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Abstract—With the development of deep learning (DL) and
synthetic aperture radar (SAR) imaging techniques, SAR auto-
matic target recognition has come to a breakthrough. Numerous
algorithms have been proposed and competitive results have been
achieved in detecting different targets. However, due to the influ-
ence of various sizes and complex background of ships, detecting
multiscale ships in SAR images is still challenging. To solve the
problems, a novel network, called attention receptive pyramid
network (ARPN), is proposed in this article. ARPN is a two-stage
detector and designed to improve the performance of detecting
multiscale ships in SAR images by enhancing the relationships
among nonlocal features and refining information at different
feature maps. Specifically, receptive fields block (RFB) and convo-
lutional block attention module (CBAM) are employed and com-
bined reasonably in attention receptive block to build a top-down
fine-grained feature pyramid. RFB, composed of several branches
of convolutional layers with specifically asymmetric kernel sizes
and various dilation rates, is used for grabbing features of ships
with large aspect ratios and enhancing local features with their
global dependences. CBAM, which consists of channel and spatial
attention mechanisms, is utilized to boost significant information
and suppress interference caused by surroundings. To evaluate the
effectiveness of ARPN, experiments are conducted on SAR Ship
Detection Dataset and two large-scene SAR images. The detection
results illustrate that competitive performance has been achieved
by our method in comparison with several CNN-based algorithms,
e.g., Faster-RCNN, RetinaNet, feature pyramid network, YOLOv3,
Dense Attention Pyramid Network, Depth-wise Separable Convo-
lutional Neural Network, High-Resolution Ship Detection Network,
and Squeeze and Excitation Rank Faster-RCNN.

Index Terms—Attention receptive pyramid network,
convolutional block attention module (CBAM), receptive fields
block (RFB), synthetic aperture radar (SAR), SAR automatic
target recognition (SAR ATR), ship detection.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) is an active microwave

sensor, which could acquire high-resolution data in all

weather conditions. Therefore, it has been widely used in mil-

itary and civil fields such as marine surveillance [1], [2], earth
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observation [3] and so on. As one of the important applications,

synthetic aperture radar automatic target recognition (SAR ATR)

aims to figure out locations and class labels of potential targets

and has been researched for a long time [4]–[9]. In this field, an

important branch is ship detection in SAR images. Although

numerous methods have been proposed [10], [11], it is still

an enduring hot topic because of several tough problems for

detecting multiscale ships in complex surroundings.

In traditional ways, several handcrafted features were ex-

plored [12]–[14]. Gray-scale feature, as one of the representative

features, has been widely used in this area. Constant false alarm

rate (CFAR) based methods, which consider the gray-scale fea-

ture, play a remarkable role in ship detection in SAR images. In

CFAR-based methods, specific probability distribution models

[15], [16], e.g., K and G0 distributions, are established properly

according to the SAR images. Then, binary maps are calculated

by CFAR detectors with constant probability of false alarms.

Next, specific binary areas are isolated out from these binary

maps and discriminated by several well-designed features, such

as geometrical features, electromagnetic scattering features, and

so on. In this area, several methods were proposed. Leng et al.

[17] introduced a bilateral CFAR algorithm for ship detection

and reduced the influence of SAR ambiguities and sea clutter.

Kang et al. [18] adopted a CFAR algorithm to detect targets with

a threshold determined by the pixels’ amplitudes in proposal and

background windows. Although these methods detected ships

with competitive performance, their generalization capabilities

might be weak due to the difficulties in designing proper hand-

crafted features for various conditions. Besides, these methods

might be complex due to numerous parameters predefined for

specific conditions.

Recently, convolutional neural network (CNN) based meth-

ods have achieved remarkable successes in computer vision

tasks, i.e., image classification [19], object detection [20]–[22],

and image segmentation [23], [24]. In terms of object detection,

methods could be divided into two paradigms, i.e., two-stage

detectors and one-stage detectors. In two-stage detectors, e.g.,

Faster-RCNN [25] and feature pyramid network (FPN) [21],

basic features are first extracted by backbone networks, e.g.,

VGG [26], ResNet [27], Inception [28], and DenseNet [29].

Then, Region of Interest (ROI) proposals are generated by

region proposal network (RPN) [25] according to the predefined

anchors in the first stage. Then, features of these proposals are

resized to fixed sizes and processed by two branches of classi-

fication and regression networks. Finally, the detection results
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are acquired by a non-maximum suppression (NMS) operation.

NMS is adopted to merge redundant predictions with a fixed

threshold. The two-stage detectors can acquire high detection

accuracy because of their well-designed modules for feature rep-

resentation. However, they suffer from low processing speed due

to numerous ROI proposals and complex processing schemes.

One-stage detectors, e.g., single shot detector (SSD) [30], You

Only Look Once (YOLO) [31], [32], and RetinaNet [22], are

another paradigm. In this paradigm, networks directly predict

locations and class labels of potential objects at several feature

maps without cropping and resizing ROI proposals. Thus, the

processing schemes are simpler and they can detect objects faster

than two-stage detectors. However, one-stage detectors might

sacrifice processing accuracy due to their plain strategies for

feature extraction and discrimination.

With the surge of high-resolution SAR images, CNN-based

methods have been applied to ship detection in SAR images.

Kang et al. [33] constructed a hybrid detector by combining

Faster-RCNN with a CFAR detector. The hybrid detector aimed

at alleviating undesired differences caused by multiscale ships

and the CFAR detector was adopted for refining object pro-

posals generated by Faster RCNN. To alleviate interference

of surroundings, Wang et al. [34] adopted SSD with transfer

learning to detect ships in SAR images. Chang et al. [35] intro-

duced a YOLOv2-reduced network by removing some convolu-

tional layers from original YOLOv2 [36] to reduce computing

complexity. The detection results illustrated that the YOLOv2-

reduced network could detect ships in SAR images fast without

sacrificing much detection accuracy. Besides, Lin et al. [37]

proposed Squeeze and Excitation Rank (SER) Faster-RCNN for

ship detection in SAR images. The method concatenated three

levels of feature maps from VGG network to improve repre-

sentative abilities of network. Besides, an SER mechanism was

used after ROI pooling layer to refine significant information.

Besides, An et al. [38] introduced a one-stage detector named

DrBoxv2, to detect ships with various azimuth angles. The

detector adopted several anchor sampling strategies with Online

Hard Example Mining [39] to detect multiscale ships. Zhang et

al. [40] proposed a Depth-wise Separable Convolutional Neural

Network (DS-CNN) for ship detection in SAR images. In the

method, a backbone network, composed of several layers of

depth separable convolution [41], was established to extract

basic features. The DS-CNN shared similar structure and loss

functions with YOLO but further improved the detection speed

without sacrificing much performance. Besides, Cui et al. [42]

proposed a two-stage detector called Dense Attention Pyramid

Network (DAPN), for multiscale ship detection in SAR images.

Based on the structure of FPN, DAPN densely connected differ-

ent levels of feature maps and adopted a convolutional block

attention module (CBAM) [43] at top-down pathway of the

lateral connections to filter out negative objects and suppress

interference of surroundings. Wei et al. [44] introduced a pre-

cise and robust ship detection method called High-Resolution

Ship Detection Network (HR-SDNet). In HR-SDNet, a mod-

ified High-Resolution Net [45] was established to retain the

high-resolution features of ships. Besides, three cascade RCNN

networks [46] were adopted for further discrimination.

Network structures, training strategies, and anchor sampling

mechanisms carefully designed, the performance of ship detec-

tion in SAR images has been obviously improved. However,

there still exist some tough problems when detecting multiscale

ships. The surroundings of inshore ships are usually more com-

plex than those of offshore ships. Sometimes, backscattering

points of interference are even stronger than those of ships

and wakes might be similar to ships. It might cause much

disturbance for algorithms to locate and discriminate multiscale

ships accurately. Therefore, exploring relationships between lo-

cal features and their global dependences as well as suppressing

useless and confusing information is essential for improving the

performance of detecting ships in SAR images.

