xi−dj ||2

(20)

e =
K∑

k=1

φ(ek) (21)

s = σ(We) (22)
Y = sX (23)

where dk ∈ R
C and sk ∈ R are learnable parameters.

φ denotes batch normalization with ReLU activation.
In addition to channel-wise scaling vectors, the
compact contextual descriptor e is also applied to
compute the SE-loss to regularize training, which
improves the segmentation of small objects.

Not only does CEM enhance class-dependent
feature maps, but it also forces the network
to consider big and small objects equally by
incorporating SE-loss. Due to its lightweight archi-
tecture, CEM can be applied to various backbones
with only low computational overhead.
3.2.8 Bilinear attention
Following GSoP-Net [54], Fang et al. [147] claimed
that previous attention models only use first-order
information and disregard higher-order statistical
information. They thus proposed a new bilinear
attention block (bi-attention) to capture local pairwise
feature interactions within each channel, while
preserving spatial information.

Bi-attention employs the attention-in-attention
(AiA) mechanism to capture second-order statistical
information: the outer point-wise channel attention
vectors are computed from the output of the inner
channel attention. Formally, given the input feature
map X, bi-attention first uses bilinear pooling to
capture second-order information:

x̃ = Bi(φ(X)) = Vec(Utri(φ(X)φ(X)T)) (24)
where φ denotes an embedding function used for
dimensionality reduction, φ(x)T is the transpose of
φ(x) across the channel domain, Utri(·) extracts the
upper triangular elements of a matrix, and Vec(·) is
vectorization. Then bi-attention applies the inner
channel attention mechanism to the feature map x̃ ∈
R

c′(c′+1)
2 ×H×W :

x̂ = ω(GAP(x̃))ϕ(x̃) (25)
Here, ω and ϕ are embedding functions. Finally the
output feature map x̂ is used to compute the spatial
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channel attention weights of the outer point-wise
attention mechanism:

s = σ(x̂) (26)

Y = sX (27)
The bi-attention block uses bilinear pooling to model
the local pairwise feature interactions along each
channel, while preserving the spatial information.
Using the proposed AiA, the model pays more
attention to higher-order statistical information
compared with other attention-based models. Bi-
attention can be incorporated into any CNN
backbone to improve its representational power while
suppressing noise.

3.3 Spatial attention

Spatial attention can be seen as an adaptive spatial
region selection mechanism: where to pay attention.
As Fig. 4 shows, RAM [31], STN [32], GENet [61],
and Non-Local [15] are representative of different
kinds of spatial attention methods. RAM represents
RNN-based methods. STN represents those use a sub-
network to explicitly predict relevant regions. GENet
represents those that use a sub-network implicitly
to predict a soft mask to select important regions.
Non-Local represents self-attention related methods.
In this subsection, we first summarize representative
spatial attention mechanisms and specify process g(x)
and f(g(x), x) described as Eq. (1) in Table 4, and
then discuss them according to Fig. 4.

3.3.1 RAM
Convolutional neural networks have huge compu-
tational costs, especially for large inputs. In order to
concentrate limited computing resources on important
regions, Mnih et al. [31] proposed the recurrent
attention model (RAM) that adopts RNNs [148] and
reinforcement learning (RL) [149] to make the network
learn where to pay attention. RAM pioneered the use
of RNNs for visual attention, and was followed by many
other RNN-based methods [21, 35, 88].

As shown in Fig. 6, the RAM has three key
elements: (A) a glimpse sensor, (B) a glimpse network,
and (C) an RNN model. The glimpse sensor takes
a coordinate lt−1 and an image Xt. It outputs
multiple resolution patches ρ(Xt, lt−1) centered on
lt−1. The glimpse network fg(θ(g)) includes a glimpse
sensor and outputs the feature representation gt for
input coordinate lt−1 and image Xt. The RNN
model considers gt and an internal state ht−1 and
outputs the next center coordinate lt and the action
at, e.g., the softmax result in an image classification
task. Since the whole process is not differentiable,
it applies reinforcement learning strategies in the
update process.

This provides a simple but effective method to focus
the network on key regions, thus reducing the number
of calculations performed by the network, especially
for large inputs, while improving image classification
results.

Fig. 6 Attention process in RAM [31]. (A) A glimpse sensor takes image and center coordinates as input and outputs multiple resolution
patches. (B) A glimpse network includes a glimpse sensor, taking image and center coordinates as input and outputting a feature vector. (C) The
entire network recurrently uses a glimpse network, outputting the predicted result as well as the next center coordinates. Reproduced with
permission from Ref. [31].
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Table 4 Representative spatial attention mechanisms sorted by category and date. Application areas include: Cls = classification, FGCls =
fine-grained classification, Det = detection, SSeg = semantic segmentation, ISeg = instance segmentation, ST = style transfer, Action = action
recognition, ICap = image captioning. g(x) and f(g(x), x) are the attention process described by Eq. (1). Ranges means the ranges of attention
map. S or H means soft or hard attention. (A) Choose region according to the prediction, (B) element-wise product, (C) aggregate information
via attention map. (I) Focus the network on discriminative regions, (II) avoid excessive computation for large input images, (III) provide more
transformation invariance, (IV) capture long-range dependencies, (V) denoise input feature map, (VI) adaptively aggregate neighborhood
information, (VII) reduce inductive bias

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals

RNN-based
methods

RAM [31] NIPS2014 Cls use RNN to recurrently predict
important regions

(A) (0, 1) H (I), (II)

Hard and soft
attention [35]

ICML2015 ICap compute similarity between visual
features and previous hidden state
→ interpret attention weight

(C) (0, 1) S, H (I)

Predict the
relevant
region
explictly

STN [32] NIPS2015 Cls,
FGCls

use sub-network to predict an
affine transformation

(A) (0, 1) H (I), (III)

DCN [7] ICCV2017 Det,
SSeg

use sub-network to predict offset
coordinates

(A) (0, 1) H (I), (III)

Predict the
relevant
region
implictly

GENet [61] NIPS2018 Cls,
Det

average pooling or depth-wise
convolution → interpolation →
sigmoid

(B) (0, 1) S (I)

PSANet [87] ECCV2018 SSeg predict an attention map using a
sub-network

(C) (0, 1) S (I), (IV)

Self-attention
based
methods

Non-Local [15] CVPR2018 Action,
Det,
ISeg

dot product between query and
key → softmax

(C) (0, 1) S (I), (IV),
(V)

SASA [43] NeurIPS2019 Cls,
Det

dot product between query and
key → softmax

(C) (0, 1) S (I), (VI)

ViT [34] ICLR2021 Cls divide the feature map into
multiple groups → dot product
between query and key → softmax

(C) (0, 1) S (I), (IV),
(VII)

3.3.2 Glimpse network
Inspired by how humans perform visual recognition
sequentially, Ba et al. [88] proposed a deep recurrent
network, similar to RAM [31], capable of processing
a multi-resolution crop of the input image, called a
glimpse, for multiple object recognition task. The
proposed network updates its hidden state using a
glimpse as input, and then predicts a new object as
well as the next glimpse location at each step. The
glimpse is usually much smaller than the whole image,
which makes the network computationally efficient.

The proposed deep recurrent visual attention
model consists of a context network, glimpse
network, recurrent network, emission network, and
classification network. First, the context network
takes the down-sampled whole image as input to
provide the initial state for the recurrent network as
well as the location of the first glimpse. Then, at the
current time step t, given the current glimpse xt and
its location tuple lt, the goal of the glimpse network

is to extract useful information, expressed as
gt = fimage(X) · floc(lt) (28)

where fimage(X) and floc(lt) are non-linear functions
which both output vectors having the same dimension,
and “·” denotes element-wise product, used for fusing
information from two branches. Then, the recurrent
network, which consists of two stacked recurrent
layers, aggregates information gathered from each
individual glimpse. The outputs of the recurrent
layers are

r
(1)
t = f (1)

rec (gt, r
(1)
t−1) (29)

r
(2)
t = f (2)

rec (r(1)
t , r

(2)
t−1) (30)

Given the current hidden state r
(2)
t of the recurrent

network, the emission network predicts where to crop
the next glimpse. Formally, it can be written as

lt+1 = femis(r
(2)
t ) (31)

Finally, the classification network outputs a
prediction for the class label y based on the hidden
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state r
(1)
t of the recurrent network:

y = fcls(r
(1)
t ) (32)

Compared to a CNN operating on the entire image,
the computational cost of the proposed model is much
lower, and it can naturally tackle images of different
sizes because it only processes a glimpse in each
step. Robustness is additionally improved by the
recurrent attention mechanism, which also alleviates
the problem of over-fitting. This pipeline can be
incorporated into any state-of-the-art CNN backbones
or RNN units.
3.3.3 Hard and soft attention
To visualize where and what an image caption
generation model should focus on, Xu et al. [35]
introduced an attention-based model as well as two
variant attention mechanisms, hard attention and soft
attention.

Given a set of feature vectors a = {a1, . . . , aL},

ai ∈ R
D extracted from the input image, the model

aims to produce a caption by generating one word at
each time step. Thus they adopt a long short-term
memory (LSTM) network as a decoder; an attention
mechanism is used to generate a contextual vector
zt conditioned on the feature set a and the previous
hidden state ht−1, where t denotes the time step.
Formally, the weight αt,i of the feature vector ai at
the t-th time step is defined as

et,i = fatt(ai, ht−1) (33)

αt,i =
exp(et,i)

L∑
k=1

exp(et,k)
(34)

where fatt is implemented by a multilayer perceptron
conditioned on the previous hidden state ht−1. The
positive weight αt,i can be interpreted either as
the probability that location i is the right place
to focus on (hard attention), or as the relative
importance of location i to the next word (soft
attention). To obtain the contextual vector zt,
the hard attention mechanism assigns a multinoulli
distribution parametrized by {αt,i} and views zt as
a random variable:

p(st,i = 1|a, ht−1) = αt,i (35)

zt =
L∑

i=1
st,iai (36)

On the other hand, the soft attention mechanism
directly uses the expectation of the context vector zt:

zt =
L∑

i=1
αt,iai (37)

The use of the attention mechanism improves
the interpretability of the image caption generation
process by allowing the user to understand what
and where the model is focusing on. It also helps
to improve the representational capability of the
network.
3.3.4 Attention gate
Previous approaches to MR segmentation usually
operate on particular regions of interest (ROI), which
requires excessive and wasteful use of computational
resources and model parameters. To address this
issue, Oktay et al. [19] proposed a simple and yet
effective mechanism, the attention gate (AG), to
focus on targeted regions while suppressing feature
activations in irrelevant regions.

Given the input feature map X and the gating
signal G ∈ R

C′×H×W which is collected at a
coarse scale and contains contextual information,
the attention gate uses additive attention to obtain
the gating coefficient. Both the input X and the
gating signal are first linearly mapped to an R

F ×H×W

dimensional space, and then the output is squeezed
in the channel domain to produce a spatial attention
weight map S ∈ R

1×H×W . The overall process can
be written as

S = σ(ϕ(δ(φx(X) + φg(G)))) (38)

Y = SX (39)
where ϕ, φx, and φg are linear transformations
implemented as 1 × 1 convolutions.

