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Abstract

Incorporating multi-scale features in fully convolutional

neural networks (FCNs) has been a key element to achiev-

ing state-of-the-art performance on semantic image seg-

mentation. One common way to extract multi-scale features

is to feed multiple resized input images to a shared deep

network and then merge the resulting features for pixel-

wise classification. In this work, we propose an attention

mechanism that learns to softly weight the multi-scale fea-

tures at each pixel location. We adapt a state-of-the-art se-

mantic image segmentation model, which we jointly train

with multi-scale input images and the attention model. The

proposed attention model not only outperforms average-

and max-pooling, but allows us to diagnostically visualize

the importance of features at different positions and scales.

Moreover, we show that adding extra supervision to the out-

put at each scale is essential to achieving excellent perfor-

mance when merging multi-scale features. We demonstrate

the effectiveness of our model with extensive experiments on

three challenging datasets, including PASCAL-Person-Part,

PASCAL VOC 2012 and a subset of MS-COCO 2014.

1. Introduction

Semantic image segmentation, also known as image la-

beling or scene parsing, relates to the problem of assigning

semantic labels (e.g., “person” or “dog”) to every pixel in

the image. It is a very challenging task in computer vision

and one of the most crucial steps towards scene understand-

ing [18]. Successful image segmentation techniques could

facilitate a large group of applications such as image editing

[17], augmented reality [3] and self-driving vehicles [22].

Recently, various methods [11, 15, 37, 42, 58, 34] based

on Fully Convolutional Networks (FCNs) [38] demonstrate

astonishing results on several semantic segmentation bench-

marks. Among these models, one of the key elements to

successful semantic segmentation is the use of multi-scale

features [19, 45, 27, 38, 41, 34]. In the FCNs setting,

∗Work done in part during an internship at Baidu USA.

Deep Convolutional
Neural Network

Deep Convolutional
Neural Network

Attention 
Model

Score Map x

xScore Map

+

Image with scale = 1

Image with scale = 0.5

Result

Attention to 
Scale

Figure 1. Model illustration. The attention model learns to put

different weights on objects of different scales. For example, our

model learns to put large weights on the small-scale person (green

dashed circle) for features from scale = 1, and large weights on the

large-scale child (magenta dashed circle) for features from scale

= 0.5. We jointly train the network component and the attention

model.

there are mainly two types of network structures that ex-

ploit multi-scale features [54].

The first type, which we refer to as skip-net, combines

features from the intermediate layers of FCNs [27, 38, 41,

11]. Features within a skip-net are multi-scale in nature

due to the increasingly large receptive field sizes. Dur-

ing training, a skip-net usually employs a two-step process

[27, 38, 41, 11], where it first trains the deep network back-

bone and then fixes or slightly fine-tunes during multi-scale

feature extraction. The problem with this strategy is that

the training process is not ideal (i.e., classifier training and

feature-extraction are separate) and the training time is usu-

ally long (e.g., three to five days [38]).

The second type, which we refer to as share-net, resizes

the input image to several scales and passes each through

a shared deep network. It then computes the final predic-

tion based on the fusion of the resulting multi-scale features

[19, 34]. A share-net does not need the two-step training

process mentioned above. It usually employs average- or

max-pooling over scales [20, 14, 44, 15]. Features at each

scale are either equally important or sparsely selected.

Recently, attention models have shown great success in

several computer vision and natural language processing
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tasks [5, 40, 55, 9]. Rather than compressing an entire im-

age or sequence into a static representation, attention allows

the model to focus on the most relevant features as needed.

In this work, we incorporate an attention model for seman-

tic image segmentation. Unlike previous work that employs

attention models in the 2D spatial and/or temporal dimen-

sion [48, 56], we explore its effect in the scale dimension.

In particular, we adapt a state-of-the-art semantic seg-

mentation model [11] to a share-net and employ a soft at-

tention model [5] to generalize average- and max-pooling

over scales, as shown in Fig. 1. The proposed attention

model learns to weight the multi-scale features according

to the object scales presented in the image (e.g., the model

learns to put large weights on features at coarse scale for

large objects). For each scale, the attention model outputs

a weight map which weights features pixel by pixel, and

the weighted sum of FCN-produced score maps across all

scales is then used for classification.