In this article, a novel method named attention receptive

pyramid network (ARPN) is proposed. It represents the two key

components, i.e., receptive fields block (RFB) [47] and CBAM),

and the basic architecture, i.e., a well-designed feature pyra-

mid, of our method. To improve the performance of detecting

multiscale ships in complex SAR scenes, RFB, which adopts

multibranch convolutions with various asymmetric kernel sizes

and dilation rates, is utilized to grab characteristics of multiscale

ships with different directions and enhance local features with

their global dependences. CBAM, which consists of channel and

spatial attention mechanisms, is used to boost the significant

features of ships and suppress interference of surroundings,

e.g., waves, isles, wakes of ship, and so on, by reweighting

feature values intelligently on hierarchical feature maps. By

combining RFB and CBAM reasonably, a well-designed lateral

connection named attention receptive block (ARB) is introduced

in ARPN. When detecting ships, basic feature maps are first

established in the bottom-up pathway by using a backbone

network, e.g., ResNet-101 in our method. Then, a fine-grained

feature pyramid is constructed by the ARB. Next, RPNs are

adopted at different levels of feature pyramid to generate ROI

proposals. Finally, the final detection results are acquired by

using two branches of subnetworks, i.e., classification and

regression subnetworks followed by an NMS operation. To

evaluate the performance of our method, we conduct several

experiments on the SAR Ship Detection Dataset (SSDD) [48]

and some large-scene SAR images. The detection results il-

lustrate that our method is efficient for detecting multiscale

ships in SAR images with complex scenes, compared with

several CNN-based methods, e.g., Faster RCNN, RetinaNet,

FPN, YOLOv3, DAPN, DS-CNN, HR-SDNet, and SER Faster

RCNN. The major contributions of this article are indicated as

follows.

1) A novel detection method called ARPN is proposed for

detecting multiscale ships in SAR images.

2) We introduced a well-designed lateral connection called

ARB. And two specific modules, i.e., RFB and CBAM,

are combined reasonably into ARB to grab features of

multiscale ships and refine redundant information when

establishing a fine-grained feature pyramid.

3) Experiments on SSDD dataset and large-scene SAR im-

ages demonstrate that the proposed method detects mul-

tiscale ships with competitive results in comparison with

some classical and special CNN-based methods.
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Fig. 1. Lateral connection in FPN.

II. MOTIVATION AND METHOD

In this section, motivations and our method are described in

detail sequentially.

A. Idea of the Proposed Method

To detect multiscale objects, a feature pyramid is adopted in

FPN. In the bottom-up pathway, basic features are extracted by

a backbone network. However, these features at different feature

maps might be imbalanced. Furthermore, high-level feature

maps contain rich semantic information but are lack of accu-

rate position information. Low-level feature maps contain rich

position information but poor semantic information. Therefore,

a top-down pathway is introduced by using lateral connections

to acquire a fine-grained features pyramid. Fig. 1 is a lateral

connection used in FPN. C{x} means a basic feature map from

the bottom-up pathway. P{x + 1} and P{x} are different levels

of fine-grained feature maps from the top-down pathway. To

acquire P{x}, a vanilla convolution with a kernel size of 1 × 1

and a two times up-sampling operation are conducted on C{x}

and P{x+ 1}, respectively. After an element-wise addition and a

convolution with a kernel size of 3 × 3, the fine-grained feature

map P{x} is produced.

Although FPN considers multiscale features by establishing a

fine-grained feature pyramid, features on identical levels might

be naive and local due to the simple convolution with a kernel

size of 1 × 1. The relationships between local and global features

at horizontal pathways are still weak. Considering various geo-

metrical shapes of multiscale ships and complex surroundings in

SAR images, enhancing relationships of local features with their

global dependences and highlighting significant information are

essential when establishing the fine-grained feature pyramid. To

alleviate the problems, a novel lateral connection called ARB is

introduced in our method. It combines RFB and CBAM reason-

ably. Furthermore, RFB is used to grab features of multiscale

ships and enhance local features with their global dependences.

It consists of several branches of convolutional layers with

asymmetrical kernel sizes and various dilation rates. Dilation

rates carefully designed, the receptive fields of RFB are enlarged

and appropriate for multiscale ships. However, features from

RFB might be redundant and significant features are influenced

by useless information. Hence, a powerful attention mechanism

called CBAM is employed to highlight significant information.

It consists of channel and spatial attention mechanisms to refine

features intelligently. By combining the two modules into ARB,

not only characteristics of multiscale ships at different feature

levels could be acquired, but also significant information is

Fig. 2. Overview of the processing scheme.

Fig. 3. Attention receptive pyramid network (ARPN).

enhanced effectively. In the next section, the whole processing

scheme of our method is described in detail.

B. Overview of the Processing Scheme

The processing scheme of our method is shown in Fig. 2. It

belongs to two-stage detectors. In the first stage, SAR images

are fed into ARPN. It consists of two parts including a backbone

network and ARBs. After acquiring the basic feature maps by the

backbone network, a fine-grained feature pyramid is established

by ARB. RFB and CBAM are used in ARB in sequence when

fusing different levels of feature maps iteratively. Next, RPNs are

applied on several levels of fine-grained feature maps to acquire

two vectors with sizes of 2 ·H ·W ·K and 4 ·H ·W ·K. They

encode class labels (background or foreground) and positions

(tx, ty, tw, th) of ROI proposals, respectively. Here H,W refer

to the height and width of feature maps, respectively. K refers

to the number of ROIs at each location of feature maps. tx, ty
encode the normalized central locations of bounding boxes.

tw, th encode the normalized widths and heights of bound-

ing boxes, respectively. In the second stage, an ROI warping

layer [49] is used to crop and resize ROIs into a fixed size

from feature maps. Then, these ROIs are sent to classification

and regression subnetworks for discrimination and localization

tasks, respectively. The final detection results are acquired by

merging and discarding redundant potential objects by using a

NMS. Different from FPN, a well-designed lateral connection

called ARB is introduced when building a fine-grained feature

pyramid. It improves the relationships of different ranges of

features and enhance the discrimination abilities of our method

for multiscale ships in SAR images.

C. Architecture of ARPN

The structure of ARPN is shown in Fig. 3. Feature maps

C2, C3, C4, and C5 are first extracted by a backbone network

in the bottom-up pathway. Then, the fine-grained feature maps

P2, P3, P4, and P5 are built by several lateral connections. In

our method, ARB is used at three hierarchical feature maps
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Fig. 4. Attention receptive block (ARB).

Fig. 5. Structure of receptive field block (RFB).

C2, C3, and C4 and the outputs areP2, P3, andP4, respectively.

Considering that C5 has the smallest sizes and the highest

semantic features among other basic feature maps,P5 is directly

constructed by a simple two-dimensional (2-D) convolution.

Fig. 4 shows the structure of ARB in detail. Cx refers to a

basic feature map. Px+1 is two times up-sampled and concate-

nated with the output of RFB along channel dimension. The

fine-grained feature map Px is acquired after CBAM followed

by a simple 2-D convolution.

The following equations formulate ARB:

P5 = Conv(C5) (1)

Cx_mid = Concat{RFB(Cx),Upsample(Px+1)} (2)

Px = Conv{CBAM(Cx_mid)}, x = 1, 2, 3}. (3)

D. Receptive Fields Block

The structure and parameters of RFB are shown in Fig. 5 in

detail. RFB consists of four branches of convolution and a short-

cut connection. We defineC_AxA@B_SC_RD to demonstrate

convolution of RFB clearly. A,B,C, and D refer to the kernel

sizes, the numbers of convolutional filters, the strides, and the

dilation factors, respectively. Branch 1 includes three convolu-

tional layers. The last convolution with dilation rate 5 is designed

for capturing global features. According to the statistics of

bounding boxes’ aspect ratios in SSDD, the ratio of length/width

is mostly around 0.3. Considering the different directions of

ships, we carefully set the convolutional kernel sizes to1 × 3 and

3 × 1 in branch 2 and branch 3. The asymmetric convolutions

with large dilation rates are suitable for multiscale ships and

could grab nonlocal features of them such as edges, profiles. In

Fig. 6. (a) Classical convolution. (b) Convolution with a dilation rate 2.

branch 4, two convolutional layers with kernel sizes of 1 × 1

and 3 × 3 are used to fetch local features of ships. After a

concatenation followed by a 2-D convolution, the local features

with their global dependences of multiscale ships are boosted

at identical feature maps. Moreover, a shortcut connection is

established in branch 5. This design, which is the same as the

residual blocks of ResNet, might retain the original information

of input features and avoid gradient vanishment in the training

phase. The final output features are acquired after a Rectified

Linear Units function used for improving nonlinearity of RFB.