The attention gate guides the model’s attention
to important regions while suppressing feature
activation in unrelated areas. It substantially
enhances the representational power of the model
without a significant increase in computing cost or
number of model parameters due to its lightweight
design. It is general and modular, making it simple
to use in various CNN models.

3.3.5 STN
The property of translation equivariance makes
CNNs suitable for processing image data. However,
CNNs lack other transformation invariance such as
rotational invariance, scaling invariance, and warping
invariance. To achieve these attributes while making
CNNs focus on important regions, Jaderberg et
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al. [32] proposed spatial transformer networks (STN)
that use an explicit procedure to learn invariance to
translation, scaling, rotation, and other more general
warps, making the network pay attention to the
most relevant regions. STN was the first attention
mechanism to explicitly predict important regions and
provide a deep neural network with transformation
invariance. Various following works [7, 36] have had
even greater success.

Taking a 2D image as an example, a 2D affine
transformation can be formulated as[

θ11 θ12 θ13

θ21 θ22 θ23

]
= floc(U) (40)

(
xs

i

ys
i

)
=

[
θ11 θ12 θ13

θ21 θ22 θ23

] ⎛⎜⎝xt
i

yt
i

1

⎞⎟⎠ (41)

Here, U is the input feature map, and floc can be any
differentiable function, such as a lightweight fully-
connected network or convolutional neural network.
xs

i and ys
i are coordinates in the output feature map,

while xt
i and yt

i are corresponding coordinates in the
input feature map and the θ matrix is the learnable
affine matrix. After obtaining the correspondence,
the network can sample relevant input regions using
the correspondence. To ensure that the whole process
is differentiable and can be updated in an end-to-end
manner, bilinear sampling is used to sample the input
features

STNs focus on discriminative regions automatically
and learn invariance to some geometric trans-
formations.
3.3.6 Deformable convolutional networks
With similar purpose to STNs, Dai et al. [7]
proposed deformable convolutional networks
(deformable ConvNets) to be invariant to geometric
transformations, but they pay attention to the
important regions in a different manner.

Specifically, deformable ConvNets do not learn an
affine transformation. They divide convolution into
two steps, firstly sampling features on a regular grid
R from the input feature map, and then aggregating
sampled features by weighted summation using a
convolution kernel. The process can be written as

Y (p0) =
∑

pi∈R
w(pi)X(p0 + pi) (42)

R = {(−1, −1), (−1, 0), . . . , (1, 1)} (43)
The deformable convolution augments the sampling

process by introducing a group of learnable offsets
Δpi which can be generated by a lightweight CNN.
Using the offsets Δpi, the deformable convolution can
be formulated as

Y (p0) =
∑

pi∈R
w(pi)X(p0 + pi + Δpi) (44)

Through the above method, adaptive sampling is
achieved. However, Δpi is a floating point value
unsuited to grid sampling. To address this problem,
bilinear interpolation is used. Deformable RoI pooling
is also used, which greatly improves object detection.

Deformable ConvNets adaptively select the
important regions and enlarge the valid receptive field
of convolutional neural networks; this is important in
object detection and semantic segmentation tasks.
3.3.7 Self-attention and variants
Self-attention was proposed and has had great
success in the field of natural language processing
(NLP) [33, 38, 39, 150–153]. Recently, it has also
shown the potential to become a dominant tool in
computer vision [8, 15, 34, 78, 154]. Typically, self-
attention is used as a spatial attention mechanism to
capture global information. We now summarize the
self-attention mechanism and its common variants in
computer vision.

Due to the localisation of the convolutional
operation, CNNs have inherently narrow receptive
fields [155, 156], which limits the ability of CNNs to
understand scenes globally. To increase the receptive
field, Wang et al. [15] introduced self-attention into
computer vision.

Taking a 2D image as an example, given a feature
map F ∈ R

C×H×W , self-attention first computes
the queries, keys, and values Q, K, V ∈ R

C′×N , N =
H × W by linear projection and reshaping operations.
Then self-attention can be formulated as

A = (a)i,j = Softmax(QKT) (45)
Y = AV (46)

where A ∈ R
N×N is the attention matrix and

(a)i,j is the relationship between the i-th and j-th
elements. The whole process is shown in Fig. 7(left).
Self-attention is a powerful tool to model global
information and is useful in many visual tasks [9,
22, 26, 62–67].

However, the self-attention mechanism has several
shortcomings, particularly its quadratic complexity,
which limit its applicability. Several variants have
been introduced to alleviate these problems. The
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Fig. 7 Vision transformer. Left: architecture. Vision transformer first splits the image into different patches and projects them into feature
space where a transformer encoder processes them to produce the final result. Right: basic vision transformer block with multi-head attention
core. Reproduced with permission from Ref. [34].

disentangled non-local approach [74] improves self-
attention’s accuracy and effectiveness, but most
variants focus on reducing its computational
complexity.

CCNet [41] regards the self-attention operation
as a graph convolution and replaces the densely-
connected graph processed by self-attention with
several sparsely-connected graphs. To do so, it
proposes criss-cross attention which considers row
attention and column attention recurrently to obtain
global information. CCNet reduces the complexity of
self-attention from O(N2) to O(N

√
N).

EMANet [40] views self-attention in terms of
expectation maximization (EM). It proposes EM
attention which adopts the EM algorithm to get a
set of compact bases instead of using all points as
reconstruction bases. This reduces the complexity
from O(N2) to O(NK), where K is the number of
compact bases.

ANN [68] suggests that using all positional
features as key and vectors is redundant and adopts
spatial pyramid pooling [157, 158] to obtain a few
representative key and value features to use instead,
to reduce computation.

GCNet [69] analyses the attention map used in
self-attention and finds that the global contexts
obtained by self-attention are similar for different
query positions in the same image. Thus, it first
proposes to predict a single attention map shared by
all query points, and then gets global information

from a weighted sum of input features according to
this attention map. This is like average pooling,
but is a more general process for collecting global
information.

A2Net [70] is motivated by SENet to divide
attention into feature gathering and feature
distribution processes, using two different kinds of
attention. The first aggregates global information
via second-order attention pooling and the second
distributes the global descriptors by soft selection
attention.

GloRe [71] understands self-attention from a
graph learning perspective. It first collects N

input features into M � N nodes and then
learns an adjacency matrix of global interactions
between nodes. Finally, the nodes distribute global
information to input features. A similar idea can
be found in LatentGNN [72], MLP-Mixer [159], and
ResMLP [160].

OCRNet [73] proposes the concept of object-
contextual representation which is a weighted
aggregation of all object regions’ representations in
the same category, such as a weighted average of
all car region representations. It replaces the key
and vector with this object-contextual representation
leading to successful improvements in both speed and
effectiveness.

The disentangled non-local approach was motivated
by Refs. [15, 69]. Yin et al. [74] deeply analyzed the
self-attention mechanism resulting in the core idea of
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decoupling self-attention into a pairwise term and a
unary term. The pairwise term focuses on modeling
relationships while the unary term focuses on salient
boundaries. This decomposition prevents unwanted
interactions between the two terms, greatly improving
semantic segmentation, object detection, and action
recognition.

HamNet [42] models capturing global relationships
as a low-rank completion problem and designs a series
of white-box methods to capture global context using
matrix decomposition. This not only reduces the
complexity, but increases the interpretability of self-
attention.

EANet [75] proposes that self-attention should
only consider correlation in a single sample and
should ignore potential relationships between different
samples. To explore the correlation between different
samples and reduce computation, it makes use of an
external attention that adopts learnable, lightweight,
and shared key and value vectors. It further reveals
that using softmax to normalize the attention map is
not optimal and presents double normalization as a
better alternative.

In addition to being a complementary approach
to CNNs, self-attention also can be used to replace
convolution operations for aggregating neighborhood
information. Convolution operations can be
formulated as dot products between the input feature
X and a convolution kernel W :

Y c
i,j =

∑
a,b∈{0,...,k−1}

Wa,b,cXâ,b̂ (47)

where
â = i + a − �k/2�, b̂ = j + b − �k/2� (48)

k is the kernel size and c indicates the channel. The
above formulation can be viewed as a process of
aggregating neighborhood information by using a
weighted sum through a convolution kernel. The
process of aggregating neighborhood information can
be defined more generally as

Yi,j =
∑

a,b∈{0,...,k−1}
Rel(i, j, â, b̂)f(Xâ,b̂) (49)

where Rel(i, j, â, b̂) is the relation between position
(i, j) and position (â, b̂). With this definition, local
self-attention is a special case.

For example, SASA [43] writes this as
Yi,j =

∑
a,b∈Nk(i,j)

Softmaxab(qT
ijkab + qijra−i,b−j)vab

(50)

where q, k, and v are linear projections of input
feature x, and ra−i,b−j is the relative positional
embedding of (i, j) and (a, b).

We now consider several specific works using local
self-attention as basic neural network blocks

SASA [43] suggests that using self-attention to
collect global information is too computationally
intensive and instead adopts local self-attention
to replace all spatial convolution in a CNN. The
authors show that doing so improves speed, number
of parameters, and quality of results. They also
explore the behavior of positional embedding and
show that relative positional embeddings [161] are
suitable. Their work also studies how to combinie
local self-attention with convolution.

LR-Net [76] appeared concurrently with SASA.
It also studies how to model local relationships by
using local self-attention. A comprehensive study
probed the effects of positional embedding, kernel size,
appearance composability, and adversarial attacks.

SAN [77] explored two modes, pairwise and
patchwise, of utilizing attention for local feature
aggregation. It proposed a novel vector attention
adaptive both in content and channel, and assessed
its effectiveness both theoretically and practically. In
addition to providing significant improvements in the
image domain, it also has been proven useful in 3D
point cloud processing [80].

3.3.8 Vision transformers
Transformers have had great success in natural
language processing [33, 38, 150, 151, 153, 162].
Recently, iGPT [78] and DETR [8] demonstrated
the huge potential for transformer-based models in
computer vision. Motivated by this, Dosovitskiy et
al. [34] proposed the vision transformer (ViT) which
is the first pure transformer architecture for image
processing. It is capable of achieving comparable
results to modern convolutional neural networks.

As Fig. 7 shows, the main part of ViT is the
multi-head attention (MHA) module. MHA takes a
sequence as input. It first concatenates a class token
with the input feature F ∈ RN×C , where N is the
number of pixels. Then it gets Q, K ∈ RN×C′

and
V ∈ RN×C by linear projection. Next, Q, K, and V

are divided into H heads in the channel domain and
self-attention separately applied to them. The MHA
approach is shown in Fig. 8. ViT stacks a number
of MHA layers with fully connected layers, layer
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Fig. 8 Left: self-attention. Right: multi-head self-attention. Reproduced
with permission from Ref. [33].

normalization [163], and the GELU [164] activation
function.

ViT demonstrates that a pure attention-based
network can achieve better results than a con-
volutional neural network especially for large datasets
such as JFT-300 [165] and ImageNet-21K [166].

Following ViT, many transformer-based architec-
tures such as PCT [27], IPT [79], T2T-ViT [44],
DeepViT [167], SETR [81], PVT [45], CaiT [168],
TNT [82], Swin-transformer [46], Query2Label [83],
MoCoV3 [84], BEiT [85], SegFormer [86],
FuseFormer [169], and MAE [170] have appeared,
with excellent results for many kind of visual tasks
including image classification, object detection,
semantic segmentation, point cloud processing,
action recognition, and self-supervised learning.