Motivated by [6, 33, 50, 54], we further introduce extra

supervision to the output of FCNs at each scale, which we

find essential for a better performance. We jointly train the

attention model and the multi-scale networks. We demon-

strate the effectiveness of our model on several challenging

datasets, including PASCAL-Person-Part [13], PASCAL

VOC 2012 [18], and a subset of MS-COCO 2014 [35]. Ex-

perimental results show that our proposed method consis-

tently improves over strong baselines. The attention com-

ponent also gives a non-trivial improvement over average-

and max-pooling methods. More importantly, the proposed

attention model provides diagnostic visualization, unveiling

the black box network operation by visualizing the impor-

tance of features at each scale for every image position.

2. Related Work

Our model draws success from several areas, including

deep networks, multi-scale features for semantic segmenta-

tion, and attention models.

Deep networks: Deep Convolutional Neural Networks

(DCNNs) [32] have demonstrated state-of-the-art perfor-

mance on several computer vision tasks, including im-

age classification [31, 47, 50, 49, 44] and object detection

[24, 28]. For the semantic image segmentation task, state-

of-the-art methods are variants of the fully convolutional

neural networks (FCNs) [38], including [11, 15, 34, 42, 58].

In particular, our method builds upon the current state-of-

the-art DeepLab model [11].

Multi-scale features: It is known that multi-scale fea-

tures are useful for computer vision tasks, e.g., [21, 2]. In

the context of deep networks for semantic segmentation, we

mainly discuss two types of networks that exploit multi-

scale features. The first type, skip-net, exploits features

from different levels of the network. For example, FCN-8s

[38] gradually learns finer-scale prediction from lower lay-

.
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Figure 2. Different network structures for extracting multi-scale

features: (a) Skip-net: features from intermediate layers are fused

to produce the final output. (b) Share-net: multi-scale inputs

are applied to a shared network for prediction. In this work,

we demonstrate the effectiveness of the share-net when combined

with attention mechanisms over scales.

ers (initialized with coarser-scale prediction). Hariharan et

al. [27] classified a pixel with hypercolumn representation

(i.e., concatenation of features from intermediate layers).

Mostajabi et al. [41] classified a superpixel with features

extracted at zoom-out spatial levels from a small proximal

neighborhood to the whole image region. DeepLab-MSc

(DeepLab with Multi-Scale features) [11] applied Multi-

Layer Perceptrons (MLPs) to the input image and to the

outputs of pooling layers, in order to extract multi-scale fea-

tures. ParseNet [36] aggregated features over the whole im-

age to provide global contextual information.

The second type, share-net, applies multi-scale input im-

ages to a shared network. For example, Farabet et al. [19]

employed a Laplacian pyramid, passed each scale through

a shared network, and fused the features from all the scales.

Lin et al. [34] resized the input image for three scales and

concatenated the resulting three-scale features to generate

the unary and pairwise potentials of a Conditional Random

Field (CRF). Pinheiro et al. [45], instead of applying multi-

scale input images at once, fed multi-scale images at dif-

ferent stages in a recurrent convolutional neural network.

This share-net strategy has also been employed during the

test stage for a better performance by Dai et al. [15]. In this

work, we extend DeepLab [11] to be a type of share-net and

demonstrate its effectiveness on three challenging datasets.

Note that Eigen and Fergus [16] fed input images to DC-

NNs at three scales from coarse to fine sequentially. The

DCNNs at different scales have different structures, and a

two-step training process is required for their model.

Attention models for deep networks: In computer vi-

sion, attention models have been used widely used for im-

age classification [8, 25, 53] and object detection [4, 7, 57].

Mnih et al. [40] learn an attention model that adaptively se-
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lects image regions for processing. However, their attention

model is not differentiable, which is necessary for standard

backpropagation during training. On the other hand, Gregor

et al. [25] employ a differentiable attention model to specify

where to read/write image regions for image generation.