Compared with stem modules of inception networks [28],

[50], the receptive fields of RFB might be larger with small ca-

pacities of network parameters by using convolutions with large

dilation rates. Fig. 6(a) and (b) illustrate a classical convolution

and a convolution with a dilation rate 2, respectively.

In Fig. 6(a) and (b), yellow rectangles are the real receptive

fields. Green rectangles are the original convolutional kernels.

Pink rectangles are the output feature maps. In Fig. 6(a), the

receptive field is small because of limitation of traditional convo-

lutional kernel, i.e., the dilation rate is 1. However, the receptive

field is enlarged by setting the dilation rate to 2 with the kernel

size unchanged (the number of yellow rectangles is constant).

Thus, convolution kernels with large dilation rates could grab

larger ranges of features without increasing much capacities of

parameters than the classical convolution. Equations (4) and (5)

formulate the links between receptive fields and dilation rates

R = K + (K − 1) · (r − 1) (4)

Y = (X −R+ 2P )/S + 1. (5)

In (4),R,K, and r refer to sizes of real receptive fields, kernel

sizes, and dilation rates, respectively. In (5), Y,X, P, andS refer

to sizes of output and input feature maps, paddings, and strides,

respectively. Although features from RFB contain rich semantic

information, interference caused by complex surroundings, e.g.,

docks, buildings, isles, wakes of ships might also exist. Thus,

it is necessary to refine significant features for discriminating

ships clearly. In our method, an attention module called CBAM,

is utilized and introduced in the next section.

E. Convolutional Block Attention Module

To refine significant features and improve discrimination of

network for multiscale ships, CBAM is employed after RFB.

Compared with squeeze-and-excitation (SE) [51], both channel
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Fig. 7. Convolutional block attention module (CBAM).

and spatial attention mechanisms are introduced in CBAM.

Fig. 7 shows its architecture in detail. The input features are

multiplied with the outputs of channel attention module and

spatial attention module sequentially. In the channel attention

module, maximum pooling (Max-Pooling) and average pooling

(Avg-Pooling) layers are adopted parallel along the width and

the height dimensions of feature maps. Then, a multiple layer

perceptron (MLP) H(x) is used to output the weights along

the channel dimension of feature maps. Same as the channel

attention module, maximum pooling (Max-Pooling) and average

pooling (Avg-Pooling) layers are also used in spatial attention

module but along channel dimension of the input features. The

reweighted vectors g(x) are acquired after a 2-D convolution.

The height and width of g(x) are the same as the input features

x. Finally, output features O(x) are acquired by multiplying the

input features x with f(x) and g(x) in sequence.

CABM is formulated as follows:

Attch = f(H(Maxpool(x)) +H(Avgpool(x))) (6)

Attsp = g(Conv2d(Maxpool(Attch · x))

+ Avgpool(Attch · x)) (7)

O(x) = x ·Attch ·Attsp. (8)

Here f and g refer to sigmoid function. H(x) means mul-

tilayer perceptron. Attch and Attsp refer to the output vectors

from the channel and spatial attention modules, respectively.

O(x) refers to the final reweighted features.

F. Loss Functions

Same as other classical two-stage object detection networks,

RPN and the final prediction networks are all optimized by

using multitask loss, which is given by (9). Ncls and Nreg

refer to numbers of a minibatch samples in the training phase.

And Lcls(pi, pi
∗) and Lreg(ti, ti

∗) refer to classification and

regression losses, respectively. When training the classification

network, Cross Entropy loss (CE) is utilized, which is given

by (10). p and y refer to the probabilities of predicted ROIs

and the corresponding ground truth labels, respectively. When

training the regression network, Smooth L1 loss is used, which

is given by (11). x refers to the positional offsets between the

normalized ground truth bounding boxes and the predictions of

the regression network

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi, pi
∗) + λ

1

Nneg

pi
∗Lreg(ti, ti

∗)

(9)

Fig. 8. Distributions of the sizes and aspect ratios of the bounding boxes in
SSDD. (a) Distributions of the bounding boxes’ sizes in SSDD. (b) Distributions
of the bounding boxes’ aspect ratios in SSDD.

Fig. 9. Samples of inshore and offshore ships in SSDD. (a) and (b) show
inshore ships where much interference exists caused by buildings and docks.
(c) and (d) show multiscale offshore ships.

CE(p, y) =

{

−log(p) y = 1
−log(1− p) otherwise

(10)

SmoothL1 =

{

0.5x2 x< 1
|x| − 0.5 otherwise

. (11)

III. DATASET AND PARAMETER SETTINGS

In this section, we describe the SSDD dataset, the large-scene

SAR images and parameter settings in detail.

A. Dataset Description

To evaluate the performance of our method, an open source

dataset, SSDD [48] and two large-scene SAR images are uti-

lized.

SSDD proposed by Li et al., is established by using im-

ages from RadarSat-2, TerraSAR-X, and Sentinel-1 satellites.

It contains 1160 images and 2456 multiscale ships. The average

number of ships per image are 2.12. And resolutions of these

images range from 1 to 15 m. The distributions of bounding

boxes’ sizes and aspect ratios are shown in Fig. 8(a) and (b),

respectively.

In Fig. 8(a), heights and widths of bounding boxes range

from about 10 to 380 pixels and 10 to 270 pixels, respectively.

Aspect ratios of bounding boxes range from about 0.3 to 3.6 and

most ships’ aspect ratios are about from 0.3 to 0.6 according to

Fig. 8(b). Some samples of offshore and inshore ships are shown

in Fig. 9.

In our experiment, we randomly divide the SSDD into three

parts, i.e., a training set, a validation set and a testing set, with

the proportion of 7:1:2. Input images are resized so that the short

edges of them are 350 pixels. Data augmentation strategies, e.g.,

random cropping, flipping, contrast transformation and mirror-

ing, are utilized. Finally, 12 984 training images are collected
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Fig. 10. Locations and thumbnails of two large-scene SAR images for ship
detection. Two groups of large-scene SAR images, i.e., (a) and (b). The left
images of (a) and (b) are the geographical locations of large scenes SAR images.
And the right images of (a) and (b) show the corresponding thumbnails.

TABLE I
INFORMATION OF THE TWO LARGE-SCENE SAR IMAGES

for training our method. Besides, all images are normalized by

subtracting the mean values along channel dimension of them

to balance the ranges of gray-scale values for stable training.

Furthermore, to further verify the performance of our method

for detecting multiscale ships in large SAR images with complex

scenes, two large SAR images collected from Chinese GF-3

satellite are also used. The geographical locations and thumb-

nails of them are shown in the left and the right columns of

Fig. 10, respectively. And their imaging information is listed in

Table I.

According to Table I, there are some differences between the

two images due to their different imaging modes, polarizations,

and resolutions. The two images are annotated by experts as-

sisted with LabelImg [52] and GoogleEarth [53] applications.

Each ship is marked with two coordinates, i.e., (xmin, ymin)
and (xmax, ymax), to define its location. Here (xmin, ymin) and

Fig. 11. Ground truth of ships from large SAR images. (a) Ships from the
first large-scene SAR image shown in Fig. 10(a). (b) Ships from the second
large-scene SAR image shown in Fig. 10(b).