A detailed survey of vision transformers is
omitted here as other recent surveys [142–144,

171] comprehensively review the use of transformer
methods for visual tasks.
3.3.9 GENet
Inspired by SENet, Hu et al. [61] designed GENet
to capture long-range spatial contextual information
by providing a recalibration function in the spatial
domain.

GENet combines part gathering and excitation
operations. In the first step, it aggregates input
features over large neighborhoods and models the
relationship between different spatial locations. In
the second step, it first generates an attention map
of the same size as the input feature map, using
interpolation. Then each position in the input feature
map is scaled by multiplying by the corresponding
element in the attention map. This process can be
described by

g = fgather(X) (51)
s = fexcite(g) = σ(Interp(g)) (52)

Y = sX (53)
Here, fgather can take any form which captures
spatial correlations, such as global average pooling
or a sequence of depth-wise convolutions; Interp(·)
denotes interpolation.

The gather-excite module is lightweight and can
be inserted into each residual unit like an SE block.
It emphasizes important features while suppressing
noise.

3.3.10 PSANet
Motivated by success in capturing long-range
dependencies in convolutional neural networks, Zhao

Fig. 9 Attention map results. The network focuses on the discriminative regions of each image. Reproduced with permission from Ref. [34].



346 M.-H. Guo, T.-X. Xu, J.-J. Liu, et al.

et al. [87] presented the novel PSANet framework to
aggregate global information. It models information
aggregation as an information flow and proposes a
bidirectional information propagation mechanism to
make information flow globally.

PSANet formulates information aggregation as

zi =
∑

j∈Ω(i)

F (xi, xj , Δij)xj (54)

where Δij indicates the positional relationship
between i and j. F (xi, xj , Δij) is a function that
takes xi, xj , and Δij into consideration to control
information flow from j to i. Ω(i) represents the
aggregation neighborhood of position i; if we wish to
capture global information, Ω(i) should include all
spatial positions.

Due to the complexity of calculating function
F (xi, xj , Δij), it is decomposed into an appro-
ximation:

F (xi, xj , Δij) ≈ FΔij
(xi) + FΔij

(xj) (55)
whereupon Eq. (54) can be simplified to

zi =
∑

j∈Ω(i)

FΔij
(xi)xj +

∑
j∈Ω(i)

FΔij
(xj)xj (56)

The first term can be viewed as collecting information
at position i while the second term distributes
information at position j. Functions FΔij

(xi) and
FΔij

(xj) can be seen as adaptive attention weights.
The above process aggregates global information

while emphasizing the relevant features. It can be
added to the end of a convolutional neural network as
an effective complement to greatly improve semantic
segmentation.

3.4 Temporal attention

Temporal attention can be seen as a dynamic
time selection mechanism determining when to pay
attention, and is thus usually used for video processing.
Previous works [172, 173] often emphasise how to
capture both short-term and long-term cross-frame

feature dependencies. Here, we first summarize
representative temporal attention mechanisms and
specify process g(x) and f(g(x), x) described as
Eq. (1) in Table 5, and then discuss various such
mechanisms according to the order in Fig. 4.
3.4.1 Self-attention and variants
RNN and temporal pooling or weight learning have
been widely used in work on video representation
learning to capture interaction between frames, but
these methods have limitations in terms of either
efficiency or temporal relation modeling.

To overcome them, Li et al. [172] proposed a global-
local temporal representation (GLTR) to exploit multi-
scale temporal cues in a video sequence. GLTR
consists of a dilated temporal pyramid (DTP) for
local temporal context learning and a temporal
self attention module for capturing global temporal
interaction. DTP adopts dilated convolution with
dilatation rates increasing progressively to cover
various temporal ranges, and then concatenates the
various outputs to aggregate multi-scale information.
Given input frame-wise features F = {f1, . . . , fT },
DTP can be written as

{f
(r)
1 , . . . , f

(r)
T } = DConv(r)(F ) (57)

f ′
t = [f (1)

t ; . . . f
(2n−1)
t . . . ; f

(2N−1)
t ] (58)

where DConv(r)(·) denotes dilated convolution with
dilation rate r. The self-attention mechanism adopts
convolution layers followed by batch normalization
and ReLU activation to generate the query Q ∈ R

d×T ,
the key K ∈ R

d×T , and the value V ∈ R
d×T based

on the input feature map F ′ = {f ′
1, . . . , f ′

T }, which
can be written as

Fout = g(V Softmax(QTK)) + F ′ (59)
where g denotes a linear mapping implemented by a
convolution.

The short-term temporal contextual information
from neighboring frames helps to distinguish

Table 5 Representative temporal attention mechanisms sorted by date. ReID = re-identification, Action = action recognition. Ranges means
the ranges of attention map. S or H means soft or hard attention. g(x) and f(g(x), x) are the attention process described by Eq. (1). (A)
Aggregate information via attention map. (I) Exploit multi-scale short-term temporal contextual information, (II) capture long-term temporal
feature dependencies, and (III) capture local temporal contexts

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals

Self-attention
based methods

GLTR [172] ICCV2019 ReID dilated 1D Convs → self-
attention in temporal dimension

(A) (0, 1) S (I), (II)

Combine local
attention and
global attention

TAM [173] Arxiv2020 Action a) local: global spatial average
pooling → 1D Convs, b) global:
global spatial average pooling →
MLP → adaptive convolution

(A) (0, 1) S (II), (III)
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visually similar regions while the long-term temporal
information serves to overcome occlusions and noise.
GLTR combines the advantages of both modules,
enhancing representation capability and suppressing
noise. It can be incorporated into any state-of-the-art
CNN backbone to learn a global descriptor for a whole
video. However, the self-attention mechanism has
quadratic time complexity, limiting its application.

3.4.2 TAM
To capture complex temporal relationships both
efficiently and flexibly, Liu et al. [173] proposed
a temporal adaptive module (TAM). It adopts an
adaptive kernel instead of self-attention to capture
global contextual information, with lower time
complexity than GLTR [172].

TAM has two branches, a local branch and a
global branch. Given the input feature map X ∈
R

C×T ×H×W , global spatial average pooling GAP
is first applied to the feature map to ensure TAM
has a low computational cost. Then the local
branch in TAM employs several 1D convolutions
with ReLU nonlinearity across the temporal domain
to produce location-sensitive importance maps for
enhancing frame-wise features. The local branch can
be written as

s = σ(Conv1D(δ(Conv1D(GAP(X))))) (60)
X1 = sX (61)

Unlike the local branch, the global branch is location
invariant and focuses on generating a channel-wise
adaptive kernel based on global temporal information
in each channel. For the c-th channel, the kernel can
be written as

Θc = Softmax(FC2(δ(FC1(GAP(X)c)))) (62)
where Θc ∈ R

K and K is the adaptive kernel size.
Finally, TAM convolves the adaptive kernel Θ with
X1

out:

Y = Θ ⊗ X1 (63)
With the help of the local branch and global

branch, TAM can capture the complex temporal
structures in video and enhance per-frame features
at low computational cost. Due to its flexibility and
lightweight design, TAM can be added to any existing
2D CNNs.
3.5 Branch attention
Branch attention can be seen as a dynamic branch
selection mechanism: which to pay attention to, used
with a multi-branch structure. We first summarize
representative branch attention mechanisms and
specify process g(x) and f(g(x), x) described as
Eq. (1) in Table 6, then discuss various ones in detail.
3.5.1 Highway networks
Inspired by the long short term memory network,
Srivastava et al. [113] proposed highway networks
that employ adaptive gating mechanisms to enable
information flows across layers to address the problem
of training very deep networks.

Supposing a plain neural network consists
of L layers, and Hl(X) denotes a non-linear
transformation on the l-th layer, a highway network
can be expressed as

Yl = Hl(Xl)Tl(Xl) + Xl(1 − Tl(Xl)) (64)

Tl(X) = σ(W T
l X + bl) (65)

where Tl(X) denotes the transform gate regulating
the information flow for the l-th layer. Xl and Yl are
the inputs and outputs of the l-th layer.

The gating mechanism and skip-connection
structure make it possible to directly train very
deep highway networks using simple gradient descent
methods. Unlike fixed skip-connections, the gating
mechanism adapts to the input, which helps to route
information across layers. A highway network can be
incorporated in any CNN.

Table 6 Representative branch attention mechanisms sorted by date. Cls = classification, Det = Object Detection. g(x) and f(g(x), x) are
the attention process described by Eq. (1). Ranges means the ranges of attention map. S or H means soft or hard attention. (A) Element-wise
product, (B) channel-wise product, (C) aggergate information via attention. (I) Overcome the problem of vanishing gradient, (II) dynamically
fuse different branches, (III) adaptively select a suitable receptive field, and (IV) improve the performance of standard convolution (be)
dynamically fuse different convolution kernels

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals

Combine different
branches

Highway
Network [113]

NeurIPS2015 Cls linear layer → sigmoid (A) (0, 1) S (I), (II)

SKNet [114] CVPR2019 Cls global average pooling →
MLP → softmax

(B) (0, 1) S (II), (III)

Combine different
convolution kernels

CondConv [174] NeurIPS2019 Cls,
Det

global average pooling →
linear layer → sigmoid

(C) (0, 1) S (IV), (V)



348 M.-H. Guo, T.-X. Xu, J.-J. Liu, et al.

3.5.2 SKNet
Research in the neuroscience community suggests
that visual cortical neurons adaptively adjust the
sizes of their receptive fields (RFs) according to the
input stimulus [175]. This inspired Li et al. [114]
to propose an automatic selection operation called
selective kernel (SK) convolution.

SK convolution is implemented using three
operations: split, fuse, and select. During split,
transformations with different kernel sizes are applied
to the feature map to obtain different sized RFs.
Information from all branches is then fused together
via element-wise summation to compute the gate
vector. This is used to control information flows from
the multiple branches. Finally, the output feature
map is obtained by aggregating feature maps for all
branches, guided by the gate vector. This can be
expressed as

Uk = Fk(X), k = 1, . . . , K (66)

U =
K∑

k=1

Uk (67)

z = δ(BN(WGAP(U))) (68)

s
(c)
k =

eW
(c)
k

z

K∑
k=1

eW
(c)
k

z

, k = 1, . . . , K, c = 1, . . . , C

(69)

Y =
K∑

k=1

skUk (70)

Here, each transformation Fk has a unique kernel
size to provide different scales of information for
each branch. For efficiency, Fk is implemented
by grouped or depthwise convolutions followed by

dilated convolution, batch normalization, and ReLU
activation in sequence. t(c) denotes the c-th element
of vector t, or the c-th row of matrix t.

SK convolutions enable the network to adaptively
adjust neurons’ RF sizes according to the input,
giving a notable improvement in results at little
computational cost. The gate mechanism in SK
convolutions is used to fuse information from multiple
branches. Due to its lightweight design, SK con-
volution can be applied to any CNN backbone by
replacing all large kernel convolutions. ResNeSt [115]
also adopts this attention mechanism to improve the
CNN backbone in a more general way, giving excellent
results on ResNet [146] and ResNeXt [176].
3.5.3 CondConv
A basic assumption in CNNs is that all convolution
kernels are the same. Given this, the typical way
to enhance the representational power of a network
is to increase its depth or width, which introduces
significant extra computational cost. In order to
more efficiently increase the capacity of convolutional
neural networks, Yang et al. [174] proposed a novel
multi-branch operator called CondConv.