Bahdanau et al. [5] propose an attention model that

softly weights the importance of input words in a source

sentence when predicting a target word for machine trans-

lation. Following this, Xu et al. [55] and Yao et al. [56] use

attention models for image captioning and video caption-

ing respectively. These methods apply attention in the 2D

spatial and/or temporal dimension while we use attention to

identify the most relevant scales.

Attention to scale: To merge the predictions from multi-

scale features, there are two common approachs: average-

pooling [14, 15] or max-pooling [20, 44] over scales. Moti-

vated by [5], we propose to jointly learn an attention model

that softly weights the features from different input scales

when predicting the semantic label of a pixel. The final out-

put of our model is produced by the weighted sum of score

maps across all the scales. We show that the proposed at-

tention model not only improves performance over average-

and max-pooling, but also allows us to diagnostically visu-

alize the importance of features at different positions and

scales, separating us from existing work that exploits multi-

scale features for semantic segmentation.

3. Model

3.1. Review of DeepLab

FCNs have proven successful in semantic image seg-

mentation [15, 37, 58]. In this subsection, we briefly review

the DeepLab model [11], which is a variant of FCNs [38].

DeepLab adopts the 16-layer architecture of state-of-the-

art classification network of [49] (i.e., VGG-16 net). The

network is modified to be fully convolutional [38], pro-

ducing dense feature maps. In particular, the last fully-

connected layers of the original VGG-16 net are turned into

convolutional layers (e.g., the last layer has a spatial convo-

lutional kernel with size 1×1). The spatial decimation factor

of the original VGG-16 net is 32 because of the employment

of five max-pooling layers each with stride 2. DeepLab re-

duces it to 8 by using the à trous (with holes) algorithm [39],

and employs linear interpolation to upsample by a factor of

8 the score maps of the final layer to original image reso-

lution. There are several variants of DeepLab [11]. In this

work, we mainly focus on DeepLab-LargeFOV. The suffix,

LargeFOV, comes from the fact that the model adjusts the

filter weights at the convolutional variant of fc6 (fc6 is the

original first fully connected layer in VGG-16 net) with à

trous algorithm so that its Field-Of-View is larger.
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Figure 3. (a) Merging score maps (i.e., last layer output before

SoftMax) for two scales. (b) Our proposed attention model makes

use of features from FCNs and produces weight maps, reflecting

how to do a weighted merge of the FCN-produced score maps at

different scales and at different positions.

3.2. Attention model for scales

Herein, we discuss how to merge the multi-scale features

for our proposed model. We propose an attention model that

learns to weight the multi-scale features. Average pooling

[14, 15] or max pooling [20, 44] over scales to merge fea-

tures can be considered as special cases of our method.

Based on share-net, suppose an input image is resized to

several scales s ∈ {1, ..., S}. Each scale is passed through

the DeepLab (the FCN weights are shared across all scales)

and produces a score map for scale s, denoted as fs
i,c where

i ranges over all the spatial positions (since it is fully con-

volutional) and c ∈ {1, ..., C} where C is the number of

classes of interest. The score maps fs
i,c are resized to have

the same resolution (with respect to the finest scale) by bi-

linear interpolation. We denote gi,c to be the weighted sum

of score maps at (i, c) for all scales, i.e.,

gi,c =
S∑

s=1

ws
i · f

s
i,c (1)

The weight ws
i is computed by

ws
i =

exp(hs
i )∑S

t=1
exp(ht

i)
(2)

where hs
i is the score map (i.e., last layer output before Soft-

Max) produced by the attention model at position i for scale

s. Note ws
i is shared across all the channels. The attention

model is parameterized by another FCN so that dense maps

are produced. The proposed attention model takes as input

the convolutionalized fc7 features from VGG-16 [49], and

it consists of two layers (the first layer has 512 filters with

kernel size 3×3 and second layer has S filters with kernel

size 1×1 where S is the number of scales employed). We

will discuss this design choice in the experimental results.
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The weight ws
i reflects the importance of feature at posi-

tion i and scale s. As a result, the attention model decides

how much attention to pay to features at different positions

and scales. It further enables us to visualize the attention

for each scale by visualizing ws
i . Note in our formulation,

average-pooling or max-pooling over scales are two special

cases. In particular, the weights ws
i in Eq. (1) will be re-

placed by 1/S for average-pooling, while the summation in

Eq. (1) becomes the max operation and ws
i = 1 ∀s and i in

the case of max-pooling.