(xmax, ymax) refer to the top-left and the bottom-right coor-

dinate values of ships, respectively. All annotation files obey

the formats of VOC 2007 dataset [54]. However, due to the

complexities of environment around ships and SAR imaging

mechanisms, some ships may only appear a few pixels because

of small sizes and low image resolutions. It might be hard to

discriminate whether they are ships or not. Hence, if lengths

and widths of ships are larger than about 10 pixels in SAR

images, we would annotate them as ships. To demonstrate our

annotations clearly, several ground truth ships from the two large

SAR images are shown in Fig. 11(a) and (b). Ships in Fig. 11(a)

are a little blurry and from the first large-scene SAR image

(product ID 1774400). Ships in Fig. 11(b) are distinct and from

the second large-scene SAR image (product ID 3375753).

B. Parameter Settings

In all experiments, ResNet-101 pretrained on ImageNet [19]

is adopted as the backbone network in our method. Dilation

rates of the first four branches of convolution in RFB are set to

5, 3, 3, 1, respectively. In CBAM, the rates of both MLP in the

channel attention module and convolutional layers in the spatial

attention module are set to 16. For RPN, sizes and aspect ratios

of basic anchors are set to 32, 64, 128, 256, and 512 and 0.4,

0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6, respectively, according to

SSDD. Besides, the ratio of foreground and background anchors

in a minibatch is set to 1:1 in the training phase. An anchor

is assigned to a positive sample if the Intersection of Union

between any ground truth bounding box and the anchor is higher

than 0.7. Besides, the threshold of NMS, the weight decay rate

are set to 0.3, 0.0001, respectively. We train all networks for 50

000 iterations and save checkpoints every 5000 steps. The initial

learning rate is 0.001 and decayed 10 times when the steps are

at 35 000 and 40 000. All experiments are implemented using

TensorFlow framework on Ubuntu with a Nvidia GTX 1080Ti

graphics card support.
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IV. EXPERIMENTAL RESULTS AND EVALUATION

The performance of our method is evaluated in this section.

First, some evaluation metrics are described. Then, we divide the

testing set into two groups, i.e., one with offshore ships and the

other with inshore ships, and use them to judge the performance

of different methods, respectively. We first exploit the contribu-

tions of RFB and CBAM adopted in ARPN. Then, we compare

our method with other CNN-based methods by using offshore

and inshore ships, respectively. Apart from this, the detection

results of our method and some specific CNN-based methods

on the two large-scene SAR images are shown.

A. Evaluation Criterions

Since object detection tasks are similar for optical and SAR

images, several mature indicators, e.g. Recall rate, Precision

rate, F score (F1), and Average Precision (AP), are employed to

evaluate the performance of different methods. The following

equations formulate these indicators in detail:

Precision rate (P) =
TP

TP + FP
(12)

Recall rate (R) =
TP

TP + FN
(13)

F1 =
2PR

P +R
(14)

AP =

∫ 0

0

P (R)dR. (15)

Here TP, FP, and FN refer to numbers of True Positives, False

Positives, and False Negatives, respectively. Precision rate refers

to the proportion of ground truth ships predicted by networks in

all predictions. Recall rate refers to the proportion of ground

truth ships predicted by networks in all ground truth ships. F1

is a comprehensive indicator used for judging the performance

of different networks by combining precision rate with recall

rate together. AP describes the area under Precision-Recall (PR)

curves and it also illustrates comprehensive performance of dif-

ferent methods. Besides, Frames-Per-Second (FPS) formulated

in (16), is used to judge the detection speed of different methods.

The higher the FPS is the higher speed a method achieves

FPS =
1

Tper-img

(16)

where Tper-imgis the inference time cost of a method when

processing an image.

B. Contributions of Different Modules

In this section, contributions of RFB and CBAM are exploited

on offshore and inshore ships, respectively. Since the proposed

method and FPN have the similar structures, FPN is used as a

baseline when evaluating RFB and CBAM.

1) Contributions of RFB: Tables II and III show the detection

results of FPN, ARPN without RFB (ARPN - RFB) and ARPN

on offshore and inshore ships, respectively. In Table II, scores

of all indicators of ARPN - RFB and ARPN are higher than

those of FPN. And ARPN - RFB performs a little better than

TABLE II
DETECTION RESULTS OF METHODS ON OFFSHORE SHIPS

TABLE III
DETECTION RESULTS OF METHODS ON INSHORE SHIPS

Fig. 12. PR curves of different methods tested on offshore and inshore ships.
(a) PR curves of ARPN, ARPN - RFB and FPN on offshore ships. (b) PR curves
of ARPN, ARPN - RFB and FPN tested on inshore ships.

ARPN. Furthermore, recall rate, precision rate, F1 and AP of

ARPN – RFB are 0.5%, 0.7%, 0.6%, and 0.7% higher than

those of ARPN, respectively. Because of rich and redundant

information acquired by RFB, redundant features exist in the

outputs of RFB. These features might cause heavy feature re-

fining load for CBAM. Thus, some false alarms may not be

effectively suppressed. Compared with offshore ships, complex

surroundings, such as docks, buildings, and vehicles, may cause

much interference for detecting inshore ships accurately. Thus,

all statistical indicators decrease sharply. For example, recall

rate, precision rate, F1 and AP of ARPN tested on inshore ships

are 11.0%, 23.1%, 17.5%, and 14.1% lower than those of ARPN

tested on offshore ships, respectively. In Table III, recall rate,

precision rate, F1 score, and AP of ARPN - RFB are 8.7%,

0.2%, 4.0%, and 2.5% lower than those of ARPN. Especially, a

sharp decrease of recall rate appears by using ARPN - RFB. It

might be because of the inappropriate feature representation for

multiscale ships and the weak relationships of non-local features

by using convolution with commonplace kernel sizes, e.g., 3 × 3

and without large dilation rates. Besides, most indicators of

ARPN and ARPN - RFB are higher than those of FPN and recall

rate and precision rate of FPN is imbalanced.

Fig. 12(a) and (b) show the PR curves of FPN, ARPN - RFB,

and ARPN tested on offshore and inshore ships, respectively. In

Fig. 12(a), there are small differences among ARPN, ARPN -

RFB, and FPN. Furthermore, the PR curve of ARPN - RFB [the

red curve in Fig. 12(a)] is a little higher than those of ARPN

and FPN (the black and the green curves in Fig. 12(a)). In terms

of detecting inshore ships, it’s distinct that the PR curves of

ARPN and ARPN - RFB [the black curve and the red curves in
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TABLE IV
DETECTION RESULTS OF METHODS ON OFFSHORE SHIPS

TABLE V
DETECTION RESULTS OF METHODS ON INSHORE SHIPS

Fig. 13. Precision-Recall (PR) curves of different methods tested on offshore
and inshore ships. (a) PR curves of ARPN, ARPN - CBAM, and FPN tested
on offshore ships. (b) PR curves of ARPN, ARPN - CBAM, and FPN tested on
inshore ships.

Fig. 12(b)] decrease slowly than that of FPN [the green curve

in Fig. 12(b)]. Besides, the PR curve of ARPN - RFB comes to

a sharp decrease with an increase of recall rate compared with

ARPN. It might be because of the insufficient characteristics

extracted by ARPN – RFB, which leads to weak discrimination

for ships.

2) Contributions of CBAM: The contributions of CBAM are

exploited in this section. Tables IV and V show the statistical

results of FPN, ARPN without CBAM (ARPN – CBAM), and

ARPN tested on offshore and inshore ships, respectively. In

Table IV, small differences exist among the three algorithms

in terms of recall rate, precision rate, F1 and AP. Moreover,

precision rate, F1 and AP of ARPN are only 1.2%, 0.6%, and

0.1% higher than those of ARPN – CBAM and 1.6%, 0.8%,

and 0.4% higher than those of FPN, respectively. It might be

because of distinctive features of ships’ bodies and clear sur-

roundings of offshore ships in SAR images. Thus, it is easy for

these algorithms to learn discriminative features of multiscale

ships. In terms of detecting inshore ships, precision rate and

F1 of ARPN are 10.0% and 6.2% superior to those of ARPN –

CBAM according to Table V. It might be because that redundant

features are effectively suppressed by CBAM along channel and

spatial dimensions and the network could pay more attention to

significant features of ships and discriminate them distinctly.

