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Abstract. Skeleton-based action recognition is a significant direction of human action recognition, because the 9 
skeleton contains important information for recognizing action. The spatial temporal graph convolutional networks 10 
(ST-GCN) automatically learn both the temporal and spatial features from the skeleton data, and achieve remarkable 11 
performance for skeleton-based action recognition. However, ST-GCN just learn local information on a certain 12 
neighborhood, but does not capture the correlation information between all joints (i.e., global information). 13 
Therefore, we need to introduce global information into the spatial temporal graph convolutional networks. In this 14 
work, we propose a model of dynamic skeletons called attention module-based Spatial Temporal Graph 15 
Convolutional Networks (AM-STGCN), which solves these problems by adding attention module. The attention 16 
module can capture some global information, which brings stronger expressive power and generalization capability. 17 
Experimental results on two large-scale datasets, Kinetics and NTU-RGB+D, demonstrate that our model achieves 18 
significant improvements over previous representative methods.  19 
  20 
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1 Introduction 27 

Action recognition technology plays an increasingly important role in many fields such as 28 

intelligent monitoring, human-computer interaction, video sequence understanding, and medical 29 

health. Video action recognition technology is challenged by factors such as occlusion, dynamic 30 

background, mobile camera, angle of view and illumination change.                                   31 

Before the advent of deep learning, the best algorithm for human action recognition in video 32 

was iDT1,2, and the subsequent works were basically improved based on the iDT method. Human 33 

action recognition uses multiple modalities of data such as appearance, depth, optical flows, and 34 

body skeletons.3 With the continuous development of deep learning and its excellent 35 
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performance in image understanding tasks, more and more researchers are beginning to use deep 36 

learning methods to solve the problem of video analysis. Action recognition methods based on 37 

RGB video or optical flows, such as Two-Stream4,5, C3D6, I3D7, RNN8 methods, are greatly 38 

affected by illumination, scene and camera lens movement, so it is difficult to describe the 39 

motion of the human body in the sequence, the recognition performance in some complex 40 

datasets needs to be improved. In recent years, due to the cost reduction of depth sensors (such as 41 

Kinect) and the emergence of real-time human pose estimation algorithms, skeleton-based action 42 

recognition has become more and more popular. 43 

Skeleton-based action recognition methods have been widely studied and paid attention due 44 

to its strong adaptability to dynamic environments and complex backgrounds. Traditional 45 

methods9,10 require hand-crafted features and traversal rules, which are less efficient. Ordinary 46 

deep learning-based methods11-20 manually structure the skeleton into joint coordinate vectors or 47 

pseudo-images, which are then sent to the RNN or CNN network for prediction of the action 48 

categories. The human skeleton is naturally constructed as a graph in a non-Euclidean space, in 49 

which the joint acts as a node, and the edge is constructed according to the natural connection 50 

relationship of the human body. Recently, the Graph Convolutional Networks (GCN) have 51 

extended convolution operations from images to graph structures, and have been successfully 52 

applied to many applications. For skeleton-based action recognition, GCN-based methods 53 

contain ST-GCN3, STGC21, SR-TSL22, AGCN23, PB-GCN24, GR-GCN25 and DPRL+GCNN26. 54 

ST-GCN applied GCN for skeleton-based action recognition task and directly model the original 55 

skeleton data, it extended graph neural networks to a spatial-temporal graph model, and obtained 56 

better action representations. Compared to ordinary deep learning-based methods, GCN-based 57 

methods can better express the dependencies between joints. However, the convolution operation 58 
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in the ST-GCN method is performed on the 1-neighbor of the root node and cannot capture 59 

global information. For the action categories in which the interaction joints are not in the same 60 

neighborhood, such as brushing, clapping, but there are relations between these nonadjacent 61 

joints, attention mechanism can learn these relations. Paying more attention to those joints may 62 

improve recognition performance. Attention modules that work well include non-local neural 63 

networks27, Interaction-aware attention28, CBAM29, SENet30 etc.  64 

In order to solve this problem, we propose an improved method based on ST-GCN, which is 65 

attention module-based Spatial Temporal Graph Convolutional Networks (AM-STGCN).  66 

Attention module helps the model focus on all positions and learn different weights for each 67 

position. In AM-STGCN, we add the non-local neural network as an attention module after the 68 

convolution operation of the baseline model ST-GCN to learn the feature representation with 69 

long-range dependencies. In addition, we discussed the effects of adding attention blocks to 70 

different layers, as well as the effects of adding multiple attention blocks. We did a lot of 71 

experimentation and analysis, and finally got the best strategy. The experimental results on two 72 

large-scale action recognition datasets Kinetics31 and NTU-RGB+D32 show that AM-STGCN can 73 

significantly outperform ST-GCN in action recognition. 74 

In the remainder of the paper, we first provide some related work in Sec. 2, and then 75 

introduce the original ST-GCN model and our AM-STGCN model in Sec. 3. We summarize and 76 

analyze the experimental results in Sec. 4. Finally, we draw conclusions and point out future 77 

research direction in Sec. 5. 78 
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2 Related Work 79 