We emphasize that the attention model computes a soft

weight for each scale and position, and it allows the gradient

of the loss function to be backpropagated through, similar

to [5]. Therefore, we are able to jointly train the attention

model as well as the FCN (i.e., DeepLab) part end-to-end.

One advantage of the proposed joint training is that tedious

annotations of the “ground truth scale” for each pixel is

avoided, letting the model adaptively find the best weights

on scales.

3.3. Extra supervision

We learn the network parameters using training images

annotated at the pixel-level. The final output is produced by

performing a softmax operation on the merged score maps

across all the scales. We minimize the cross-entropy loss

averaged over all image positions with Stochastic Gradi-

ent Descent (SGD). The network parameters are initialized

from the ImageNet-pretrained VGG-16 model of [49].

In addition to the supervision introduced to the final out-

put, we add extra supervision to the FCN for each scale [33].

The motivation behind this is that we would like to merge

discriminative features (after pooling or attention model)

for the final classifier output. As pointed out by [33], dis-

criminative classifiers trained with discriminative features

demonstrate better performance for classification tasks. In-

stead of adding extra supervision to the intermediate layers

[6, 33, 50, 54], we inject extra supervision to the final output

of DeepLab for each scale so that the features to be merged

are trained to be more discriminative. Specifically, the total

loss function contains 1 + S cross entropy loss functions

(one for final output and one for each scale) with weight

one for each. The ground truths are downsampled properly

w.r.t. the output resolutions during training.

4. Experimental Evaluations

In this section, after presenting the common setting

for all the experiments, we evaluate our method on three

datasets, including PASCAL-Person-Part [13], PASCAL

VOC 2012 [18], and a subset of MS-COCO 2014 [35].

Network architectures: Our network is based on the

publicly available model, DeepLab-LargeFOV [11], which

modifies VGG-16 net [49] to be FCN [38]. We employ the

same settings for DeepLab-LargeFOV as [11].

Baseline: DeepLab-LargeFOV 51.91

Merging Method w/ E-Supv

Scales = {1, 0.5}
Max-Pooling 52.90 55.26

Average-Pooling 52.71 55.17

Attention 53.49 55.85

Scales = {1, 0.75, 0.5}
Max-Pooling 53.02 55.78

Average-Pooling 52.56 55.72

Attention 53.12 56.39

Table 1. Results on PASCAL-Person-Part validation set. E-Supv:

extra supervision.

Head Torso U-arms L-arms U-legs L-legs Bkg Avg

81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

Table 2. Per-part results on PASCAL-Person-Part validation set

with our attention model.

Training: SGD with mini-batch is used for training. We

set the mini-batch size of 30 images and initial learning rate

of 0.001 (0.01 for the final classifier layer). The learning

rate is multiplied by 0.1 after 2000 iterations. We use the

momentum of 0.9 and weight decay of 0.0005. Fine-tuning

our network on all the reported experiments takes about

21 hours on an NVIDIA Tesla K40 GPU. During train-

ing, our model takes all scaled inputs and performs train-

ing jointly. Thus, the total training time is twice that of a

vanilla DeepLab-LargeFOV. The average inference time for

one PASCAL image is 350 ms.

Evaluation metric: The performance is measured

in terms of pixel intersection-over-union (IOU) averaged

across classes [18].

Reproducibility: The proposed methods are imple-

mented by extending Caffe framework [29]. The code and

models are available at http://liangchiehchen.

com/projects/DeepLab.html.