The PR curves of ARPN, ARPN - CBAM, and FPN tested

on inshore and offshore ships are shown in Fig. 13(a) and (b),

respectively. In Fig. 13(a), the PR curves of ARPN, ARPN -

CBAM, and FPN are very close. It also illustrates that these al-

gorithms perform well when detecting offshore ships. However,

Fig. 14. Detection Results of ARPN, ARPN - RFB, ARPN - CBAM, and FPN
tested on offshore and inshore ships, respectively. Rectangles with blue color
are ground truth ships. Rectangles with red color are predictions. Group (a),
(b), and (c) are the detection results on offshore ships; Group (d), (e), and (f) are
detection results on inshore ships. Images at different columns are the detection
results of different algorithms.

obvious differences appear among the PR curves of these algo-

rithms when detecting inshore ships [see Fig. 13(b)]. Especially

when the recall rate is about 0.8, the precision rate of ARPN is

obviously higher than those of ARPN - CBAM and FPN.

3) Visual Detection Results of ARPN With Different Modules:

Visual detection results of ARPN, ARPN - RFB, and ARPN -

CBAM are shown in Fig. 14. We totally select six groups of

detection results on offshore ships, i.e., groups (a), (b), and (c),

and inshore ships, i.e., groups (d), (e), and (f). The detection

results of ARPN, ARPN - RFB, ARPN – CBAM, and FPN are

shown at each column of Fig. 14, respectively.

According to different groups and columns of Fig. 14, some

conclusions are summarized as follows. First, RFB and CBAM

enhance network discrimination for features of ships and sur-

roundings. In Fig. 14(a), one or two false alarms exist in the

detection results of ARPN – RFB, ARPN – CBAM, and FPN.

However, no false alarm exists in the detection results of ARPN.

In Fig. 14(b), the three ships are detected with higher prob-

abilities by ARPN than those predicted by other three meth-

ods. It might be because that local features with their global

dependences are boosted by RFB and significant features are

refined by CBAM. Second, RFB mainly pays attention to extract
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TABLE VI
DETECTION RESULTS OF CNN-BASED METHODS ON OFFSHORE SHIPS

representative features and strengthen links of nonlocal features

of multiscale ships. It might improve the accuracy of locating

ships and recall rate. In Fig. 14(c), location of ship A predicted

by ARPN seems more accurate than those predicted by FPN

and ARPN - RFB. In Fig. 14(f), densely arranged ships in area

B are detected by ARPN while missed by ARPN - RFB. Third,

CBAM concentrates more on feature refinement. In Fig. 14(e)

and (f), fewer false alarms exist in the detection results of ARPN

than ARPN - CBAM. Besides, the probabilities of false alarms

predicted by ARPN are lower than those of ARPN - CBAM and

FPN. For example, probability of the false alarm predicted by

ARPN is 0.78 while are 0.91 and 0.99 predicted by ARPN -

CBAM and FPN, respectively.

In a short, RFB and CBAM are two important modules of our

method. On one hand, RFB obtains representative features of

multiscale ships and enhances the relationship between nonlocal

features. On the other hand, redundant features at different levels

of feature pyramid are refined by CBAM. The proposed method,

ARPN, could detect multiscale ships in SAR images effectively

by combining them reasonably.

C. In Comparison With Other CNN-Based Methods

In this section, offshore and inshore ships of testing sets are

used to evaluate the proposed method and other CNN-based

methods, e.g., Faster-RCNN, FPN, RetinaNet, YOLOv3, SER

Faster-RCNN, DS-CNN, and HR-SDNet, respectively. Preci-

sion rate, recall rate, F1, AP, and FPS are also utilized to judge

the performance of different methods.

1) Detection Results of Offshore Ships: Table VI shows the

detection results of different CNN-based methods tested on

offshore ships. The detection results of classical CNN-based

methods are shown in the first four rows of Table VI. The

fifth to the eighth rows of Table VI are the detection results of

CNN-based methods specifically designed for object detection

in SAR images. In Table VI, methods with feature pyramids,

e.g., FPN, RetinaNet, HR-SDNet, DAPN, and ARPN perform

better than those without or with vanilla feature fusion strategies,

e.g., Faster-RCNN, SER Faster-RCNN. Although DS-CNN also

concatenates multilevel features to acquire fine-grained seman-

tic information, the backbone network constructed by depth-

wise and point-wise convolutions, might be weak for extracting

significant features. The performance of our method is close to

those of FPN, RetinaNet, and YOLOv3 but better than that of

Faster-RCNN by a large margin (the first four rows in Table VI).

It might be because of the contributions of feature pyramids

Fig. 15. PR curves of CNN-based methods tested on offshore ships.

adopted in FPN, RetinaNet, and YOLOv3 and a weak ability

of discriminating features by Faster-RCNN. Besides, YOLOv3

also gets competitive results in terms of F1 and AP because of its

well-designed feature fusion and anchor generation strategies.

Compared with the CNN-based methods designed for object

detection in SAR images, our method performs better than SER

Faster-RCNN, DS-CNN, and HR-SDNet. Furthermore, in terms

of F1, score of our method is 10.5%, 5.3%, and 1.6% higher

than those of DS-CNN, SER Faster RCNN, and HR-SDNet,

respectively. AP of our method is 98.2%, which is 12.5%, 7.1%,

and 6.1% higher than those of DS-CNN, SER Faster-RCNN,

and HR-SDNet, respectively. However, F1 and AP of DAPN are

0.2% and 0.5% higher than those of our method, respectively.

Besides, according to FPS shown in the last column of Table VI,

DS-CNN runs faster than other methods possibly because of its

separable depth-wise and point-wise convolutions used in the

backbone network. Besides, because of similar structures, e.g.,

feature pyramids, and processing schemes among FPN, DAPN,

HR-SDNet, and our method, the testing time for offshore ships

is very close.

Fig. 15 shows the PR curves of different CNN-based methods

tested on offshore ships.

According to Fig. 15, the PR curves of these methods are very

similar except Faster-RCNN, SER Faster-RCNN, and DS-CNN.

It is distinct that the PR curve of DS-CNN is lower than those

of other methods. It might be because of the specific convolu-

tion operation, which reduces the capacities of parameters but

weakens the feature extraction abilities. Besides, the PR curves

of Faster-RCNN, SER Faster-RCNN, and DS-CNN decrease

sharply when the recall rate is higher than 0.8 possibly due to

the lack of fine-grained feature pyramids.

Fig. 16 shows the detection results of different methods at four

conditions of offshore ships. At the first condition (the first row

to the third row of Fig. 16), ships are densely arranged. More

than ten ships are missed by Faster-RCNN, SER Faster-RCNN,

and RetinaNet. It might be because of the simple bottom-up

pathway of Faster-RCNN, the plain feature fusion strategy of

SER Faster-RCNN, and the inappropriate feature levels selected

by RetinaNet, respectively. However, fewer ships are missed by

FPN, YOLOv3, DAPN, DS-CNN, and our method. It might be
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Fig. 16. Visual detection results of CNN-based methods on offshore ships.
Four conditions of offshore ships are tested. Rectangles with red color mark the
ships predicted by different CNN-based methods. Rectangles with blue color
mark the ground truth ships.

because of appropriate feature pyramids constructed by these

methods. Therefore, ships with small sizes could be richly

represented at low-level feature maps. At the second condi-

tion (the fourth row to the sixth row of Fig. 16), wakes of

ships and surroundings, e.g., lands and isles, are obvious. Isles

are detected as ships by Faster-RCNN, RetinaNet, FPN, SER

Fig. 16. Continued.

Faster-RCNN, DS-CNN, and wakes of ships are detected as

ships by DPAN. Besides, small ships, e.g., ship A, are missed

by RetinaNet and DAPN. It might be because of the weak ability

for extracting discriminative features of ships and interference.

However, our method could detect these ships without any

false alarms, which demonstrates the strong and robust feature

representation abilities of our method. In the third condition

(the seventh row to the ninth row of Fig. 16), the background

is a little rough due to strong waves. In the detection results

of different methods, these strong waves are detected as ships

by all methods except YOLOv3, DS-CNN, and our method.