An ordinary convolution can be written:
Y = W ∗ X (71)

where ∗ denotes convolution. The learnable
parameter W is the same for all samples. CondConv
adaptively combines multiple convolution kernels and
can be written as

Y = (α1W1 + · · · + αnWn) ∗ X (72)
Here, α is a learnable weight vector computed by

α = σ(Wr(GAP(X))) (73)
This process is equivalent to an ensemble of multiple
experts, as shown in Fig. 10.

Fig. 10 CondConv. (a) CondConv first combines different convolution kernels and then uses the combined kernel for convolution. (b) Mixture of
experts first uses multiple convolution kernels for convolution and then merges the results. While (a) and (b) are equivalent, (a) has much lower
computational cost. Reproduced with permission from Ref. [174].
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CondConv makes full use of the advantages of
the multi-branch structure using a branch attention
method with little computing cost. It presents a
novel manner to efficiently increase the capability of
networks.

3.5.4 Dynamic convolution
The extremely low computational cost of lightweight
CNNs constrains the depth and width of the networks,
further decreasing their representational power. To
address the above problem, Chen et al. [116] proposed
dynamic convolution, a novel operator design that
increases representational power with negligible
additional computational cost and does not change
the width or depth of the network in parallel with
CondConv [174].

Dynamic convolution uses K parallel convolution
kernels of the same size and input/output dimensions
instead of one kernel per layer. Like SE blocks,
it adopts a squeeze-and-excitation mechanism to
generate the attention weights for the different
convolution kernels. These kernels are then aggre-
gated dynamically by weighted summation and
applied to the input feature map X:

s = Softmax(W2δ(W1GAP(X))) (74)

DyConv =
K∑

i=1
skConvk (75)

Y = DyConv(X) (76)
Here the convolutions are combined by summation
of weights and biases of convolutional kernels.

Compared to applying convolution to the feature
map, the computational cost of squeeze-and-
excitation and weighted summation is extremely
low. Dynamic convolution thus provides an efficient
operation to improve representational power and can
be easily used as a replacement for any convolution.

3.6 Channel & spatial attention

Channel & spatial attention combines the advantages
of channel attention and spatial attention. It
adaptively selects both important objects and
regions [50]. The residual attention network [119]
pioneered the field of channel & spatial attention,
emphasizing the importance of informative features
in both spatial and channel dimensions. It
adopts a bottom–up structure consisting of several
convolutions to produce a 3D (height, width, channel)
attention map. However, it has high computational

cost and limited receptive fields.
To leverage global spatial information, later

works [6, 117] enhance discrimination of features
by introducing global average pooling, as well
as decoupling channel attention and spatial
channel attention for computational efficiency. Other
works [10, 101] apply self-attention mechanisms for
channel & spatial attention to explore pairwise
interaction. Yet further works [121, 125] adopt the
spatial-channel attention mechanism to enlarge the
receptive field.

Representative channel & spatial attention
mechanisms and specific process g(x) and f(g(x), x)
described as Eq. (1) are given in Table 7; we next
discuss various ones in detail.
3.6.1 Residual attention network
Inspired by the success of ResNet [146], Wang et
al. [119] proposed the very deep convolutional residual
attention network (RAN) by combining an attention
mechanism with residual connections.

Each attention module stacked in a residual
attention network can be divided into a mask branch
and a trunk branch. The trunk branch processes
features, and can be implemented by any state-of-
the-art structure including a pre-activation residual
unit and an inception block. The mask branch uses a
bottom–up top–down structure to learn a mask of the
same size that softly weights output features from the
trunk branch. A sigmoid layer normalizes the output
to [0, 1] after two 1 × 1 convolution layers. Overall
the residual attention mechanism can be written as

s = σ(Conv1×1
2 (Conv1×1

1 (hup(hdown(X))))) (77)
Xout = sf(X) + f(X) (78)

where hup is a bottom–up structure, using max-
pooling several times after residual units to increase
the receptive field, while hdown is the top–down part
using linear interpolation to keep the output size the
same as the input feature map. There are also skip-
connections between the two parts, which are omitted
from the formulation. f represents the trunk branch
which can be any state-of-the-art structure.

Inside each attention module, a bottom–up top–
down feedforward structure models both spatial and
cross-channel dependencies, leading to a consistent
performance improvement. Residual attention can be
incorporated into any deep network structure in an
end-to-end training fashion. However, the proposed
bottom–up top–down structure fails to leverage global
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Table 7 Representative channel & spatial attention mechanisms sorted by date. Cls = classification, ICap = image captioning, Det =
detection, Seg = segmentation, ISeg = instance segmentation, KP = keypoint detection. g(x) and f(g(x), x) are the attention process described
by Eq. (1). Ranges means the ranges of attention map. S or H means soft or hard attention. (A) Element-wise product, (B) aggregate
information via attention map. (I) Focus the network on the discriminative region, (II) emphasize important channels, (III) capture long-range
information, and (IV) capture cross-domain interaction between any two domains

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals
Jointly predict
channel & spatial
attention map

Residual
Attention
[119]

CVPR2017 Cls top–down network → bottom
down network → 1 × 1 Convs
→ sigmoid

(A) (0, 1) S (I), (II)

SCNet [121] CVPR2020 Cls,
Det,
ISeg,
KP

top–down network → bottom
down network → identity add
→ sigmoid

(A) (0, 1) S (II),
(III)

Strip
Pooling [125]

CVPR2020 Seg horizontal/vertical global
pooling → 1D Conv →
point-wise summation →
1 × 1 Conv → sigmoid

(A) (0, 1) S (I), (II),
(III)

Separately predict
channel & spatial
attention maps

SCA-CNN [50] CVPR2017 ICap a) spatial: fuse hidden state
→ 1 × 1 Conv → softmax,
b) channel: global average
pooling → MLP → softmax

(A) (0, 1) S (I), (II),
(III)

CBAM [6] ECCV2018 Cls,
Det

a) spatial: global pooling in
channel dimension→ Conv →
Sigmoid, b) channel: global
pooling in spatial dimension
→ MLP → sigmoid

(A) (0, 1) S (I), (II),
(III)

BAM [117] BMVC2018 Cls,
Det

a) spatial: dilated Convs,
b) channel: global average
pooling → MLP, c) fuse two
branches

(A) (0, 1) S (I), (II),
(III)

scSE [124] TMI2018 Seg a) spatial: 1 × 1 Conv →
sigmoid, b) channel: global
average pooling → MLP →
sigmoid, c) fuse two branches

(A) (0, 1) S (I), (II),
(III)

Dual
Attention [10]

CVPR2019 Seg a) spatial: self-attention in
spatial dimension, b) channel:
self-attention in channel
dimension, c) fuse two
branches

(B) (0, 1) S (I), (II),
(III)

Triplet
Attention [122]

WACV2021 Cls,
Det

compute attention maps for
pairs of domains → fuse
different branches

(A) (0, 1) S (I), (IV)

spatial information. Furthermore, directly predicting
a 3D attention map has high computational cost.
3.6.2 CBAM
To enhance informative channels as well as important
regions, Woo et al. [6] proposed the convolutional
block attention module (CBAM) which stacks channel
attention and spatial attention in series. It decouples
the channel attention map and spatial attention map
for computational efficiency, and leverages spatial
global information by introducing global pooling.

CBAM has two sequential sub-modules, channel
and spatial. Given an input feature map X ∈
R

C×H×W it sequentially infers a 1D channel attention
vector sc ∈ R

C and a 2D spatial attention map ss ∈

R
H×W . The formulation of the channel attention sub-

module is similar to that of an SE block, except that
it adopts more than one type of pooling operation
to aggregate global information. In detail, it has
two parallel branches using max-pool and avg-pool
operations:

F c
avg = GAPs(X) (79)

F c
max = GMPs(X) (80)

sc = σ(W2δ(W1F c
avg) + W2δ(W1F c

max)) (81)
Mc(X) = scX (82)

where GAPs and GMPs denote global average
pooling and global max pooling operations in the
spatial domain, respectively. The spatial attention
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sub-module models the spatial relationships of
features, and is complementary to channel attention.
Unlike channel attention, it applies a convolution
layer with a large kernel to generate the attention
map:

F s
avg = GAPc(X) (83)

F s
max = GMPc(X) (84)

ss = σ(Conv([F s
avg; F s

max])) (85)
Ms(X) = ssX (86)

where Conv(·) represents a convolution operation,
while GAPc and GMPc are global pooling operations
in the channel domain. The overall attention process
can be summarized as

X ′ = Mc(X) (87)
Y = Ms(X ′) (88)

Combining channel attention and spatial attention
sequentially, CBAM can utilize both spatial and
cross-channel relationships of features to tell the
network what to focus on and where to focus. To
be more specific, it emphasizes useful channels as well
as enhancing informative local regions. Due to its
lightweight design, CBAM can be integrated into any
CNN architecture seamlessly with negligible additional
cost. Nevertheless, there is still room for improvement
in the channel & spatial attention mechanism. For
instance, CBAM adopts a convolution to produce the
spatial attention map, so the spatial sub-module may
suffer from a limited receptive field.
3.6.3 BAM
At the same time as CBAM, Park et al. [117] proposed
the bottleneck attention module (BAM), aiming to
efficiently improve the representational capability of
networks. It uses dilated convolution to enlarge the
receptive field of the spatial attention sub-module,
and build a bottleneck structure as suggested by
ResNet to save computational cost.

For a given input feature map X, BAM infers
the channel attention sc ∈ R

C and spatial attention
ss ∈ R

H×W in two parallel streams, and then sums
the two attention maps after resizing both branch
outputs to R

C×H×W . The channel attention branch,
like an SE block, applies global average pooling to the
feature map to aggregate global information, and then
uses an MLP with channel dimensionality reduction.
In order to utilize contextual information effectively,
the spatial attention branch combines a bottleneck
structure and dilated convolutions. Overall, BAM

can be written as

sc = BN(W2(W1GAP(X) + b1) + b2) (89)

ss = BN(Conv1×1
2 (DC3×3

2 (DC3×3
1 (Conv1×1

1 (X)))))
(90)

s = σ(Expand(ss) + Expand(sc)) (91)

Y = sX + X (92)
where Wi, bi denote weights and biases of fully
connected layers respectively, Conv1×1

1 and Conv1×1
2

are convolution layers used for channel reduction.
DC3×3

i denotes a dilated convolution with 3×3 kernel,
applied to utilize contextual information effectively.
Expand expands the attention maps ss and sc to
R

C×H×W .
BAM can emphasize or suppress features in

both spatial and channel dimensions, as well as
improving the representational power. Dimensional
reduction applied to both channel and spatial
attention branches enables it to be integrated with
any convolutional neural network with little extra
computational cost. However, although dilated
convolutions enlarge the receptive field effectively, it
still fails to capture long-range contextual information
as well as encoding cross-domain relationships.
3.6.4 scSE
To aggregate global spatial information, an SE block
applies global pooling to the feature map. However,
it ignores pixel-wise spatial information, which is
important in dense prediction tasks. Therefore,
Roy et al. [124] proposed spatial and channel SE
blocks (scSE). Like BAM, spatial SE blocks are used,
complementing SE blocks, to provide spatial attention
weights to focus on important regions.