2.1 Action Recognition Based on RGB Video or Optical Flows 80 

Most previous studies were based on RGB video or optical flows. Traditional action recognition 81 

methods are mostly based on optical flows, and the representative algorithm is iDT1,2. DT 82 

algorithm utilize optical flow field to obtain some trajectories in the video sequence, then extract 83 

the HOF, HOG, MBH and trajectory characteristics along the trajectory. IDT improves dense 84 

trajectories by explicitly estimating camera motion. Then, some methods based on deep learning 85 

gradually appeared, and their performance was much better than traditional methods. Two-86 

stream method was originally proposed by Simonyan et al.4, and Feichtenhofer et al.5 improved 87 

the model. Two-stream method utilizes both appearance and optical flows information: in spatial 88 

stream, in the form of appearance on a single frame, the scene and target information depicted by 89 

video are carried; in temporal stream, the motion of the observer (camera) and the target are 90 

expressed in the form of multi-frame optical flows. Tran et al.6 adopted 3D convolution and 3D 91 

pooling to construct a network, which can directly process video, and its efficiency is much 92 

higher than other methods. Carreira et al.7 proposed a model named “I3D” based on Inceptionv1, 93 

which inflates Inceptionv1’s filters and pooling kernels into 3D, leading to very deep, naturally 94 

spatiotemporal classifiers. Du et al.8 introduced a novel pose-attention mechanism to adaptively 95 

learn pose-related features at every time-step action prediction of RNNs. 96 

Although action recognition methods based on RGB video or optical flows perform high 97 

performance, there are still some problems. For example, it is susceptible to background, 98 

illumination and appearance changes, and extract optical flow information requires high 99 

computational cost. 100 
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2.2 Skeleton-based Action Recognition 101 

The human skeleton can provide a very good representation of the human body motions, which 102 

is beneficial to the analysis of human actions. On the one hand, skeleton data is inherently robust 103 

in background noise, and provides abstract and high-level features of human motion. On the 104 

other hand, the size of the skeleton data is very small compared to RGB data, which allows us to 105 

design a lightweight and hardware-friendly model. 106 

      Skeleton-based action recognition approaches can be categorized into traditional methods 107 

and deep learning methods. Deep learning methods contain RNN based methods, CNN based 108 

methods and graph convolutional network (GCN) based methods. 109 

Some traditional methods shown in Refs. 9 and 10 require hand-crafted features and traversal 110 

rules to achieve skeleton action recognition. With the development of deep learning, RNN based 111 

methods appears gradually. Du et al.11 divided the human skeleton into five parts according to 112 

human physical structure, and then separately feeded them to five bidirectionally recurrently 113 

connected subnets. Song et al.12 proposed an end-to-end spatial and temporal attention model, 114 

which learns to selectively focus on discriminative joints of skeleton within each frame of the 115 

inputs and pays different levels of attention to the outputs of different frames. Zhang et al.13 116 

designed a view adaptive recurrent neural network (RNN) with LSTM architecture, which 117 

enables the network itself to adapt to the most suitable observation viewpoints from end to end. 118 

In recent years, a number of CNN based approaches have also emerged. Kim et al.14 re-designed 119 

the original TCN by factoring out the deeper layers into additive residual terms which yields 120 

both interpretable hidden representations and model parameters. Liu et al.15 proposed an 121 

enhanced skeleton visualization method to represent a skeleton sequence as a series of visual and 122 

motion enhanced color images, which implicitly describe spatio-temporal skeleton joints in a 123 
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compact yet distinctive manner. Li et al.16 designed a novel skeleton transformer module to 124 

rearrange and select important skeleton joints automatically. Li et al.17 proposed an end-to-end 125 

convolutional co-occurrence feature learning framework to aggregate different levels of 126 

contextual information. Liu et al.18 proposed a recurrent attention mechanism for their GCA-127 

LSTM network, which is able to selectively focus on the informative joints in the action 128 

sequence with the assistance of global contextual information. Xie et al.19 designed a temporal-129 

then-spatial recalibration scheme, resulting in an end-to-end Memory Attention Networks 130 

(MANs) which consist of a Temporal Attention Recalibration Module (TARM) and a Spatio-131 