Because of the effective feature extracting and refining abilities,

our method discriminates ship and interference clearly. In the

last condition (the last three rows of Fig. 16), several isles exist

around ships. Although the three multiscale ships are detected

by SER Faster RCNN, DS-CNN, HR-SDNet, and DAPN, isles

are also detected as ships. Besides, some small ships are missed

in the detection results of Faster-RCNN and RetinaNet, possibly

due to the inappropriate feature levels adopted by Faster-RCNN

and RetinaNet. However, our method could detect these ships

without any false alarms. The reason may be that the powerful

feature refinement mechanism, e.g., CBAM, helps our method

represent and discriminate ships and false distinctly.

2) Detection Results of Inshore Ships: The detection results

of different CNN-based methods tested on inshore ships are

shown in Table VII. The first four rows and the fifth to the

eighth rows of Table VII show the detection results of classical

CNN-based methods and the CNN-based methods designed for

object detection in SAR images, respectively.

According to Table VII, due to much interference around

inshore ships, precision rate, recall rate, F1, and AP decrease

sharply. However, the detection scores, e.g., recall rate, precision

rate, F1, and AP, of our method are still higher than those

of the classical CNN-based methods (the first four rows of

Table VII). Although feature pyramids are adopted in FPN,

RetinaNet, and YOLOv3 for extracting multiscale features, F1
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TABLE VII
DETECTION RESULTS OF CNN-BASED METHODS ON INSHORE SHIPS

Fig. 17. PR curves of CNN-based methods tested on inshore ships.

of our method is still 8.0%, 7.6%, and 7.0% higher than scores

of these methods. Besides, AP of our method is the highest

compared with the classical CNN-based methods. Compared

with the methods designed for object detection in SAR images,

F1 of our method is 8.8% and 5.5% higher than those of DAPN

and HR-SDNet but 0.5% lower than DS-CNN, respectively.

Besides, AP of our method is 6.9%, 4.1%, and 3.3% higher

than those of DAPN, HR-SDNet, and DS-CNN, respectively.

It might be because of the well-designed feature extraction,

feature fusion, and feature refinement strategies designed in our

method. Besides, maybe because of simple feature extraction

networks used in Faster-RCNN and DS-CNN, the confusing

characteristics in feature maps may not be redundant and cause

limited effects on the final detection. Therefore, scores of F1

achieved by Faster-RCNN and DS-CNN are competitive among

other methods.

Fig. 17 shows the PR curves of different CNN-based methods

tested on inshore ships. In Fig. 17, large differences of the PR

curves emerge with an increase of recall rate. Furthermore, the

PR curve of SER Faster-RCNN is lower than those of other

methods when recall rate is higher than about 0.5. Besides, the

trends of other methods’ PR curves are not very constant. With an

increase of recall rate, jitter might occur. However, the PR curve

of ARPN (the red curve in Fig. 17) is generally stable. Although

the PR curves of HR-SDNet (the yellow curve in Fig. 17) and

FPN (the green curve in Fig. 17) are higher than that of ARPN

when recall rate is greater than 0.9, the PR curve of FPN is lower

than that of our method when recall rate is lower than 0.9 and the

PR curve of HR-SDNet comes to a sharp decrease when recall

Fig. 18. Visual detection results of CNN-based methods on inshore ships. Four
conditions of inshore ships are shown. Rectangles with red color mark the ships
predicted by different CNN-based methods. Rectangles with blue color mark
the ground truth ships.

rate increases from 0 to 0.2. Comprehensively, our method not

only acquires high precision and recall rates but also achieves

a balance between them. It also proves the effectiveness of our

method for detecting inshore ships.

Besides, four groups of detection results tested in different

conditions of inshore ships are shown in Fig. 18. In the first
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Fig. 18. Continued.

condition (the first three rows of Fig. 18), some densely arranged

inshore ships are missed by the compared methods. However,

most ships are detected by our method and DS-CNN. In the

second condition (the fourth row to the sixth row of Fig. 18),

small inshore ships, e.g., ship A, are missed by Faster-RCNN,

YOLOv3, RetinaNet, FPN, DS-CNN, SER Faster-RCNN, and

HR-SDNet. Besides, false alarms exist in the detection results

of SER Faster-RCNN and DAPN, e.g., Region B. However, our

method detects these ships correctly. In the third condition (the

seventh row to the ninth row of Fig. 18), multiscale ships exist

in complex surroundings. And more than one ship is missed by

RetinaNet, FPN, HR-SDNet, and DAPN. The locations of ships

predicted by RetinaNet and SER Faster-RCNN are inaccurate,

e.g., Ship C, compared with the ground truth ships. Besides,

the number at the upper left of the image is detected as a

ship by Faster-RCNN and HR-SDNet. However, our method

could detect these multiscale ships with high probabilities and

localization accuracy. In the last condition (the last three rows

of Fig. 18), several ships are missed by different methods. Ship

D is missed by RetinaNet, SER Faster-RCNN. Ship E is missed

by FPN, HR-SDNet. Both ships D and E are missed by DAPN.

Besides, more than one false alarm exists in the detection results

of HR-SDNet, YOLOv3, and DAPN. Although there exists a

false alarm in the detection results of our method, a lower prob-

ability is assigned to the false alarm than those predicted by other

methods. Besides, our method detects multiscale ships with

higher location accuracy than both YOLOv3 and Faster-RCNN.

3) Detection Results on Large-Scene SAR Images: In this

section, two large-scene SAR images are adopted to judge the

performance of our method and other CNN-based methods

designed for object detection in SAR images, e.g., SER Faster-

RCNN, DS-CNN, HR-SDN, and DAPN. In order to acquire

the best performance of these methods, we clip the original

large-scene SAR images into small chips with fixed overlapped

TABLE VIII
DETECTION RESULTS ON TWO LARGE-SCENE SAR IMAGES

pixels. The first image with a resolution of 10 m (Product ID

1774400, as shown in Table I) is clipped into small chips with a

size of 350 × 350 pixels. The second image with a resolution of

1 meter (Product ID 3375753, as shown in Table I), is clipped

into small chips with a size of 2000 × 2000 pixels. Then ships

are detected on these small chips by different methods and the

corresponding results on small chips are merged into the whole

images. Finally, the final detection results are acquired after a

Global Non-Maximum Suppression with a fixed threshold 0.5.

AP and FPS are adopted to evaluate the detection accuracy and

speed of different methods, respectively. The detection results

are shown in Table VIII.

In terms of detecting the first image (Product ID 1774400),

AP of our method is 3.6% and 2.9% higher than those of SER

Faster-RCNN and DS-CNN. It might be because of the strong

feature representation ability of our method for small ships in

the large-scene image with low resolution. Furthermore, finer

features could be acquired and carefully refined by RFB and

CBAM, respectively, in our method. However, because of the

dense vertical connections in top-down pathway of DAPN and

high-resolution features maintained at all stages of HR-SDNet,

characteristics of offshore ships with small sizes are richly

represented. Thus, scores of AP for HR-SDNet and DAPN are

1.7% and 3.3% higher than our method, respectively. In terms of

detection speed, DS-CNN runs faster than the other four methods

because of its simple processing scheme as well as depth-wise

and point-wise convolutional operations. Maybe because of the

complex feature fusion strategies and three cascade processing

schemes, HS-SDNet costs much time than the other compared

methods.