Given the input feature map X, two parallel
modules, spatial SE and channel SE, are applied
to feature maps to encode spatial and channel
information respectively. The channel SE module
is an ordinary SE block, while the spatial SE module
adopts 1 × 1 convolution for spatial squeezing. The
outputs from the two modules are fused. The overall
process can be written as

sc = σ(W2δ(W1GAP(X))) (93)

Xchn = scX (94)

ss = σ(Conv1×1(X)) (95)

Xspa = ssX (96)

Y = f(Xspa, Xchn) (97)
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where f denotes the fusion function, which can be
maximum, addition, multiplication, or concatenation.

The proposed scSE block combines channel
and spatial attention to enhance features as
well as capturing pixel-wise spatial information.
Segmentation tasks are greatly benefited as a result.
The integration of an scSE block in F-CNNs makes a
consistent improvement in semantic segmentation at
negligible extra cost.
3.6.5 Triplet attention
In CBAM and BAM, channel attention and spatial
attention are computed independently, ignoring
relationships between these two domains [122].
Motivated by spatial attention, Misra et al. [122]
proposed triplet attention, a lightweight but effective
attention mechanism to capture cross-domain
interaction.

Given an input feature map X, triplet attention
uses three branches, each of which plays a role in
capturing cross-domain interaction between any two
domains from H, W , and C. In each branch, rotation
operations along different axes are applied to the
input first, and then a Z-pool layer is responsible
for aggregating information in the zeroth dimension.
Finally, a standard convolution layer with kernel size
k × k models the relationship between the last two
domains. This process can be written as

X1 = Pm1(X) (98)
X2 = Pm2(X) (99)
s0 = σ(Conv0(Z-Pool(X))) (100)
s1 = σ(Conv1(Z-Pool(X1))) (101)
s2 = σ(Conv2(Z-Pool(X2))) (102)

Y =
1
3

(s0X + Pm−1
1 (s1X1) + Pm−1

2 (s2X2))

(103)
where Pm1 and Pm2 denote rotation through 90◦

anti-clockwise about the H and W axes respectively,
while Pm−1

i denotes the inverse. Z-Pool concatenates
max-pooling and average pooling along the zeroth
dimension.

Y = Z-Pool(X) = [GMP(X); GAP(X)] (104)
Unlike CBAM and BAM, triplet attention stresses

the importance of capturing cross-domain interactions
instead of computing spatial attention and channel
attention independently. This helps to capture rich
discriminative feature representations. Due to its
simple but efficient structure, triplet attention can

be easily added to classical backbone networks.
3.6.6 SimAM
Yang et al. [118] also stressed the importance of
learning attention weights that vary across both
channel and spatial domains in proposing SimAM, a
simple, parameter-free attention module capable of
directly estimating 3D weights instead of expanding
1D or 2D weights. The design of SimAM is based on
well-known neuroscience theory, thus avoiding need
for manual fine tuning of the network structure.

Motivated by the spatial suppression pheno-
menon [177], they propose that a neuron which shows
suppression effects should be emphasized and define
an energy function for each neuron as

et(wt, bt, y, xi) = (yt − t̂)2 +
1

M − 1

M−1∑
i=1

(yo − x̂i)

(105)
where t̂ = wtt + bt, x̂i = wtxi + bt, and t and xi are
the target unit and all other units in the same channel
respectively; i ∈ 1, . . . , N , and N = H × W .

An optimal closed-form solution for Eq. (105)
exists:

e∗
t =

4(σ̂2 + λ)
(t − μ̂)2 + 2σ̂2 + 2λ

(106)

where μ̂ is the mean of the input feature and σ̂2 is
its variance. A sigmoid function is used to control
the output range of the attention vector; an element-
product is applied to get the final output:

Y = Sigmoid
(

1
E

)
X (107)

This work simplifies the process of designing
attention and successfully proposes a novel 3D
weight parameter-free attention module based on
mathematics and neuroscience theories.
3.6.7 Coordinate attention
An SE block aggregates global spatial information
using global pooling before modeling cross-channel
relationships, but neglects the importance of
positional information. BAM and CBAM adopt
convolutions to capture local relations, but fail to
model long-range dependencies. To solve these
problems, Hou et al. [130] proposed coordinate
attention, a novel attention mechanism which embeds
positional information into channel attention, so that
the network can focus on large important regions at
little computational cost.

The coordinate attention mechanism has two
consecutive steps, coordinate information embedding
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and coordinate attention generation. First, two
spatial extents of pooling kernels encode each channel
horizontally and vertically. In the second step, a
shared 1 × 1 convolutional transformation function
is applied to the concatenated outputs of the two
pooling layers. Then coordinate attention splits the
resulting tensor into two separate tensors to yield
attention vectors with the same number of channels
for horizontal and vertical coordinates of the input
X along. This can be written as

zh = GAPh(X) (108)
zw = GAPw(X) (109)
f = δ(BN(Conv1×1

1 ([zh; zw]))) (110)
fh, fw = Split(f) (111)

sh = σ(Conv1×1
h (fh)) (112)

sw = σ(Conv1×1
w (fw)) (113)

Y = Xshsw (114)
where GAPh and GAPw denote pooling functions
for vertical and horizontal coordinates respectively,
and sh ∈ R

C×1×W and sw ∈ R
C×H×1 represent

corresponding attention weights.
Using coordinate attention, the network can

accurately obtain the position of a targeted object.
This approach has a larger receptive field than
BAM and CBAM. Like an SE block, it also models
cross-channel relationships, effectively enhancing the
expressive power of the learned features. Due to its
lightweight design and flexibility, it can be easily used
in classical building blocks of mobile networks.
3.6.8 DANet
In the field of scene segmentation, encoder–decoder
structures cannot make use of the global relationships
between objects, whereas RNN-based structures
heavily rely on the output of the long-term
memorization. To address the above problems,
Fu et al. [10] proposed a novel framework, the
dual attention network (DANet), for natural scene
image segmentation. Unlike CBAM and BAM,
it adopts a self-attention mechanism instead of
simply stacking convolutions to compute the spatial
attention map, which enables the network to capture
global information directly.

DANet uses in parallel a position attention module
and a channel attention module to capture feature
dependencies in spatial and channel domains. Given
the input feature map X, convolution layers are
applied first in the position attention module to

obtain new feature maps. Then the position attention
module selectively aggregates the features at each
position using a weighted sum of features at all
positions, where the weights are determined by
feature similarity between corresponding pairs of
positions. The channel attention module has a
similar form except for dimensional reduction to
model cross-channel relations. Finally the outputs
from the two branches are fused to obtain final feature
representations. For simplicity, we reshape the feature
map X to C ×(H ×W ) whereupon the overall process
can be written as

Q, K, V = WqX, WkX, WvX (115)
Y pos = X + V Softmax(QTK) (116)
Y chn = X + Softmax(XXT)X (117)

Y = Y pos + Y chn (118)
where Wq, Wk, Wv ∈ R

C×C are used to generate new
feature maps.

The position attention module enables DANet
to capture long-range contextual information and
adaptively integrate similar features at any scale
from a global viewpoint, while the channel attention
module is responsible for enhancing useful channels as
well as suppressing noise. Taking spatial and channel
relationships into consideration explicitly improves
the feature representation for scene segmentation.
However, it is computationally costly, especially for
large input feature maps.
3.6.9 RGA
Unlike coordinate attention and DANet, which
emphasise capturing long-range context, in relation-
aware global attention (RGA), Zhang et al. [101]
stressed the importance of global structural
information provided by pairwise relations, and used
it to produce attention maps.

RGA comes in two forms, spatial RGA (RGA-S)
and channel RGA (RGA-C). RGA-S first reshapes the
input feature map X to C×(H ×W ) and the pairwise
relation matrix R ∈ R

(H×W )×(H×W ) is computed
using

Q = δ(W QX) (119)
K = δ(W KX) (120)
R = QTK (121)

The relation vector ri at position i is defined by
stacking pairwise relations at all positions:

ri = [R(i, :); R(:, i)] (122)
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and the spatial relation-aware feature yi can be
written as

Yi = [gc
avg(δ(W ϕxi)); δ(W φri)] (123)

where gc
avg denotes global average pooling in the

channel domain. Finally, the spatial attention score
at position i is given by

ai = σ(W2δ(W1yi)) (124)
RGA-C has the same form as RGA-S, except for
taking the input feature map as a set of H × W -
dimensional features.

RGA uses global relations to generate the attention
score for each feature node, so provides valuable
structural information and significantly enhances the
representational power. RGA-S and RGA-C are
flexible enough to be used in any CNN network;
Zhang et al. proposed using them jointly in sequence
to better capture both spatial and cross-channel
relationships.
3.6.10 Self-calibrated convolutions
Motivated by the success of group convolution, Liu
et al. [121] presented self-calibrated convolution as a
means to enlarge the receptive field at each spatial
location.

Self-calibrated convolution is used together with a
standard convolution. It first divides the input feature
X into X1 and X2 in the channel domain. The self-
calibrated convolution first uses average pooling to
reduce the input size and enlarge the receptive field:

T1 = AvgPoolr(X1) (125)
where r is the filter size and stride. Then a
convolution is used to model the channel relationship
and a bilinear interpolation operator Up is used to
upsample the feature map:

X ′
1 = Up(Conv2(T1)) (126)

Next, element-wise multiplication finishes the self-
calibrated process:

Y ′
1 = Conv3(X1)σ(X1 + X ′

1) (127)
Finally, the output feature map is formed:

Y1 = Conv4(Y ′
1) (128)

Y2 = Conv1(X2) (129)
Y = [Y1; Y2] (130)

Such self-calibrated convolution can enlarge the
receptive field of a network and improve its
adaptability. It achieves excellent results in image
classification and certain downstream tasks such as
instance segmentation, object detection, and keypoint
detection.

3.6.11 SPNet
Spatial pooling usually operates on a small region
which limits its capability to capture long-range
dependencies and focus on distant regions. To
overcome this, Hou et al. [125] proposed strip pooling,
a novel pooling method capable of encoding long-
range context in either horizontal or vertical spatial
domains.