Temporal Convolution Module (STCM). Zheng et al.20 designed an adaptive attentional module 132 

to focus attention on the most discriminative parts in the single skeleton. Although RNN based 133 

methods has a strong ability to model sequence data, and CNN based methods has good 134 

parallelism and easier training process, however, neither CNN nor RNN fully represent the 135 

structure of the skeleton.  136 

Recently, some methods based on graph convolution have appeared, and the effect has been 137 

improved obviously. Yan et al.3 directly simulated the original skeleton using the graph 138 

convolution, which eliminates the need for manual part assignment, and it is easier to design and 139 

potent to learn better action representations. Li et al.21 designed multi-scale convolutional filters 140 

to encode the graph structure data, and proposed a recursive graph convolution model. Si et al.22 141 

utilized a spatial reasoning network to capture the high-level spatial structural features within 142 

each frame, and utilized a composition of multiple skip-clip LSTMs to model the detailed 143 

temporal dynamics of skeleton sequences. In order to design individual graphs for different 144 

samples, Shi et al.23 introduced non-local neural networks into graph convolution operation to 145 

model the multi-level semantic information, which brings more flexibility and generality. 146 
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Thakkar et al.24 divided the skeleton graph into four subgraphs, and used relative coordinates and 147 

temporal displacements as features at each node instead of 3D joint coordinates which improves 148 

action recognition performance. Gao et al.25 constructed a generalized graph via spectral graph 149 

theory to capture the space-time variation. Tang et al.26 proposed a deep progressive 150 

reinforcement learning (DPRL) method to extract key frames, and employed the graph-based 151 

convolutional neural network to capture the dependency between the joints for action recognition. 152 

3     Methodology 153 

We briefly describe the original spatial temporal graph convolutional networks (ST-GCN) in Sec. 154 

3.1. And in Sec. 3.2, we give a briefly description about the methods of utilizing the attention 155 

module to boost the performance, and propose the improved model -- attention module-based 156 

spatial temporal graph convolution network (AM-STGCN). 157 

3.1 Spatial-Temporal Graph Convolutional Networks (ST-GCN) 158 

As shown in Ref. 3, the authors take joints as nodes and the connections between nodes as edges 159 

to construct the skeleton graph. Fig. 1 (a) shows an example of a spatial-temporal skeleton graph. 160 

In one frame, the natural connections between the joints (i.e., the human bones) act as spatial 161 

edges; in adjacent frames, the same joints are joined as temporal edges. The property of each 162 

node is the coordinate vector of the joint. Multi-layers spatial-temporal graph convolution 163 

operation is applied to the spatial-temporal skeleton graph to obtain advanced feature map, and 164 

then use the SoftMax classifier to predict the action category. 165 

ST-GCN applies the spatial configuration partitioning strategy shown in Fig. 1(b) in frame. 166 

The spatial configuration partitioning strategy divides the node's 1-neighbor into three subsets: 1) 167 

the root node (green dot); 2) the centripetal subset (blue dots): the neighboring nodes closer to 168 
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the gravity center of the skeleton (black cross); 3) the centrifugation subset (yellow dots): the 169 

neighboring nodes that are further to the gravity center of the skeleton. Each color in the Fig. 1(b) 170 

corresponds to a specific learnable weight vector. The authors of ST-GCN propose three 171 

partitioning strategy, and it has been proved that the spatial configuration partitioning strategy 172 

shown in Fig. 1(b) is the best, so this work directly adopts this strategy. 173 

 174 

 175 
Fig. 1 (a) Spatial temporal graph of the skeleton. (b) Partitioning strategy, different colors represent different 176 

subsets. 177 

Spatial graph convolution is formulated as: 178 
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where f  is the feature map. tiv is the node of the graph. )( tivB  is the sampling area, which is 180 

defined as the 1-neighbor set of joint nodes. The neighbor set  )( tivB of a joint node tiv is 181 

partitioned into a fixed number of K subsets, where each subset has a numeric label.3 The 182 

mapping function til maps a node in the neighborhood to its subset label. The weight function w 183 

gives different weights according to different til values. The normalizing term )( ji vZ  equals the 184 

cardinality of the corresponding subset.  185 
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To model the spatial temporal dynamics within skeleton sequence, since the number of 186 

neighbors per node is fixed at 2 (the corresponding joint in the previous and subsequent frames), 187 

it is directly to perform the graph convolution similar to the classical convolution operation, 188 

concretely, we perform a 1tK  convolution on the output feature map computed above.23  189 

In the single frame case, ST-GCN with the spatial configuration partitioning strategy can be 190 

implemented with the following formula: 191 
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In formula 2,  f is the VTCin  feature map where V denotes the number of nodes, T denotes the 193 

temporal length and inC denotes the number of input channels. A is the 31818   adjacency 194 

matrix, whose element ijA  indicates whether the node iv  is in the subset of node jv . 0  195 

denotes the self-connections of vertexes, 1 denotes the connections of centripetal subset 196 

and 2 denotes the centrifugal subset.  k

ki

j

ii

j A )(  is the normalized diagonal matrix, α is 197 

set to 0.001 to avoid the empty rows in A. jW is the 11 inout CC  weight vector of 198 

the 11  convolution operation. M is a VV  learnable attention map which indicates the 199 

importance of each node.   denotes the element-wise product between two matrixes. This 200 

means that if one of the elements in A is 0, then whatever the value of M is, it will always be 0. 201 

So M just operates in the 1-neighbor of the root node. 202 

 3.2   Attention Module-based Spatial Temporal Graph Convolution Network 203 

In the spatial temporal graph convolution model, the receptive field of the convolution operation 204 

is the 1-neighbor of the root node, so it only captures local features. However, in different 205 

sample of different action classes, the relationship between the joints is not limited to the 1-206 