In terms of detecting the second image (Product ID 3375753),

due to the influence of SAR image resolution and mode, ships

in this image might be different from those in SSDD in sev-

eral aspects, e.g. geometrical sizes, textures, distributions of

backscattering points. Because of the weak feature extraction

abilities of the backbone networks and the vanilla feature pyra-

mids adopted by SER Faster-RCNN and DS-CNN, the two

methods acquire lower AP than those achieved by the other

three methods. Although the high-resolution and rich semantic

features of ships are extracted and retained by HR-SDNet and

DAPN, the surroundings of ships, e.g., isles, wakes of ships,

waves, might be also enhanced in these hierarchical feature

maps. It may lead to unsatisfactory performance of detecting
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Fig. 19. PR curves of five methods when detecting ships on the two large-scene
SAR images. (a) PR curves on the first large-scene SAR image (Product ID
1774400). (b) PR curves on the second large-scene image (Product ID 3375753).

multi-scale ships by using HR-SDNet and DAPN. Specifically,

AP of our method is 17.2%, 9.2%, 5.3%, and 4.4% higher

than these methods, respectively. As for the detection speed,

DS-CNN still detects ships faster than the other methods results

of its simple network structure. Besides, maybe because of the

moderate network complexity of our method, it runs faster than

HR-SDNet but slower than DAPN.

Fig. 19(a) shows the PR curves of different methods tested on

the first large-scene SAR image. The PR curve of our method

is lower than those of DAPN (the green curve) and HR-SDNet

(the brown curve) at most time with an increase of recall rate.

Besides, there is a sharp decrease at the PR curve of SER

Faster-RCNN when the recall rate increases from about 0 to

0.1. Fig. 19(b) shows the PR curves of different methods tested

on the second large-scene SAR image. It is obvious that the

PR curve of our method is higher than those of other compared

methods by a large margin at all time with an increase of recall

rate. It proves that our method has better adaptability to the SAR

images from different sources.

Besides, visual detection results on the first large-scene SAR

image (Product ID 1774400) are shown in Fig. 20.

In Fig. 20, ships are very small due to low resolution of the

image and some conclusions are summarized as follows.

First, among detection results of all the methods shown on

the left side of Fig. 20, many false alarms exist on land, e.g.,

area A1, areas A1, A2, areasA1 to A4, area A1, and areas A1

to A6, and in the sea, e.g., area B1, areas B1 to B3, area B1,

areas B1, B2, and areas B1 to B4, in the detection results of

ARPN, DS-CNN, HR-SDNet, DAPN, and SER Faster-RCNN,

respectively. It might be because of the similar backscattering

characteristics between ships and the surroundings. However,

false alarms in the detection results of our method are fewer

than those of the compared methods. It might be because of the

powerful feature refinement strategies, i.e., CBAM, adopted by

our method. Maybe due to the weak feature discrimination, a

large number of false alarms exist in the detection results of

SER Faster-RCNN than those of the other methods.

Second, most offshore ships are easy to be detected because

of their distinct features and clear surroundings. Specifically,

although ships in the red rectangular are small, all these meth-

ods could detect these ships and only a few ships are missed,

e.g., ship C1 in the detection results of ARPN and HR-SDNet.

Besides, some false alarms are detected as ships, e.g., ships C1

to C3, ship C2, ship C1, and ships C1 to C3, in the detection

Fig. 20. Detection results of different methods on the first large-scene SAR
image (Product ID 1774400). Rectangles with blue and orange colors refer to the
ground truth ships and the predictions, respectively. Two special areas marked
with red and green rectangles are enlarged and shown at the right sides.
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results of DS-CNN, HR-SDNet, DAPN, and SER Faster-RCNN,

respectively.

Third, the performance of our method for detecting densely

arranged ships is better than the other methods. In the green

rectangular, several inshore ships distribute densely, however,

only ship C2 is missed by our method. Although the number of

missed ships in the detection results of DAPN is equal to that

of our method, e.g., ship C2, the detected ships are assigned

lower probabilities by DAPN. Besides, many ships are missed,

e.g., ships C4, C5 and ships C3 to C5, in the detection results of

DS-CNN and HR-SDNet, respectively. Ships C4 to C8 are also

missed in the detection results of SER Faster-RCNN, possibly

due to the lack of strong feature extraction for these ships.

The detection results on the second large-scene SAR image

(Product ID 3375753) are shown in Fig. 21. Images on left side

of Fig. 21 are the detection results of different method on the

large-scene SAR images. Two specific areas marked with green

and red rectangles are enlarged and shown on the right side of

Fig. 21.

The detection results on the two large-scene SAR images with

different resolutions, i.e., images with Product IDs 1774400

and 3375753, demonstrate that our method detects multiscale

ships with competitive results and has a high generalization

ability compared with the other CNN-based methods designed

for object detection in SAR images.

V. DISCUSSION

Because of the contributions of RFB and CBAM, the proposed

method could detect multiscale ships in complex environments.

However, there also exist other strategies for extracting semantic

features of multiscale objects, e.g., Stem [28], [50], Atrous

Spatial Pooling Pyramid (ASPP) [55]–[57], and for feature

refinement, e.g., SE [51] block. Therefore, it might be neces-

sary to further exploit the effectiveness of RFB and CBAM.

In this section, different multiscale feature extraction strategies

and attention mechanisms are discussed by replacing RFB and

CBAM with other modules, respectively. Indicators such as

recall rate, precision rate, F1, AP, and FPS are also utilized

to evaluate the performance of different algorithms. Besides,

basic and fine-grained feature maps at bottom-up and top-down

pathways of our method are shown to demonstrate inner feature

processing mechanisms of RFB and CBAM, respectively.

A. Multiscale Feature Extraction

There are several useful strategies, e.g., Stem and ASPP,

for detecting multiscale objects. Fig. 22(a) and (b) show the

structures of a Stem and an ASPP, respectively. A Stem consists

of several branches of convolutional layers with various kernel

sizes to capture fine-grained and rich semantic features. How-

ever, compared with RFB, the feature representation abilities of

Stem might be still weak by using plain convolutions with a ker-

nel size of 3 × 3. Besides, there are many parameters in a Stem as

a result of stacking several convolutional layers. ASPP, which

consists of several parallel convolutional layers, is introduced

for image segmentation at first. It not only enlarges receptive

Fig. 21. Detection results of different methods on the second large-scene SAR
image (Product ID 3375753). Rectangles with blue and orange colors refer to the
ground truth ships and the predictions, respectively. Two special areas marked
with red and green rectangles are enlarged and shown at the right sides.
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Fig. 22. Multiscale feature extraction strategies. (a) Stem. (b) ASPP.

TABLE IX
DETECTION RESULTS OF ARPN WITH DIFFERENT MULTISCALE MODULES

∗ refers to ARPN.

fields of convolutional kernels but also reduces capacities of

parameters by using convolutions with constant kernel sizes

but various dilation rates at different branches. Compared with

ASPP, RFB also consists of multibranch convolutional layers

with different dilation rates but a little more complex because

of several specific convolutional operations with asymmetric

kernel sizes and a shortcut connection involved.

To exploit the effectiveness of specific structure adopted by

RFB, we test the modified networks, i.e., ARPN(Stem) and

ARPN(ASPP), on offshore and inshore ships by replacing RFB

with a Stem and an ASPP, respectively. Table IX shows the

detection results in detail.

In Table IX, the first and the last three rows of Table IX show

the detection results of modified algorithms tested on offshore

and inshore ships, respectively. In terms of detecting offshore

ships, recall rate, precision rate, F1 and AP all come to slight de-

creases by using ARPN(Stem) and ARPN(ASPP). Specifically,

F1 of our method is 0.6% and 1.7% higher than those of the two

modified networks. AP of ARPN(RFB) and ARPN(Stem) are the

same while 1.2% higher than that of ARPN(ASPP). However,

because of the simplest structure of ASPP among RFB, Stem,

and ASPP, ARPN(ASPP) runs with the highest FPS among

ARPN(RFB), ARPN(Stem), and ARPN(ASPP). In terms of de-

tecting inshore ships, there are great differences among original

ARPN and the two modified ARPN algorithms. For example, re-

call rate of ARPN(RFB) is 8.7% and 28.1% higher than those of

ARPN(Stem) and ARPN(ASPP), respectively. Precision rate of

our method is 3.1% and 3.4% higher than those of ARPN(ASPP)

and ARPN(Stem), respectively. Besides, F1 of ARPN(RFB)

is 8.8% and 17.1% higher than those of ARPN(Stem) and

ARPN(ASPP), respectively. As for AP, the score of ARPN(RFB)

is 4.9% and 21.1% higher than those of ARPN(Stem) and

ARPN(ASPP), respectively. Because of the inappropriate set-

tings of dilation rates in ASPP, the receptive fields of ASPP

Fig. 23. Detection results and feature maps of ARPN(RFB), ARPN(ASPP),
and ARPN(Stem) tested on offshore ships.

might be large but with some holes in feature maps. Hence,

much significant information is missed, which leads to serious

gridding effects [58]. The performance of ARPN(RFB) and

ARPN(Stem) is similar. However, ARPN(RFB) performs better

than ARPN(ASPP) by a large margin. The reason may be that

the Stem has more similar receptive fields with RFB than ASPP.