Experiments: To demonstrate the effectiveness of

our model, we mainly experiment along three axes: (1)

multi-scale inputs (from one scale to three scales with

s ∈ {1, 0.75, 0.5}), (2) different methods (average-pooling,

max-pooling, or attention model) to merge multi-scale fea-

tures, and (3) training with or without extra supervision.

4.1. PASCAL­Person­Part

Dataset: We perform experiments on semantic part seg-

mentation, annotated by [13] from the PASCAL VOC 2010

dataset. Few works [51, 52] have worked on the animal

part segmentation for the dataset. On the other hand, we

focus on the person part for the dataset, which contains

more training data and large scale variation. Specifically,

3643

http://liangchiehchen.com/projects/DeepLab.html
http://liangchiehchen.com/projects/DeepLab.html


the dataset contains detailed part annotations for every per-

son, including eyes, nose, etc. We merge the annotations

to be Head, Torso, Upper/Lower Arms and Upper/Lower

Legs, resulting in six person part classes and one back-

ground class. We only use those images containing persons

for training (1716 images) and validation (1817 images).

Improvement over DeepLab: We report the results in

Tab. 1 when employing DeepLab-LargeFOV as the base-

line. We find that using two input scales improves over us-

ing only one input scale, and it is also slightly better than

using three input scales combined with average-pooling or

attention model. We hypothesize that when merging three

scale inputs, the features to be merged must be sufficiently

discriminative or direct fusion degrades performance. On

the other hand, max-pooling seems robust to this effect.

No matter how many scales are used, our attention model

yields better results than average-pooling and max-pooling.

We further visualize the weight maps produced by max-

pooling and our attention model in Fig. 4, which clearly

shows that our attention model learns better interpretable

weight maps for different scales. Moreover, we find that

by introducing extra supervision to the FCNs for each scale

significantly improves the performance (see the column w/

E-Supv), regardless of what merging scheme is employed.

The results show that adding extra supervision is essential

for merging multi-scale features. Finally, we compare our

proposed method with DeepLab-MSc-LargeFOV, which ex-

ploits the features from the intermediate layers for classifi-

cation (MSc denotes Multi-Scale features). Note DeepLab-

MSc-LargeFOV is a type of skip-net. Our best model

(56.39%) attains 2.67% better performance than DeepLab-

MSc-LargeFOV (53.72%).

Design choices: For all the experiments reported in this

work, our proposed attention model takes as input the con-

volutionalized fc7 features [49], and employs a FCN con-

sisting of two layers (the first layer has 512 filters with ker-

nel size 3×3 and the second layer has S filters with kernel

size 1×1, where S is the number of scales employed). We

have experimented with different settings, including using

only one layer for the attention model, changing the kernel

of the first layer to be 1×1, and varying the number of fil-

ters for the first layer. The performance does not vary too

much; the degradation ranges from 0.1% to 0.4%. Further-

more, we find that using fc8 as features for the attention

model results in worse performance (drops ∼ 0.5%) with

similar results for fc6 and fc7. We also tried adding one

more scale (four scales in total: s ∈ {1, 0.75, 0.5, 0.25}),

however, the performance drops by 0.5%. We believe the

score maps produced from scale s = 0.25 were simply too

small to be useful.

Qualitative results: We visualize the part segmentation

results as well as the weight maps produced by the atten-

tion model in Fig. 5. Merging the multi-scale features with

Baseline: DeepLab-LargeFOV 62.28

Merging Method w/ E-Supv

Scales = {1, 0.5}
Max-Pooling 64.81 67.43

Average-Pooling 64.86 67.79

Attention 65.27 68.24

Scales = {1, 0.75, 0.5}
Max-Pooling 65.15 67.79

Average-Pooling 63.92 67.98

Attention 64.37 69.08

Table 3. Results on PASCAL VOC 2012 validation set, pretrained

with ImageNet. E-Supv: extra supervision.

the attention model yields not only better performance but

also more interpretable weight maps. Specifically, scale-1

attention (i.e., the weight map learned by attention model

for scale s = 1) usually focuses on small-scale objects,

scale-0.75 attention concentrates on middle-scale objects,

and scale-0.5 attention usually puts large weight on large-

scale objects or background, since it is easier to capture the

largest scale objects or background contextual information

when the image is shrunk to be half of the original resolu-

tion.