 

10 

neighbor of the joint. For example, for many actions such as combing hair, brushing teeth, the 207 

relationship between the hand and the head may be important. In order to solve this problem, we 208 

introduce the idea of non-local neural network27, make some improvements to the ST-GCN 209 

model, and then propose AM-STGCN skeleton-based action recognition method based on the 210 

non-local attention mechanism, which directly focuses on the features of all joints, and get more 211 

efficient features by attention operations.  212 

 213 
 214 

 215 

Fig. 2 The structure of AM-STGCN. 216 

Fig. 2 shows the network structure of AM-STGCN, where we add the attention module after 217 

the spatial convolution operation (ConvS) of Layer2. The model consists of nine layers of spatial 218 

temporal graph convolution operators. The first three layers have 64 output channels, the middle 219 

three layers have 128 output channels, and the last three layers have 256 output channels. Each 220 
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layer of AM-STGCN includes the spatial convolution operation (ConvS) and the temporal 221 

convolution operation (ConvT). The residual connection33 is added on each layer.  222 

 Non-local neural network is a versatile, flexible building block, it can be easily embedded 223 

into existing 2D and 3D convolutional networks to improve or visualize related CV tasks. This 224 

allows us to combine global and local information to build richer hierarchy. In Fig. 2, the right 225 

side is our attention module, which is used to capture the correlation between all joints. We 226 

construct the attention module mainly following the idea of non-local neural network: first, linear 227 

mapping is conducted on the feature map of ConvS , which is implemented as 1×1 convolution, 228 

and then get the θ, φ, g features; second, we perform a matrix point multiplication operation on 229 

θ and φ to calculate the autocorrelation in the feature, and then carry out Softmax operation to 230 

obtain the self-attention coefficient; third, the attention coefficient is multiplied back into the 231 

feature matrix g; at last, residual connection is established with the original input feature map, 232 

and then we get a new set of features. Specifically, we add 2×2 MaxPooling operation after θ, 233 

φ features to reduce computational cost. Such an attention module is called one attention block, 234 

and multiple attention blocks will be used in the work. How many attention blocks are added to 235 

the model and where they are added will be analyzed in detail in Sec. 4, and the experimental 236 

results are given at the same time. 237 

4    Experiments and Analysis 238 

In this section, we evaluate the performance of the AM-STGCN model. In order to compare with 239 

the baseline model ST-GCN, our experiments are performed on the same two large-scale action 240 

recognition datasets: the human action dataset Kinetics31 is the largest unconstrained action 241 

recognition dataset up to now, and NTU-RGB+D32 is the largest constrained indoor captured 242 
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action recognition dataset. First, we conduct a detailed ablation study of the Kinetics dataset to 243 

analyze the contribution of the proposed model to recognition performance. Then, the 244 

corresponding experiments are carried out on the NTU-RGB+D dataset to verify whether the 245 

proposed model has certain generalization ability. Finally, we compare AM-STGCN with ST-246 

GCN and some state-of-the-art results of skeleton-based action recognition on Kinetics and 247 

NTU-RGB+D. All experiments were performed on PyTorch deep learning framework using two 248 

1080Ti GPUs. 249 

4.1   Datasets 250 

Kinetics
31

: Kinetics is a large human action dataset that contains 400 action classes taken from 251 

different YouTube video, each class with at least 400 video clips, each clip lasts about 10 252 

seconds31. These actions include the interaction between people and objects, such as playing an 253 

instrument, and the interaction between people, such as shaking hands. 254 

The Kinetics dataset only provides raw video clips and does not provide skeleton joint data.  255 

As shown in  Ref. 3, they use the public available OpenPose34 toolbox to estimate the location of 256 

18 joints on every frame of the clips. In this work, we use the Kinetics-skeleton dataset provided 257 

by the author of ST-GCN, which marks the position of 18 joints in each frame. The dataset 258 

provides a training set of 240,000 clips and a validation set of 20,000 clips. In accordance with 259 

the recommendations in Ref. 31, in this work, we train the model on the training set and report 260 

the top-1  and top-5 recognition accuracies on the validation set. 261 

Fig. 3(a) shows the joint label of the Kinetics-skeleton dataset. The joint labels are: 0 nose, 1 262 

neck, 2 right shoulder, 3 right elbow, 4 right wrist, 5 left shoulder, 6 left elbow, 7 left wrist, 8 263 

right hip, 9 right knee, 10 right ankle, 11 left hip, 12 left knee, 13 left ankle, 14 right eye, 15 left 264 

eye, 16 right ear, 17 left ear. 265 
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NTU-RGB+D
32

: NTU-RGB+D is the largest dataset with 3D joint annotations currently used 266 

for human action recognition tasks. The dataset contains 60 action classes with a total of 56,000 267 

action clips. All of these clips are performed by 40 volunteers in a constrained lab environment, 268 

and captured by 3 cameras of the same height but from different horizontal angles: -45°, 0°, 269 