Besides, basic and fine-grained feature maps, e.g., C2, C3,

C4, P2, P3, and P4, tested on offshore and inshore ships are

shown in Figs. 23 and 24, respectively.

Fig. 23 shows the detection results, the basic feature maps,

C2, C3, and C4, and the fine-grained feature maps, P2, P3, and

P4, of ARPN(RFB), ARPN(ASPP), and ARPN(Stem) tested on
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Fig. 24. Detection results and feature maps of ARPN(RFB), ARPN(ASPP),
and ARPN(Stem) tested on inshore ships.

offshore ships. In the detection results (the first row of Fig. 23),

rectangles with blue and red colors refer to the ground truth ships

and the predictions by the methods, respectively. Compared

with the two modified ARPN networks, ARPN(RFB) performs

better. Moreover, the locations of ships predicted by our method

are more accurate than those predicted by ARPN(Stem) and

ARPN(ASPP). Besides, our method assigns lower probabilities

for the false alarms than those assigned by the other two methods.

According to the feature maps (the second to the last rows

of Fig. 23), active areas in the fine-grained feature maps, P2,

P3, and P4, constructed by our method distribute centrally. The

highlighted areas mostly exist at main body of the ships, e.g.,

area A in P2 and area B in P4. However, active areas predicted

TABLE X
DETECTION RESULTS OF ARPN WITH DIFFERENT ATTENTION MECHANISMS

∗ refers to ARPN.

by ARPN(ASPP) and ARPN(Stem) are blurry and disperse a

little at the same areas. Specifically, active area B in P4 of

ARPN(ASPP) is chaotic, which might lead to serious offsets

between the ground truth ships and the predictions.

Fig. 24 shows the detection results and the basic feature maps,

C2, C3, and C4, and the fine-grained feature maps, P2, P3, and

P4, of ARPN(RFB), ARPN(ASPP), and ARPN(Stem) tested on

inshore ships. Compared with ARPN(RFB) and ARPN(Stem),

several ships are missed by ARPN(ASPP). Additionally, the

active areas predicted by ARPN(RFB) are integral and distinct

at P2. However, the same active areas predicted by ARPN(Stem)

are more dispersed. Besides, textured features of the background

areas in P2 outputted by ARPN(RFB), are more uniform than

those predict by ARPN(Stem) and ARPN(ASPP). Although P4

is 16 times downsampled of the input images, the active areas

extracted by ARPN(RFB) are still discriminative, e.g., areas A,

B, and C in the last row of Fig. 24. Because of the appropriate

receptive fields constructed by RFB, the primary areas of ships

might be completely represented at several fine-grained feature

maps. Moreover, the asymmetrical convolutional kernels, i.e.,

kernel sizes of 1 × 3 and 3 × 1, might be more effective for

grabbing features of ships with various aspect ratios. However,

the simple structures and unmatched receptive fields of ASPP

might miss significant features of ships. It might lead the features

between ships and surroundings at high feature levels might be

chaotic and blurry.

B. Attention Mechanisms

In this section, CBAM is substituted by a SE module to

verify the effectiveness of channel and spatial attention mech-

anisms. We name the original ARPN and ARPN with CBAM

as ARPN(CBAM) and ARPN(SE), respectively. Table X shows

the detection results of the two methods in detail.

The first and the last two rows of Table X are the detection

results of different algorithms tested on offshore and inshore

ships, respectively. Generally, most indicators decrease a little

when using ARPN(SE). Scores of recall rate, precision rate,

F1, and AP achieved by ARPN(SE) are 0.5%, 3.0%, 1.4%, and

1.2% lower than those of ARPN(CBAM) on offshore ships.

Because of the simple and clear surroundings, there are slight

differences between ARPN(SE) and ARPN(CBAM). However,

when detecting inshore ships, scores of these indicators achieved

by ARPN(SE) are 13.6%, 12.2%, 13.9, and 8.9% lower than

those of ARPN(CBAM). Because of the unique spatial attention

mechanism, the interference caused by surroundings might be

suppressed effectively at spatial dimension and the networks



2754 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 25. Detection results and feature maps of ARPN(CBAM) and ARPN(SE)
on offshore and inshore ships.

could pay more attention to significant features of ships than

ARPN(SE). Additionally, the testing speeds between the two

methods are almost the same. It might be because that only

slight extra computing cost is introduced by the spatial attention

mechanism of CBAM.

Detection results and different levels of feature maps acquired

by ARPN(CBAM) and ARPN(SE) are shown in Fig. 25. In each

row of Fig. 25, the final detection result is placed on the left and

the different feature maps, C2, C3, C4, P2, P3, and P4, are placed

on the right. Besides, the first two rows of Fig. 25 are detection

results on offshore ships and the last two rows of Fig. 25 are the

detection results on inshore ships.

In terms of detecting offshore ships, two false alarms exist in

the final results of ARPN(SE). Besides, ship A is not completely

enclosed by a bounding box predicted by ARPN(SE). How-

ever, locations of ship A predicted by our method are precise.

In terms of different feature maps, areas of wakes at P2 of

ARPN(SE) are strongly activated. However, areas of ships at

P2 of ARPN(CBAM) are stronger than those of ARPN(SE). In

terms of detecting inshore ships, the C2, C3, and C4 predicted

by ARPN(CBAM) and ARPN(SE) are similar. However, several

differences exist on the P2, P3 and P4 between ARPN(CBAM)

and ARPN(SE). Furthermore, active areas of ships in these

feature maps of ARPN(CBAM) are clearer and more distinct

than those of ARPN(SE). Although P4 has the smallest sizes

among these fine-grained feature maps, active areas of P4 ex-

tracted by ARPN(CBAM) are discriminative and their locations

are also accurate. Because of contributions of spatial attention

mechanism adopted in ARPN(CBAM), the significant features

at specific areas could be boosted effectively. However, active

areas of P4 predicted by ARPN(SE) are blurry.

In summary, RFB and CBAM are two essential modules for

multiscale feature representation and refinement. RFB is more

efficient than Stems and ASPP for enhancing the relationships

among different ranges of features. CBAM is more important

for refining redundant features than SE. Moreover, RFB and

CBAM are complementary and the performance of our method

is competitive by combining them reasonably.

VI. CONCLUSION

In this article, a two-stage detector called ARPN was proposed

for detecting multiscale ships in SAR images. We carefully

design a well-designed lateral connection named ARB to ex-

tract representative features of multiscale ships and suppress

interference of surroundings by combining RFB with CBAM

reasonably. Specifically, RFB, which consists of multibranch

convolutional layers with specific asymmetric kernel sizes and

dilation rates, was utilized to extract information of multiscale

ships with various directions as well as enhancing relationships

of nonlocal features. CBAM was adopted to make the network

focus on significant features for detecting ships by reweighting

feature maps using channel and spatial attention modules in

sequence. In the experimental part, we proved superiorities

of our method by exploiting the contributions of RFB and

CBAM separately as well as evaluating the performance of our

method with some CNN-based methods on the SSDD and two

large-scene SAR images. Besides, we further compared RFB

and CBAM with other multiscale feature extraction and refine-

ment strategies, respectively. The inner processing mechanisms

reflected by visualized feature maps illustrate that our method

could detect multiscale ships with preferable performance and

competitive generalization.

In the future, we will concentrate on combining backscattering

properties of ships in SAR images with convolutional design

of networks and introducing a strong restriction, e.g., mask,

to further improve the detection accuracy as well as detection

speed.
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