Failure modes: We show two failure examples in the

bottom of Fig. 5. The failure examples are due to the

extremely difficult human poses or the confusion between

cloth and person parts. The first problem may be resolved

by acquiring more data, while the second one is challenging

because person parts are usually covered by clothes.

Supplementary materials: In the supplementary ma-

terials, we apply our trained model to some videos from

MPII Human Pose dataset [1]. The model is not fine-tuned

on the dataset, and the result is run frame-by-frame. As

shown in the video, even for images from another dataset,

our model is able to produce reasonably and visually good

part segmentation results and it infers meaningful attention

for different scales. Additionally, we provide more qualita-

tive results for all datasets in the supplementary materials.

4.2. PASCAL VOC 2012

Dataset: The PASCAL VOC 2012 segmentation bench-

mark [18] consists of 20 foreground object classes and one

background class. Following the same experimental proto-

col [11, 15, 58], we augment the original training set from

the annotations by [26]. We report the results on the original

PASCAL VOC 2012 validation set and test set.

Pretrained with ImageNet: First, we experiment with

the scenario where the underlying DeepLab-LargeFOV is

only pretrained on ImageNet [46]. Our reproduction of

DeepLab-LargeFOV and DeepLab-MSc-LargeFOV yields

performance of 62.28% and 64.39% on the validation
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Figure 5. Results on PASCAL-Person-Part validation set. DeepLab-LargeFOV with one scale input is used as the baseline. Our model

employs three scale inputs, attention model and extra supervision. Scale-1 attention captures small-scale parts, scale-0.75 attention catches

middle-scale torsos and legs, while scale-0.5 attention focuses on large-scale legs and background. Bottom two rows show failure examples.

set, respectively. They are similar to those (62.25% and

64.21%) reported in [11]. We report results of the proposed

methods on the validation set in Tab. 3. We observe sim-

ilar experimental results as PASCAL-Person-Part dataset:

(1) Using two input scales is better than single input scale.

(2) Adding extra supervision is necessary to achieve better

performance for merging three input scales, especially for

average-pooling and the proposed attention model. (3) The

best performance (6.8% improvement over the DeepLab-

LargeFOV baseline) is obtained with three input scales, at-
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Method mIOU

Pretrained with ImageNet

DeepLab-LargeFOV [11] 65.1

DeepLab-MSc-LargeFOV [11] 67.0

TTI zoomout v2 [41] 69.6

ParseNet [36] 69.8

DeepLab-LargeFOV-AveragePooling 70.5

DeepLab-LargeFOV-MaxPooling 70.6

DeepLab-LargeFOV-Attention 71.5

Pretrained with MS-COCO

DeepLab-CRF-COCO-LargeFOV [43] 72.7

DeepLab-MSc-CRF-COCO-LargeFOV [43] 73.6

CRF-RNN [58] 74.7

BoxSup [15] 75.2

DPN [37] 77.5

Adelaide [34] 77.8

DeepLab-CRF-COCO-LargeFOV-Attention 75.1

DeepLab-CRF-COCO-LargeFOV-Attention+ 75.7

DeepLab-CRF-Attention-DT [10] 76.3

Table 4. Labeling IOU on the PASCAL VOC 2012 test set.

tention model, and extra supervision, and its performance is

4.69% better than DeepLab-MSc-LargeFOV (64.39%).

We also report results on the test set for our best model

in Tab. 4. First, we observe that the attention model

yields a 1% improvement over average pooling, consistent

with our results on the validation set. We then compare

our models with DeepLab-LargeFOV and DeepLab-MSc-

LargeFOV [11] ∗. We find that our proposed model im-

proves 6.4% over DeepLab-LargeFOV, and gives a 4.5%
boost over DeepLab-MSc LargeFOV. Finally, we compare

our models with two other methods: ParseNet [36] and

TTI zoomout v2 [41]. ParseNet incorporates the image-

level feature as global contextual information. We consider

ParseNet as a special case to exploit multi-scale features,

where the whole image is summarized by the image-level

feature. TTI zoomout v2 also exploits features at different

spatial scales. As shown in the table, our proposed model

outperforms both of them. Note none of the methods dis-

cussed here employ a fully connected CRF [30].