45°32. The dataset provides the 3D joint location of each frame detected by the Kinect depth 270 

sensor. There are 25 joints per subject in the skeleton sequence. Each clip is guaranteed to have a 271 

maximum of 2 subjects. 272 

        273 
 274 

Fig. 3  The joint label of Kinetics-skeleton and NTU-RGB+D datasets. 275 

The original paper of the NTU-RGB+D dataset recommended two benchmarks: 1) cross-276 

subject (X-Sub) benchmark: The dataset in this benchmark is divided into a training set (40,320 277 

clips) and a validation set (16,560 clips). The subjects in these two subsets are different; 2) cross-278 

view (X-View) benchmark: The training set in this benchmark contains 37,920 clips captured by 279 

cameras 2 and 3, and the validation set contains 18,960 clips captured by camera 132. We follow 280 

this convention and report the top-1 recognition accuracy of the two benchmarks. 281 

Fig. 3(b) shows the joint label of the NTU-RGB+D dataset. The joint labels are: 1 base of the 282 

spine, 2 middle of the spine, 3 neck, 4 head, 5 left shoulder, 6 left elbow, 7 left wrist, 8 left hand, 283 

9 right shoulder, 10 right elbow , 11 right wrist, 12 right hand, 13 left hip, 14 left knee, 15 left 284 

(a) (b) 
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ankle, 16 left foot, 17 right hip, 18 right knee, 19 right ankle, 20 right foot, 21 spine, 22 left hand 285 

tip, 23 left hand Thumb, 24 right hand tip, 25 right thumb. 286 

4.2 Effectiveness Analysis of AM-STGCN 287 

In this section, we first conduct a lot of ablation experiments on the Kinetics-skeleton dataset: 1) 288 

Adding attention block after the ConvS (spatial convolution) of different layers of the ST-GCN; 289 

2) Adding multiple attention blocks after the ConvS of different layers; 3) Adding attention 290 

blosks after ConvT (temporal convolution) of the layer; 4) Adding two other attention 291 

mechanisms with different structures, CBAM29 and SENet30, to ST-GCN. Experiments are then 292 

performed on NTU-RGB+D dataset to verify the generalization capabilities of the proposed 293 

model AM-STGCN. 294 

4.2.1  Baseline 295 

In order to evaluate the recognition performance of our improved model, we used baseline for 296 

comparison experiments. Since our model is improved on the basis of the ST-GCN model, we 297 

use the ST-GCN model as a baseline to analyze the advantages of AM-STGCN. We reproduced 298 

the ST-GCN model on the Kinetics dataset based on the Ref. 3, and obtained very close results to 299 

the original paper (see Table 1). 300 

Table 1  Baseline. 301 

Method Top-1(%) Top-5(%) 

ST-GCN3 30.7 52.8 

Our ST-GCN Baseline 30.7 53.7 
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4.2.2  Ablation experiment 302 

Table 2  The results of adding one attention block to the different layers of the ST-GCN. ST-GCN1's ConvS + 1 303 
represents adding one attention block after the ConvS (spatial convolution) of the first layer of the ST-GCN. 304 

Thereafter, Tables 3, 4, 5, and 6 have the same representation rules. 305 

Method Top-1(%) Top-5(%) 

Our ST-GCN Baseline 30.7 53.7 

ST-GCN1’s ConvS + 1 31.6 54.3 

ST-GCN2’s ConvS + 1 31.9 54.7 

ST-GCN3’s ConvS + 1 31.9 54.7 

ST-GCN4’s ConvS + 1 31.3 53.8 

ST-GCN9’s ConvS + 1 31.0 53.7 

 306 
Table 2 shows the experimental results of adding one attention block after the ConvS (spatial 307 

convolution) of different layers of the ST-GCN model. The results demonstrate that no matter 308 

which layer we add an attention block to, the recognition accuracy always higher than the 309 

baseline. The improvement of adding one attention block in the second and third layers is similar,  310 

which can lead to ∼1.2% (on Top1) improvement over the baseline. The results of the remaining 311 

layers are slightly lower. 312 

Table 3  The results of adding multiple attention blocks to different layers. 313 

Method Top-1(%) Top-5(%) 

Our ST-GCN Baseline 30.7 53.7 

ST-GCN1’s ConvS + 2 32.0 54.5 

ST-GCN2’s ConvS + 2 32.1 54.4 

ST-GCN3’s ConvS + 2 31.4 54.4 

ST-GCN1’s ConvS + 3 30.6 53.1 
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ST-GCN2’s ConvS + 3 31.1 53.5 

ST-GCN3’s ConvS + 3 32.2 55.1 

ST-GCN4’s ConvS + 3 31.1 53.1 

 314 
Table 3 shows the results of adding multiple attention blocks to different layers of the ST-315 

GCN. It can be seen from Table 2 that adding one attention block to the first few layers of the 316 

model is better than adding to the lower layer, so in the experiment of Table 3, we add two and 317 

three attention blocks after the ConvS (spatial convolution) of the first few layers of ST-GCN. 318 