Strip pooling has two branches for horizontal and
vertical strip pooling. The horizontal strip pooling
part first pools the input feature F ∈ RC×H×W in
the horizontal direction:

y1 = GAPw(X) (131)
Then a 1D convolution with kernel size 3 is applied in
y to capture the relationship between different rows
and channels. This is repeated W times to make the
output yv consistent with the input shape:

yh = Expand(Conv1D(y1)) (132)
Vertical strip pooling is performed in a similar
way. Finally, the outputs of the two branches are
fused using element-wise summation to produce the
attention map:

s = σ(Conv1×1(yv + yh)) (133)
Y = sX (134)

The strip pooling module (SPM) is further
developed in the mixed pooling module (MPM). Both
consider spatial and channel relationships to overcome
the locality of convolutional neural networks. SPNet
achieves state-of-the-art results for several complex
semantic segmentation benchmarks.
3.6.12 SCA-CNN
As CNN features are naturally spatial, channel-wise,
and multi-layer, Chen et al. [50] proposed a novel
spatial and channel-wise attention-based convolutional
neural network (SCA-CNN). It was designed for
the task of image captioning, and uses an encoder–
decoder framework where a CNN first encodes an
input image into a vector and then an LSTM decodes
the vector into a sequence of words. Given an
input feature map X and the previous time step
LSTM hidden state ht−1 ∈ R

d, a spatial attention
mechanism pays more attention to the semantically
useful regions, guided by LSTM hidden state ht−1.
The spatial attention model is

a(ht−1, X) = tanh(Conv1×1
1 (X) ⊕ W1ht−1) (135)

Φs(ht−1, X) = Softmax(Conv1×1
2 (a(ht−1X)))

(136)
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where ⊕ represents addition of a matrix and a vector.
Similarly, channel-wise attention aggregates global
information first, and then computes a channel-wise
attention weight vector with the hidden state ht−1:

b(ht−1, X) = tanh((W2GAP(X) + b2) ⊕ W1ht−1)
(137)

Φc(ht−1, X) = Softmax(W3(b(ht−1, X)) + b3)
(138)

Overall, the SCA mechanism can be written in one of
two ways. If channel-wise attention is applied before
spatial attention, we have

Y = f(X, Φs(ht−1, XΦc(ht−1, X)), Φc(ht−1, X))
(139)

and if spatial attention comes first:
Y = f(X, Φs(ht−1, X), Φc(ht−1, XΦs(ht−1, X)))

(140)
where f(·) denotes the modulate function which takes
the feature map X and attention maps as input and
then outputs the modulated feature map Y .

Unlike previous attention mechanisms which
consider each image region equally and use global
spatial information to tell the network where to focus,
SCA-Net leverages the semantic vector to produce
the spatial attention map as well as the channel-wise
attention weight vector. Being more than a powerful
attention model, SCA-CNN also provides a better
understanding of where and what the model should
focus on during sentence generation.
3.6.13 GALA
Most attention mechanisms learn where to focus using
only weak supervisory signals from class labels, which
inspired Linsley et al. [123] to investigate how explicit
human supervision can affect the performance and
interpretability of attention models. As a proof of
concept, Linsley et al. proposed the global-and-local
attention (GALA) module, which extends an SE block
with a spatial attention mechanism.

Given the input feature map X, GALA uses
an attention mask that combines global and local
attention to tell the network where and on what to
focus. As in SE blocks, global attention aggregates
global information by global average pooling and
then produces a channel-wise attention weight vector
using a multilayer perceptron. In local attention,
two consecutive 1 × 1 convolutions are conducted
on the input to produce a positional weight map.
The outputs of the local and global pathways are

combined by addition and multiplication. Formally,
GALA can be represented as

sg = W2δ(W1GAP(x)) (141)

sl = Conv1×1
2 (δ(Conv1×1

1 (X))) (142)

s∗
g = Expand(sg) (143)

s∗
l = Expand(sl) (144)

s = tanh(a(s∗
g + s∗

l ) + m · (s∗
gs∗

l )) (145)

Y = sX (146)
where a, m ∈ R

C are learnable parameters
representing channel-wise weight vectors.

Supervised by human-provided feature importance
maps, GALA has significantly improved represen-
tational power and can be combined with any CNN
backbone.

3.7 Spatial & temporal attention

Spatial & temporal attention combines the advan-
tages of spatial attention and temporal attention
as it adaptively selects both important regions and
key frames. Some works [16, 131] compute temporal
attention and spatial attention separately, while
others [132] produce joint spatiotemporal attention
maps. Further works focusing on capturing pair-wise
relations [178]. Representative spatial & temporal
attention attentions and specific process g(x) and
f(g(x), x) described as Eq. (1) are summarised in
Table 8. We next discuss specific spatial & temporal
attention mechanisms according to the order in Fig. 4.
3.7.1 STA-LSTM
In human action recognition, each type of action
generally only depends on a few specific kinematic
joints [131]. Furthermore, over time, multiple actions
may be performed. Motivated by these observations,
Song et al. [131] proposed a joint spatial and temporal
attention network based on LSTM [148], to adaptively
find discriminative features and keyframes. Its main
attention-related components are a spatial attention
sub-network, to select important regions, and a
temporal attention sub-network, to select key frames.
The spatial attention sub-network can be written as

st = Us tanh(WxsXt + Whshs
t−1 + bsi) + bso (147)

αt = Softmax(st) (148)
Yt = αtXt (149)

where Xt is the input feature at time t, Us, Whs,
bsi, and bso are learnable parameters, and hs

t−1 is
the hidden state at step t − 1. Note that use of the
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Table 8 Representative spatial & temporal attentions sorted by date. Action = action recognition, ReID = re-identification. Ranges
means the ranges of attention map. S or H means soft or hard attention. g(x) and f(g(x), x) are the attention process described by Eq. (1).
(A) Element-wise product, (B) aggregate information via attention map. (I) Emphasize key points in both spatial and temporal domains,
(II) capture global information

Category Method Publication Tasks g(x) f(g(x), x) Ranges S or H Goals

Separately predict
spatial & temporal
attention

STA-
LSTM [131]

AAAI2017 Action a) spatial: fuse hidden
state → MLP → softmax
b) temporal: fuse hidden
state → MLP → ReLU

(A) (0, 1), (0, +∞) S (I)

RSTAN [16] TIP2018 Action a) spatial: fuse hidden
state → MLP → softmax
b) temporal: fuse hidden
state → MLP → softmax

(B) (0, 1) S (I) (II)

Jointly predict spa-
tial & temporal
attention

STA [132] AAAI2019 ReID a) tenporal: produce per-
frame attention maps
using l2 norm
b) spatial: obtain spatial
scores for each patch by
summation using l1 norm

(B) (0, 1) S (I)

Pairwise relation-
based method

STGCN [178] CVPR2020 ReID construct a patch graph
using pairwise similarity

(B) (0, 1) S (I)

hidden state h means that the attention process takes
temporal relationships into consideration.

The temporal attention sub-network is similar to
the spatial branch and produces its attention map
using

βt = δ(WxpXt + Whphp
t−1 + bp) (150)

It adopts a ReLU function instead of a normalization
function for ease of optimization. It also uses
a regularized objective function to improve con-
vergence.

Overall, this paper presents a joint spatiotemporal
attention method to focus on important joints and
keyframes, with excellent results on the action
recognition task.

3.7.2 RSTAN
To capture spatiotemporal contexts in video frames,
Du et al. [16] introduced spatiotemporal attention to
adaptively identify key features in a global way.

The spatiotemporal attention mechanism in
RSTAN consists of a spatial attention module and a
temporal attention module applied serially. Given an
input feature map X ∈ R

D×T ×H×W and the previous
hidden state ht−1 of an RNN model, spatiotemporal
attention aims to produce a spatiotemporal feature
representation for action recognition. First, the given
feature map X is reshaped to R

D×T ×(H×W ), and
we define X(n, k) as the feature vector for the k-th
location of the n-th frame. At time t, the spatial
attention mechanism aims to produce a global feature
ln for each frame, which can be written as

αt(n, k) = wα tanh(Whht−1 + WxX(n, k) + bα)

(151)

α∗
t (n, k) = eγααt(n,k)/

W ×H∑
j=1

eγααt(n,k) (152)

ln =
H×W∑
k=1

α∗
t (n, k)X(n, k) (153)

where γα is introduced to control the sharpness
of the location-score map. After obtaining frame-
wise features {l1, . . . , lT }, RSTAN uses a temporal
attention mechanism to estimate the importance of
each frame feature

βt(n) = wβ tanh(W ′
hht−1 + Wll(n) + bβ) (154)

β∗
t (n) = eγββt(n)/

T∑
j=1

eγββt(n) (155)

φt =
T∑

n=1
β∗

t (n)l(n) (156)

The spatiotemporal attention mechanism used in
RSTAN identifies those regions in both spatial and
temporal domains which are strongly related to the
prediction in the current step of the RNN. This
efficiently enhances the representation power of any
2D CNN.
3.7.3 STA
Previous attention-based methods for video-based
person re-identification only assigned an attention
weight to each frame and failed to capture joint spatial
and temporal relationships. To address this issue, Fu
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et al. [132] proposed a novel spatiotemporal attention
(STA) approach, which assigns attention scores for
each spatial region in different frames without any
extra parameters.

Given the feature maps of an input video
{Xn|Xn ∈ R

C×H×W }N
n=1, STA first generates frame-

wise attention maps by using the l2 norm on the
squares sum in the channel domain:

gn(h, w) =
||

C∑
c=1

Xn(c, h, w)2||2
H∑

h=1

W∑
w=1

||
C∑

c=1
Xn(c, h, w)2||2

(157)

Then both the feature maps and attention maps are
divided into K local regions horizontally, each of
which represents one part of the person. The spatial
attention score for region k is obtained using

sn,k =
∑

(i,j)∈Regionk

||gn(i, j)||1 (158)

To capture the relationships between regions in
different frames, STA applies l1 normalization to the
attention scores in the temporal domain, using

S(n, k) =
sn,k

N∑
n=1

||sn,k||1
(159)

Finally, STA splits the input feature map Xi into K

regions {Xn,1, . . . , Xn,K} and computes the output
using
Y 1 = [Xarg maxn S(n,1),1; . . . ; Xarg maxn S(n,K),K ]

(160)

Y 2 = [
N∑

n=1
S(n, 1)Xn,1; . . . ;

N∑
n=1

S(n, K)Xn,K ] (161)

Y = [Y 1; Y 2] (162)
Instead of computing spatial attention maps frame

by frame, STA considers spatial and temporal
attention information simultaneously, fully using
the discriminative parts in both dimensions. This
reduces the influence of occlusion. Because of its
non-parametric design, STA can tackle input video
sequences of variable length; it can be combined with
any 2D CNN backbone.
3.7.4 STGCN
To model the spatial relations within a frame and
temporal relations across frames, Yang et al. [178]
proposed a novel spatiotemporal graph convolutional
network (STGCN) to learn a discriminative descriptor

for a video. It constructs a patch graph using
pairwise similarity, and then uses graph convolution
to aggregate information.

STGCN includes two parallel GCN branches, the
temporal graph module and the structural graph
module. Given the feature maps of a video, STGCN
first horizontally partitions each frame into P patches
and applies average pooling to generate patch-wise
features x1, . . . , xN , where the total number of
patches is N = TP . For the temporal module, it
takes each patch as a graph node and construct a
patch graph for the video, where the adjacency matrix
Â is obtained by normalizing the pairwise relation
matrix E, defined as

E(i, j) = (W φxi)TW φxj (163)

A(i, j) = E2(i, j)/
N∑

j=1
E2(i, j) (164)

Â = D− 1
2 (A + I)D− 1

2 (165)

where D(i, i) =
∑N

j=1(A + I)(i, j). Given the
adjacency matrix Â, the m-th graph convolution can
be found using

Xm = ÂXm−1W m + Xm−1 (166)
where X ∈ R

N×c represents the hidden features for all
patches and W m ∈ R

c×c denotes the learnable weight
matrix for the m-th layer. For the spatial module,
STGCN follows a similar approach of adjacency
matrix and graph convolution, except for modeling
the spatial relations of different regions within a
frame.