Pretrained with MS-COCO: Second, we experiment

with the scenario where the underlying baseline, DeepLab-

LargeFOV, has been pretrained on the MS-COCO 2014

dataset [35]. The goal is to test if we can still observe

any improvement with such a strong baseline. As shown in

Tab. 5, we again observe similar experimental results, and

our best model still outperforms the DeepLab-LargeFOV

baseline by 3.84%. We also report the best model on the

test set in the bottom of Tab. 4. For a fair comparison with

∗test results are obtained by personal communication with authors [11]

Baseline: DeepLab-LargeFOV 67.58

Merging Method w/ E-Supv

Scales = {1, 0.5}
Max-Pooling 69.15 70.01

Average-Pooling 69.22 70.44

Attention 69.90 70.76

Scales = {1, 0.75, 0.5}
Max-Pooling 69.70 70.06

Average-Pooling 68.82 70.55

Attention 69.47 71.42

Table 5. Results on PASCAL VOC 2012 validation set, pretrained

with MS-COCO. E-Supv: extra supervision.

the reported DeepLab variants on the test set, we employ a

fully connected CRF [30] as post processing. As shown in

the table, our model attains the performance of 75.1%, out-

performing DeepLab-CRF-LargeFOV and DeepLab-MSc-

CRF-LaregeFOV by 2.4%, and 1.5%, respectively. Mo-

tivated by [34], incorporating data augmentation by ran-

domly scaling input images (from 0.6 to 1.4) during training

brings extra 0.6% improvement in our model.

Note our models do not outperform current best models

[34, 37], which employ joint training of CRF (e.g., with the

spatial pairwise term) and FCNs [12]. However, we believe

our proposed method (e.g., attention model for scales) could

be complementary to them. We emphasize that our models

are trained end-to-end with one pass to exploit multi-scale

features, instead of multiple training steps. Recently, [10]

has been shown that further improvement can be attained

by combining our proposed model and a discriminatively

trained domain transform [23].

4.3. Subset of MS­COCO

Dataset: The MS-COCO 2014 dataset [35] contains 80

foreground object classes and one background class. The

training set has about 80K images, and 40K images for val-

idation. We randomly select 10K images from the train-

ing set and 1,500 images from the validation set (the result-

ing training and validation sets have same sizes as those we

used for PASCAL VOC 2012). The goal is to demonstrate

our model on another challenging dataset.

Improvement over DeepLab: In addition to observ-

ing similar results as before, we find that the DeepLab-

LargeFOV baseline achieves a low mean IOU 31.22% in

Tab. 6 due to the difficulty of MS-COCO dataset (e.g.,

large object scale variance and more object classes). How-

ever, employing multi-scale inputs, attention model, and ex-

tra supervision can still bring 4.6% improvement over the

DeepLab-LargeFOV baseline, and 4.17% over DeepLab-

MSc-LargeFOV (31.61%). We find that the results of em-

ploying average-pooling and the attention model as merging
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Figure 6. Results on PASCAL VOC 2012 validation set. DeepLab-LargeFOV with one scale input is used as baseline. Our model employs

three scale inputs, attention model and extra supervision. Scale-1 attention captures small-scale dogs (dark blue label), scale-0.75 attention

concentrates on middle-scale dogs and part of sofa (light green label), while scale-0.5 attention catches largest-scale dogs and sofa.