Obviously, the results of adding multiple attention blocks after ConvS of a layer outperform 319 

adding a single attention block,  especially on ST-GCN3’s ConvS + 3,  which can lead to 1.5% 320 

(on Top1) and 1.4% (on Top5) improvement over the baseline. It demonstrates that more 321 

attention blocks usually lead to better performance. We argue that multiple attention blocks can 322 

reinforce the correlation information learned in the previous attention block, thus assigning each 323 

node a more appropriate weight.  324 

Table 4  The results of adding multiple attention blocks to multi-layers. 325 

Method Top-1(%) Top-5(%) 

Our ST-GCN Baseline 30.7 53.7 

ST-GCN2’s ConvS + 1 
ST-GCN3’s ConvS + 1 

31.4 54.1 

ST-GCN1’s ConvS + 2 
ST-GCN2’s ConvS + 2 

30.9 53.3 

ST-GCN2’s ConvS + 2 
ST-GCN3’s ConvS + 2 

32.3 

 

55.1 

 

ST-GCN1’s ConvS + 2 
ST-GCN3’s ConvS + 2 

31.5 
 

54.2 
 

 326 
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Table 4 shows the results of adding multiple attention blocks to multi-layers of the ST-GCN 327 

model. As shown in Tables 2, 3 and 4, we can find that only the third combination (ST-GCN2’s 328 

ConvS + 2 & ST-GCN3’s ConvS + 2) improves accuracy compared to adding attention blocks to 329 

single layer. The rest of the combinations do not improve accuracy compared to the individual 330 

structure in the combination. 331 

Table 5  The results of adding attention blocks after ConvT  (temporal convolution)  of  one layer. 332 

Method Top-1(%) Top-5(%) 

Our ST-GCN Baseline 30.7 53.7 

ST-GCN2’s ConvT + 2 32.0 54.9 

ST-GCN3’s ConvT + 3 32.9 55.4 

ST-GCN5’s ConvT + 3 31.7 54.3 

 333 
Table 5 shows the results of adding attention blocks after ConvT  (temporal convolution)  of 334 

different layers of the ST-GCN model. Comparing the results of Table 3 and Table 5, we can 335 

find that adding attention blocks after ConvT perform better than after ConvS. ST-GCN3’s 336 

ConvT + 3 obtain the best improvement of adding attention blocks after ConvT,  which 337 

outperforms Our ST-GCN Baseline by 2.2% and 1.7% on Top1 and Top5  recognition accuracies; 338 

ST-GCN3’s ConvS + 3 obtain the best improvement of adding attention blocks after ConvS, 339 

which outperforms Our ST-GCN Baseline by 1.5% and 1.4% on Top1 and Top5  recognition 340 

accuracies. One possible explanation is that ConvT has a bigger kernel size (9×1) and ConvS 341 

has a small kernel size (1×1), thus ConvS is insufficient to capture precise spatial information. 342 

Adding attention blocks after ConvT can learn the correlation of all nodes in all frames, while 343 

adding attention blocks after ConvS can only learn the correlation of all nodes in one frame, thus 344 

adding attention blocks after ConvT perform better than after ConvS. 345 
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Table 6  The results of adding attention blocks after ConvT and ConvS of multi-layers. 346 

Method Top-1(%) Top-5(%) 

Our ST-GCN Baseline 30.7 53.7 

ST-GCN2’s ConvT + 2 
ST-GCN3’s ConvT + 3 

32.3 54.4 

ST-GCN2’s ConvS + 1 
ST-GCN2’s ConvT + 2 

31.5 53.8 

ST-GCN2’s ConvS + 2 
ST-GCN3’s ConvT + 3 

31.8 
 

54.0 
 

 347 
Table 6 shows the results of adding attention blocks after ConvT and ConvS of multi-layers. 348 

As shown in Tables 2, 3, 5 and 6, we can see that none of the combinations in Table 6 improves 349 

accuracy compared to adding attention blocks to single layer. The results of Table 4 and 6 prove 350 

that adding attention blocks to multiple layers does not further improve accuracy.  351 

From Tables 2, 3, 4, 5 and 6, we find that adding attention blocks to the second and third 352 

layer of ST-GCN can result in better performance. The possible reason is that the features 353 

learned in these two layers are more consistent with the semantic representation of human 354 

motion. 355 

Table 7  The results of adding CBAM and SENet to ST-GCN. 356 

Method Top-1(%) Top-5(%) 

ST-GCN+CBAM 31.9 54.3 

ST-GCN+SENet 31.6 54.2 

Our AM-STGCN 32.9 55.4 

 357 
We selected two other attention mechanisms with different structures, CBAM29 and SENet30, 358 

to be added to ST-GCN. CBAM contains spatial attention and channel attention, while SENet is 359 

just channel attention. Table 7 shows the results of adding CBAM and SENet. As shown in 360 
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Table7, the results of our method are clearly better than those of the other two attention 361 

structures, which prove that our attention mechanism is more suitable for ST-GCN. 362 