Flattening spatial and temporal dimensions into
a sequence, STGCN applies the GCN to capture
the spatiotemporal relationships of patches across
different frames. Pairwise attention is used to obtain
the weighted adjacency matrix. By leveraging spatial
and temporal relationships between patches, STGCN
overcomes the occlusion problem while also enhancing
informative features. It can be used with any CNN
backbone to process video.

4 Future directions
We present our thoughts on potential future research
directions.

4.1 Necessary and sufficient condition for
attention

We find that Eq. (1) is a necessary condition
but not a necessary and sufficient condition. For
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instance, GoogleNet [179] conforms to the above
formula, but does not belong to the attention
mechanisms. Unfortunately, we find it difficult to find
a necessary and sufficient condition for all attention
mechanisms. The necessary and sufficient conditions
for the attention mechanism are still worth exploring
which can promote our understanding of attention
mechanisms.

4.2 General attention block

At present, a special attention mechanism needs to
be designed for each different task, which requires
considerable effort to explore potential attention
methods. For instance, channel attention is a good
choice for image classification, while spatial attention
is well-suited to dense prediction tasks such as
semantic segmentation and object detection. Channel
attention focuses on what to pay attention to while
spatial attention considers where to pay attention.
Based on this observation, we encourage consideration
as to whether there could be a general attention
block that takes advantage of all kinds of attention
mechanisms. For example, a soft selection mechanism
(branch attention) could choose among channel
attention, spatial attention, and temporal attention
according to the specific task undertaken.

4.3 Characterisation and interpretability

Attention mechanisms are motivated by the human
visual system and are a step towards the goal of
building an interpretable computer vision system.
Typically, attention-based models are understood by
rendering attention maps, as in Fig. 9. However,
this can only give an intuitive feel for what
is happening, rather than precise understanding.
However, applications in which security or safety
are important, such as medical diagnostics and
automated driving systems, often have stricter
requirements. Better characterisation of how methods
work, including modes of failure, is needed in such
areas. Developing characterisable and interpretable
attention models could make them more widely
applicable.

4.4 Sparse activation

We visualize some attention map and obtain
consistent conclusion with ViT [34] shown in
Fig. 9 that attention mechanisms can produce
sparse activation. The phenomenon gives us a
inspiration that sparse activation can achieve a strong

performance in deep neural networks. It is worth
noting that sparse activation is similar with human
cognition. Those motivate us to explore which kind
of architecture can simulate human visual system.

4.5 Attention-based pre-trained models

Large-scale attention-based pre-trained models have
had great success in natural language processing [85,
162]. Recently, MoCoV3 [84], DINO [180], BEiT [85],
and MAE [170] have demonstrated that attention-
based models are also well suited to visual tasks. Due
to their ability to adapt to varying inputs, attention-
based models can deal with unseen objects and are
naturally suited to transferring pretrained weights to
a variety of tasks. We believe that the combination of
pre-training and attention models should be further
explored: training approach, model structures, pre-
training tasks, and the scale of data are all worth
investigating.

4.6 Optimization

SGD [181] and Adam [182] are well-suited for
optimizing convolutional neural networks. For
visual transformers, AdamW [183] works better.
Recently, Chen et al. [184] significantly improved
visual transformers by using a novel optimizer, the
sharpness-aware minimizer (SAM) [185]. It is clear
that attention-based networks and convolutional
neural networks are different models; different
optimization methods may work better for different
models. Investigating new optimzation methods for
attention models is likely to be worthwhile.

4.7 Deployment

Convolutional neural networks have a simple, uniform
structure which makes them easy to deploy on various
hardware devices. However, it is difficult to optimize
complex and varied attention-based models on edge
devices. Nevertheless, experiments in Refs. [46–48]
show that attention-based models provide better
results than convolutional neural networks, so it is
worth trying to find simple, efficient, and effective
attention-based models which can be widely deployed.

5 Conclusions
Attention mechanisms have become an indispensable
technique in the field of computer vision in the era
of deep learning. This survey has systematically
reviewed and summarized attention mechanisms for
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deep neural networks in computer vision. We have
grouped different attention methods according to
their domain of operation, rather than by application
task, and show that attention models can be regarded
as an independent topic in their own right. We have
concluded with some potential directions for future
research. We hope that this work will encourage
a variety of potential application developers to put
attention mechanisms to use to improve their deep
learning results. We also hope that this survey will
give researchers a deeper understanding of various
attention mechanisms and the relationships between
them, as a springboard for future research.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (Grant Nos. 61521002
and 62132012). We would like to thank Cheng-Ze Lu,
Zhengyang Geng, Shilong Liu, He Wang, Huiying Lu,
and Chenxi Huang for their helpful discussions and
insightful suggestions.

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Itti, L.; Koch, C.; Niebur, E. A model of saliency-
based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 20, No. 11, 1254–1259, 1998.

[2] Hayhoe, M.; Ballard, D. Eye movements in natural
behavior. Trends in Cognitive Sciences Vol. 9, No. 4,
188–194, 2005

[3] Rensink, R. A. The dynamic representation of scenes.
Visual Cognition Vol. 7, Nos. 1–3, 17–42, 2000.

[4] Corbetta, M.; Shulman, G. L. Control of goal-directed
and stimulus-driven attention in the brain. Nature
Reviews Neuroscience Vol. 3, No. 3, 201–215, 2002.

[5] Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. H.
Squeeze-and-excitation networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol. 42,
No. 8, 2011–2023, 2020.

[6] Woo, S.; Park, J.; Lee, J.; Kweon, I. S. CBAM:
Convolutional block attention module. In: Computer
Vision – ECCV 2018. Lecture Notes in Computer
Science, Vol. 11211. Ferrari, V.; Hebert, M.; Smin-
chisescu, C.; Weiss, Y. Eds. Springer Cham, 3–19,
2018.

[7] Dai, J. F.; Qi, H. Z.; Xiong, Y. W.; Li, Y.; Zhang,
G. D.; Hu, H.; Wei, Y. Deformable convolutional
networks. In: Proceedings of the IEEE International
Conference on Computer Vision, 764–773, 2017.

[8] Carion, N.; Massa, F.; Synnaeve, G.; Usunier,
N.; Kirillov, A.; Zagoruyko, S. End-to-end object
detection with transformers. In: Computer Vision –
ECCV 2020. Lecture Notes in Computer Science, Vol.
12346. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J.
M. Eds. Springer Cham, 213–229, 2020.

[9] Yuan, Y.; Wang, J. OCNet: Object context network
for scene parsing. arXiv preprint arXiv:1809.00916,
2018.

[10] Fu, J.; Liu, J.; Tian, H. J.; Li, Y.; Bao, Y.
J.; Fang, Z. W.; Lu, H. Dual attention network
for scene segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3141–3149, 2019.

[11] Yang, J. L.; Ren, P. R.; Zhang, D. Q.; Chen, D.; Wen,
F.; Li, H. D.; Hua, G. Neural aggregation network
for video face recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 5216–5225, 2017.

[12] Wang, Q. C.; Wu, T. Y.; Zheng, H.; Guo, G.
D. Hierarchical pyramid diverse attention networks
for face recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8323–8332, 2020.

[13] Li, W.; Zhu, X. T.; Gong, S. G. Harmonious attention
network for person re-identification. In: Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2285–2294, 2018.

[14] Chen, B. H.; Deng, W. H.; Hu, J. N. Mixed high-
order attention network for person re-identification.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 371–381, 2019.

[15] Wang, X. L.; Girshick, R.; Gupta, A.; He, K. M.
Non-local neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7794–7803, 2018.

[16] Du, W. B.; Wang, Y. L.; Qiao, Y. Recurrent spatial-
temporal attention network for action recognition in
videos. IEEE Transactions on Image Processing Vol.
27, No. 3, 1347–1360, 2018.

[17] Peng, Y. X.; He, X. T.; Zhao, J. J. Object-part
attention model for fine-grained image classification.
IEEE Transactions on Image Processing Vol. 27, No.
3, 1487–1500, 2018.

[18] He, P.; Huang, W. L.; He, T.; Zhu, Q. L.; Qiao, Y.; Li,
X. L. Single shot text detector with regional attention.
In: Proceedings of the IEEE International Conference
on Computer Vision, 3066–3074, 2017.



360 M.-H. Guo, T.-X. Xu, J.-J. Liu, et al.

[19] Oktay, O.; Schlemper, J.; Folgoc, L. L.; Lee, M.;
Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.;
Hammerla, N. Y.; Kainz, B.; et al. Attention U-
Net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999, 2018.

[20] Guan, Q.; Huang, Y.; Zhong, Z.; Zheng, Z.; Zheng,
L.; Yang, Y. Diagnose like a radiologist: Attention
guided convolutional neural network for thorax disease
classification. arXiv preprint arXiv:1801.09927, 2018.

[21] Gregor, K.; Danihelka, I.; Graves, A.; Wierstra,
D. DRAW: A recurrent neural network for image
generation. In: Proceedings of the 32nd International
Conference on Machine Learning, 1462–1471, 2015.

[22] Zhang, H.; Goodfellow, I. J.; Metaxas, D. N.; Odena,
A. Self-attention generative adversarial networks. In:
Proceedings of the 36th International Conference on
Machine Learning, 7354–7363, 2019.

[23] Chu, X.; Yang, W.; Ouyang, W. L.; Ma, C.; Yuille,
A. L.; Wang, X. G. Multi-context attention for
human pose estimation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 5669–5678, 2017.

[24] Dai, T.; Cai, J. R.; Zhang, Y. B.; Xia, S. T.;
Zhang, L. Second-order attention network for single
image super-resolution. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11057–11066, 2019.

[25] Zhang, Y. L.; Li, K. P.; Li, K.; Wang, L. C.;
Zhong, B. N.; Fu, Y. Image super-resolution using
very deep residual channel attention networks. In:
Computer Vision – ECCV 2018. Lecture Notes in
Computer Science, Vol. 11211. Ferrari, V.; Hebert,
M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham,
294–310, 2018.

[26] Xie, S. N.; Liu, S. N.; Chen, Z. Y.; Tu, Z.
W. Attentional ShapeContextNet for point cloud
recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 4606–4615, 2018.

[27] Guo, M. H.; Cai, J. X.; Liu, Z. N.; Mu, T. J.; Martin,
R. R.; Hu, S. M. PCT: Point cloud transformer.
Computational Visual Media Vol. 7, No. 2, 187–199,
2021.

[28] Su, W. J.; Zhu, X. Z.; Cao, Y.; Li, B.; Lu, L. W.; Wei,
F. R.; Dai, J. L-BERT: Pre-training of generic visual-
linguistic representations. In: Proceedings of the
International Conference on Learning Representations,
2020.

[29] Xu, T.; Zhang, P. C.; Huang, Q. Y.; Zhang, H.;
Gan, Z.; Huang, X. L.; He, X. AttnGAN: Fine-
grained text to image generation with attentional

generative adversarial networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1316–1324, 2018.

[30] Wu, Y. X.; He, K. M. Group normalization.
International Journal of Computer Vision Vol. 128,
No. 3, 742–755, 2020.

[31] Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K.
Recurrent models of visual attention. In: Proceedings
of the 27th International Conference on Neural
Information Processing Systems, Vol. 2, 2204–2212,
2014.