4.2.3 Further analysis on“Kinetics-Motion”  363 

The authors of ST-GCN select a subset of 30 classes strongly related with body motions, named 364 

as “Kinetics-Motion3”. For a detailed comparison, we further investigate the per-class differences 365 

in accuracy on this subset. In Fig. 4, the horizontal axis is the action category of “Kinetics-366 

Motion”, and the vertical axis is the accuracy of per-class. The dark blue represents Our ST-367 

GCN Baseline and the light blue represents AM-STGCN, here AM-STGCN is the optimal 368 

structure (i.e., ST-GCN3’s ConvT + 3) obtained after the analysis in the previous section. It can 369 

be observed obviously that the accuracy of most actions get improved. Some classes even get 370 

more than 10% improvement, such as hitting baseball, hopscotch, salsa dancing and squat. These 371 

results also verify the superiority of our model for skeleton-based action recognition, in 372 

particular on those classes strongly related with body motions.  373 

 374 

Fig. 4  Category accuracies on the “Kinetics Motion” subset of the Kinetics dataset. 375 
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4.2.4 Time comparison on Kinetics  376 

The Kinetics dataset provides a training set of 240,000 video clips, each clip contain 300 frames. 377 

Every frame of the video clips is converted into a sequence of human skeletons represented by 378 

coordinates through OpenPose34 toolbox. We compared the training time of one epoch of AM-379 

STGCN model and our ST-GCN baseline on Kinetics dataset, and the results are shown in Table 380 

8. ST-GCN3’s ConvS + 3 and ST-GCN3’s ConvT + 3, which performed better in the above 381 

experiments, are selected to be compared with our ST-GCN baseline. The training time of ST-382 

GCN3’s ConvS + 3 and our ST-GCN baseline are similar, and ST-GCN3’s ConvT adds the 383 

calculation in temporal dimension, so the training time is a little longer. These results 384 

demonstrate that our AM-STGCN model do not add much time cost than ST-GCN model. 385 

Table 8 The training time of AM-STGCN and ST-GCN methods.  386 

Method 
The number of  

skeleton sequence. 
Training time of  
one epoch. (h)  

Our ST-GCN Baseline 240,000 0.58 

ST-GCN3’s ConvS + 3 240,000 0.61 

ST-GCN3’s ConvT + 3 240,000 0.70 

 387 

4.2.5 Comparison with state-of-the-art methods 388 

On Kinetics dataset, we compare AM-STGCN with “Feature Encoding”10, Deep LSTM32, 389 

Temporal ConvNet14 and ST-GCN3 methods. Their recognition performance in terms of Top-1 390 

and Top-5 accuracies are listed in Table 9. Obviously, our AM-STGCN with using attention 391 

module outperforms ST-GCN by 2.2% and 2.6% on Top1 and Top5 recognition accuracies 392 

respectively.  It can be seen from Table 9 that our AM-STGCN is able to outperform previous 393 

representative methods. 394 
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Table 9  Comparison with the state-of-the-art on Kinetics dataset. 395 

Method Date Top-1(%) Top-5(%) 

Feature Encoding.10 2015 14.9 25.8 

Deep LSTM32 2016 16.4 35.3 

Temporal ConvNet14 2017 20.3 40.0 

ST-GCN3 2018 30.7 52.8 

Our ST-GCN Baseline - 30.7 53.7 

Our AM-STGCN - 32.9 55.4 

 396 
We found that most of the current skeleton-based action recognition studies are conducted on 397 

NTU-RGB+D dataset, so we compare our method with state-of-the-art methods on NTU-398 

RGB+D dataset. 399 

On NTU-RGB+D dataset, we compare AM-STGCN with Lie Group9, H-RNN11, Deep 400 

LSTM32, VA-LSTM13, Temporal ConvNet14, Two-stream CNN16, HCN17, STA-LSTM12, GCA-401 

LSTM18, ARRN-LSTM20, MANs19, ST-GCN3, DPRL+GCNN26, SR-TSL22, PB-GCN24 and 402 

AGCN23 methods. The results are shown in Table 10. 403 

Comparisons with hand-craft feature based methods, CNN based methods and RNN 404 

based methods. Table 10 shows that the performance of graph convolution based methods is 405 

generally better than hand-craft feature based methods, CNN based methods and RNN based 406 

methods.  In particular, our AM-STGCN obtains very close results to HCN method on cross-407 

view (X-View) benchmark, which performs best among CNN based methods. At the same time, 408 

multi-person feature fusion is added in HCN, thus resulting in better performance on cross-409 

subject (X-Sub) benchmark, but it also leads to the increase of computation.  410 

Comparisons with other methods based on attention. We compare AM-STGCN with 411 

other methods based on attention including STA-LSTM12, GCA-LSTM18, ARRN-LSTM20 and 412 
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MANs19. From Table 10, we can see that our AM-STGCN is better than any other result except 413 

for MANs under the X-View benchmark. MANs consists of Temporal Attention Recalibration 414 

Module (TARM) and DenseNet-161, we can find that their baseline is higher than ST-GCN, 415 

which may be due to DenseNet-161, because DenseNet-161 is much deeper and more complex 416 

than ST-GCN. On X-View benchmark, our AM-STGCN outperforms ST-GCN by 3.1% and 417 

MANs outperforms MANs (no attention) by 1.07%, which prove that our method can improve 418 

the performance of the model more. 419 

Comparisons with graph convolution based methods. 1) Single stream network. In Table 420 

10，we can see clearly that our AM-STGCN with using attention module outperforms ST-GCN 421 

by 1.9% and 3.1% on cross-view (X-View) benchmark and cross-subject (X-Sub) benchmark 422 

respectively, which prove that our AM-STGCN model is equally effectiveness on NTU-RGB+D 423 

dataset. Our AM-STGCN performs very close results to DPRL+GCNN on cross-subject (X-Sub) 424 

benchmark and outperforms DPRL+GCNN by 1.6% on cross-view (X-View) benchmark in 425 

Table 10. 2) Two-stream networks. The joint locations is the only input data of our AM-STGCN. 426 

SR-TSL, PB-GCN and AGCN all have another form of input data as input to different streams, 427 

thus forming a two-stream networks. SR-TSL(Position), PB-GCN(Jloc) and Js-AGCN are the 428 

same as ST-GCN with only joint locations as input data. Among these methods, it can be seen 429 

obviously form Table 10 that our AM-STGCN is superior to SR-TSL(Position) and PB-430 

GCN(Jloc) on both cross-subject (X-Sub) and cross-view (X-View) benchmark. In the paper of 431 

AGCN, we find AGCN’s baseline is 92.7% on cross-view (X-View) benchmark, outperforms 432 

ST-GCN by 4.4%, but Js-AGCN outperforms their baseline by only 1%. We think it may be that 433 

different experimental environments cause different baselines. So in terms of relative increase in 434 

accuracy, our method has achieved a good performance improvement. In addition, we have 435 
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added our attention module to Js-AGCN. In Table 10, the results of Js-AGCN+our attention 436 

outperforms Our Js-AGCN Baseline by 0.5% and 0.4% on cross-view (X-View) benchmark and 437 

cross-subject (X-Sub) benchmark respectively, which shows that our attention mechanism is also 438 

effective on AGCN method, and proves that our method has certain robustness. 439 

These results show our AM-STGCN model achieves a significant performance improvement. 440 

Table 10  Comparison with the state-of-the-art on NTU-RGB+D dataset. 441 

Method Date X-Sub(%) X-View(%) 

Lie Group9 2014 50.1 52.8 

H-RNN11 2015 59.1 64.0 

Deep LSTM32 2016 60.7 67.3 

Temporal ConvNet14 2017 74.3 83.1 

VA-LSTM13 2017 79.4 87.6 

Two-stream CNN16 2017 83.2 89.3 

HCN17 2018 86.5 91.1 

STA-LSTM12 2017 73.4 81.2 

GCA-LSTM18 2017 74.4 82.8 

ARRN-LSTM20 2019.04 81.8 89.6 

MANs (no attention)19 

2018 

81.41 92.15 

MANs19 83.01 93.22 

ST-GCN3 2018 81.5 88.3 

DPRL+GCNN26 2018 83.5 89.8 

SR-TSL(Position)22 

2018 

78.8 88.2 

SR-TSL(Velocity)22 82.2 90.6 

SR-TSL22 84.8 92.4 
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PB-GCN(Jloc)
24 

2018 

82.8 90.3 

PB-GCN(DR||DT)24 87.5 93.2 

Js-AGCN23 

2019.05 

- 93.7 

Bs-AGCN23 - 93.2 

2s-AGCN23 88.5 95.1 

Our Js-AGCN Baseline - 85.9 93.7 

Js-AGCN + our attention - 86.4 94.1 

Our AM-STGCN - 83.4 91.4 

 442 

5    Conclusion 443 

In this paper, we propose a new skeleton-based action recognition method called attention 444 

module-based Spatial Temporal Graph Convolutional Networks(AM-STGCN), which can 445 

overcome the weakness of ST-GCN model. In order to capture global information of skeleton 446 

sequences, attention modules are added to learn the correlation information between all joints of 447 

both spatial and temporal dimension. So AM-STGCN can extract long-range relationships from 448 

input skeleton sequences, which improve the ability to model the dynamic change of human 449 

body motions. Experiments on two large-scale action recognition datasets Kinetics and NTU-450 

RGB+D achieve the better results, which indicate that AM-STGCN can effectively improve the 451 

recognition accuracy. In future, we will improve our AM-STGCN in many possible directions, 452 

such as improving attention modules or merging RGB modality. 453 

 454 
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