[32] Jaderberg, M.; Simonyan, K.; Zisserman, A.;
Kavukcuoglu, K. Spatial transformer networks. In:
Proceedings of the 28th International Conference on
Neural Information Processing Systems, Vol. 2, 2017–
2025, 2015.

[33] Vaswani, A.; Shazeer, N. M.; Parmar, N.; Uszkoreit,
J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin,
I. Attention is all you need. In: Proceedings of the
31st International Conference on Neural Information
Processing System, 6000–6010, 2017.

[34] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.;
Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani,
M.; Minderer, M.; Heigold, G.; Gelly, S.; et al.
An image is worth 16×16 words: Transformers for
image recognition at scale. In: Proceedings of the 9th
International Conference on Learning Representations,
2021.

[35] Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.;
Salakhutdinov, R.;. Zemel, R.; Bengio, Y. Show,
attend and tell: Neural image caption generation
with visual attention. In: Proceedings of the 32nd
International Conference on Machine Learning, 2048–
2057, 2015.

[36] Zhu, X. Z.; Hu, H.; Lin, S.; Dai, J. F. Deformable
ConvNets V2: More deformable, better results. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 9300–9308, 2019.

[37] Wang, Q. L.; Wu, B. G.; Zhu, P. F.; Li, P. H.; Zuo, W.
M.; Hu, Q. H. ECA-net: Efficient channel attention for
deep convolutional neural networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 11531–11539, 2020.

[38] Devlin, J.; Chang, M. W.; Lee, K.; Toutanova,
K. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[39] Yang, Z. L.; Dai, Z. H.; Yang, Y. M.; Carbonell, J.
G.; Salakhutdinov, R.; Le, Q. V. XLNet: Generalized
autoregressive pretraining for language understanding.
In: Proceedings of the 33rd Conference on Neural
Information Processing Systems, 2019.



Attention mechanisms in computer vision: A survey 361

[40] Li, X.; Zhong, Z. S.; Wu, J. L.; Yang, Y. B.; Lin, Z. C.;
Liu, H. Expectation-maximization attention networks
for semantic segmentation. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 9166–9175, 2019.

[41] Huang, Z. L.; Wang, X. G.; Huang, L. C.; Huang, C.;
Wei, Y. C.; Liu, W. Y. CCNet: Criss-cross attention
for semantic segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence doi:
10.1109/TPAMI.2020.3007032, 2020.

[42] Geng, Z.; Guo, M.-H.; Chen, H.; Li, X.; Wei, K.; Lin,
Z. Is attention better than matrix decomposition?
In: Proceedings of the International Conference on
Learning Representations, 2021.

[43] Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.;
Levskaya, A.; Shlens, J. Stand-alone self-attention in
vision models. In: Proceedings of the 33rd Conference
on Neural Information Processing Systems, 2019.

[44] Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.;
Jiang, Z.-H.; Tay, F. E.; Feng, J.; Yan, S. Tokens-to-
Token ViT: Training vision transformers from scratch
on ImageNet. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 558–
567, 2021.

[45] Wang, W. H.; Xie, E. Z.; Li, X.; Fan, D. P.; Song,
K. T.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid
vision transformer: A versatile backbone for dense
prediction without convolutions. In: Proceedings
of the IEEE/CVF International Conference on
Computer Visio, 568–578, 2021.

[46] Liu, Z.; Lin, Y. T.; Cao, Y.; Hu, H.; Guo, B. N. Swin
transformer: Hierarchical vision transformer using
shifted windows. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 10012–
10022, 2021.

[47] Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.;
Yuan, L.; Zhang, L. CvT: Introducing convolutions to
vision transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 22–31,
2021.

[48] Yuan, L.; Hou, Q. B.; Jiang, Z. H.; Feng, J. S.; Yan,
S. C. VOLO: Vision outlooker for visual recognition.
arXiv preprint arXiv:2106.13112, 2021.

[49] Dai, Z. H.; Liu, H. X.; Le, Q. V.; Tan, M. X. CoAtNet:
Marrying convolution and attention for all data sizes.
arXiv preprint arXiv:2106.04803, 2021.

[50] Chen, L.; Zhang, H. W.; Xiao, J.; Nie, L. Q.; Shao,
J.; Liu, W.; Chua, T. SCA-CNN: Spatial and channel-
wise attention in convolutional networks for image
captioning. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 6298–
6306, 2017.

[51] Nair, V.; Hinton, G. E. Rectified linear units improve
restricted Boltzmann machines. In: Proceedings of the
27th International Conference on Machine Learning,
807–814, 2010.

[52] Ioffe, S.; Szegedy, C. Batch normalization: Accele-
rating deep network training by reducing internal
covariate shift. In: Proceedings of the 32nd
International Conference on International Conference
on Machine Learning, Vol. 37, 448–456, 2015.

[53] Zhang, H.; Dana, K.; Shi, J. P.; Zhang, Z. Y.; Wang,
X. G.; Tyagi, A.; Agrawal, A. Context encoding
for semantic segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7151–7160, 2018.

[54] Gao, Z. L.; Xie, J. T.; Wang, Q. L.; Li, P. H.
Global second-order pooling convolutional networks.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3019–3028,
2019.

[55] Lee, H.; Kim, H. E.; Nam, H. SRM: A style-
based recalibration module for convolutional neural
networks. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 1854–
1862, 2019.

[56] Yang, Z. X.; Zhu, L. C.; Wu, Y.; Yang, Y.
Gated channel transformation for visual recognition.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 11791–
11800, 2020.

[57] Qin, Z. Q.; Zhang, P. Y.; Wu, F.; Li, X.
FcaNet: Frequency channel attention networks.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 783–792, 2021.

[58] Diba, A. L.; Fayyaz, M.; Sharma, V.; Arzani, M.
M.; Yousefzadeh, R.; Gall, J.; van Gool, L. Spatio-
temporal channel correlation networks for action
classification. In: Computer Vision – ECCV 2018.
Lecture Notes in Computer Science, Vol. 11208.
Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y.
Eds. Springe Cham, 299–315, 2018.

[59] Chen, Z. R.; Li, Y.; Bengio, S.; Si, S. You look
twice: GaterNet for dynamic filter selection in CNNs.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9164–9172,
2019.

[60] Shi, H. Y.; Lin, G. S.; Wang, H.; Hung, T. Y.;
Wang, Z. H. SpSequenceNet: Semantic segmentation
network on 4D point clouds. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4573–4582, 2020.

[61] Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi,



362 M.-H. Guo, T.-X. Xu, J.-J. Liu, et al.

A. Gather-excite: Exploiting feature context in
convolutional neural networks. In: Proceedings of the
32nd International Conference on Neural Information
Processing Systems, 9423–9433, 2018.

[62] Yan, X.; Zheng, C. D.; Li, Z.; Wang, S.; Cui, S. G.
PointASNL: Robust point clouds processing using
nonlocal neural networks with adaptive sampling.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5588–5597,
2020.

[63] Hu, H.; Gu, J. Y.; Zhang, Z.; Dai, J. F.;
Wei, Y. C. Relation networks for object detection.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3588–3597,
2018.

[64] Zhang, H.; Zhang, H.; Wang, C. G.; Xie, J.
Y. Co-occurrent features in semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 548–557,
2019.

[65] Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens,
J. Attention augmented convolutional networks.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 3285–3294, 2019.

[66] Zhu, X. Z.; Cheng, D. Z.; Zhang, Z.; Lin, S.; Dai, J. F.
An empirical study of spatial attention mechanisms
in deep networks. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 6687–
6696, 2019.

[67] Li, X.; Yang, Y. B.; Zhao, Q. J.; Shen, T. C.;
Lin, Z. C.; Liu, H. Spatial pyramid based graph
reasoning for semantic segmentation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 8947–8956, 2020.

[68] Zhu, Z.; Xu, M. D.; Bai, S.; Huang, T. T.; Bai, X.
Asymmetric non-local neural networks for semantic
segmentation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 593–
602, 2019.

[69] Cao, Y.; Xu, J. R.; Lin, S.; Wei, F. Y.; Hu, H.
GCNet: Non-local networks meet squeeze-excitation
networks and beyond. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision Workshop, 1971–1980, 2019.

[70] Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. A2-
nets: Double attention networks. In: Proceedings
of the 32nd International Conference on Neural
Information Processing Systems, 350–359, 2018.

[71] Chen, Y. P.; Rohrbach, M.; Yan, Z. C.; Yan,
S. C.; Feng, J. S.; Kalantidis, Y. Graph-based
global reasoning networks. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 433–442, 2019.

[72] Zhang, S. Y.; Yan, S. P.; He, X. M. LatentGNN:
Learning efficient non-local relations for visual
recognition. In: Proceedings of the 36th International
Conference on Machine Learning, 7374–7383, 2019.

[73] Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmen-
tation transformer: Object-contextual representations
for semantic segmentation. arXiv preprint arXiv:
1909.11065, 2019.

[74] Yin, M. H.; Yao, Z. L.; Cao, Y.; Li, X.; Zhang, Z.; Lin,
S.; Hu, H. Disentangled non-local neural networks.
In: Computer Vision – ECCV 2020. Lecture Notes in
Computer Science, Vol. 12360. Vedaldi, A.; Bischof,
H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 191–
207, 2020.

[75] Guo, M. H.; Liu, Z. N.; Mu, T. J.; Hu, S. M.
Beyond self-attention: External attention using
two linear layers for visual tasks. arXiv preprint
arXiv:2105.02358, 2021.

[76] Hu, H.; Zhang, Z.; Xie, Z. D.; Lin, S. Local relation
networks for image recognition. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 3463–3472, 2019.

[77] Zhao, H. S.; Jia, J. Y.; Koltun, V. Exploring self-
attention for image recognition. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10073–10082, 2020.

[78] Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun,
H.; Luan, D.; Sutskever, I. Generative pretraining
from pixels. In: Proceedings of the 37th International
Conference on Machine Learning, 1691–1703, 2020.

[79] Chen, H. T.; Wang, Y. H.; Guo, T. Y.; Xu, C.; Deng,
Y. P.; Liu, Z. H.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-
trained image processing transformer. In: Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 12294–12305, 2021.

[80] Zhao, H.; Jiang, L.; Jia, J.; Torr, P.; Koltun, V.
Point transformer. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 16259–
16268, 2021.

[81] Zheng, S. X.; Lu, J. C.; Zhao, H. S.; Zhu, X. T.; Luo,
Z. K.; Wang, Y. B.; Fu, Y.; Feng, J.; Xiang, T.; Torr,
P. H.; et al. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 6877–6886,
2021.

[82] Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.;
Wang, Y. Transformer in transformer. arXiv preprint
arXiv:2103.00112, 2021.



Attention mechanisms in computer vision: A survey 363

[83] Liu, S. L.; Zhang, L.; Yang, X.; Su, H.; Zhu, J.
Query2Label: A simple transformer way to multi-
label classification. arXiv preprint arXiv:2107.10834,
2021.

[84] Chen, X. L.; Xie, S. N.; He, K. M. An empirical
study of training self-supervised visual transformers.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 9640–9649, 2021.

[85] Bao, H. B.; Dong, L.; Wei, F. R. BEiT: BERT
pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

[86] Xie, E. Z.; Wang, W. H.; Yu, Z. D.; Anandkumar, A.;
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