Baseline: DeepLab-LargeFOV 31.22

Merging Method w/ E-Supv

Scales = {1, 0.5}
Max-Pooling 32.95 34.70

Average-Pooling 33.69 35.14

Attention 34.03 35.41

Scales = {1, 0.75, 0.5}
Max-Pooling 33.58 35.08

Average-Pooling 33.74 35.72

Attention 33.42 35.78

Table 6. Results on the subset of MS-COCO validation set with

DeepLab-LargeFOV as the baseline. E-Supv: extra supervision.

methods are very similar. We hypothesize that many small

object classes (e.g., fork, mouse, and toothbrush) with ex-

tremely low prediction accuracy reduce the improvement.

This challenging problem (i.e., segment small objects and

handle imbalanced classes) is considered as future work.

On the other hand, we show the performance for the per-

son class in Tab. 7 because it occurs most frequently and

appears with different scales (see Fig. 5(a), and Fig. 13(b)

in [35]) in this dataset. As shown in the table, the improve-

ment from the proposed methods becomes more noticeable

in this case, and we observe the same results as before. We

leave the qualitative results in the supplementary material.

Baseline: DeepLab-LargeFOV 68.76

Merging Method w/ E-Supv

Scales = {1, 0.5}
Max-Pooling 70.07 71.06

Average-Pooling 70.38 71.60

Attention 70.66 72.20

Scales = {1, 0.75, 0.5}
Max-Pooling 69.97 71.43

Average-Pooling 69.69 71.70

Attention 70.14 72.72

Table 7. Person class IOU on subset of MS-COCO validation set

with DeepLab-LargeFOV as baseline. E-Supv: extra supervision.

5. Conclusion

For semantic segmentation, this paper adapts a state-of-

the-art model (i.e., DeepLab-LargeFOV) to exploit multi-

scale inputs. Experiments on three datasets have shown

that: (1) Using multi-scale inputs yields better performance

than a single scale input. (2) Merging the multi-scale fea-

tures with the proposed attention model not only improves

the performance over average- or max-pooling baselines,

but also allows us to diagnostically visualize the importance

of features at different positions and scales. (3) Excellent

performance can be obtained by adding extra supervision to

the final output of networks for each scale.
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[30] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. In NIPS, 2011.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[33] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, 2015.

[34] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise train-

ing of deep structured models for semantic segmentation.

arXiv:1504.01013, 2015.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014.

[36] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking

wider to see better. arXiv:1506.04579, 2015.

[37] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic im-

age segmentation via deep parsing network. In ICCV, 2015.

[38] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[39] S. Mallat. A Wavelet Tour of Signal Processing. Acad. Press,

2 edition, 1999.

3648



[40] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of

visual attention. In NIPS, 2014.

[41] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-

forward semantic segmentation with zoom-out features. In

CVPR, 2015.

[42] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. arXiv:1505.04366, 2015.

[43] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.

Weakly- and semi-supervised learning of a dcnn for semantic

image segmentation. In ICCV, 2015.

[44] G. Papandreou, I. Kokkinos, and P.-A. Savalle. Untangling

local and global deformations in deep convolutional net-

works for image classification and sliding window detection.

In CVPR, 2015.

[45] P. H. Pinheiro and R. Collobert. Recurrent convolutional

neural networks for scene parsing. arXiv:1306.2795, 2013.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, pages 1–42, 2015.

[47] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. In ICLR, 2014.

[48] S. Sharma, R. Kiros, and R. Salakhutdinov. Action recogni-

tion using visual attention. arXiv:1511.04119, 2015.

[49] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. arXiv:1409.4842, 2014.

[51] J. Wang and A. Yuille. Semantic part segmentation using

compositional model combining shape and appearance. In

CVPR, 2015.

[52] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille.

Joint object and part segmentation using deep learned poten-

tials. In ICCV, 2015.

[53] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang.

The application of two-level attention models in deep convo-

lutional neural network for fine-grained image classification.

In CVPR, 2015.

[54] S. Xie and Z. Tu. Holistically-nested edge detection. In

ICCV, 2015.

[55] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell:

Neural image caption generation with visual attention.

arXiv:1502.03044, 2015.

[56] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. In ICCV, 2015.

[57] D. Yoo, S. Park, J.-Y. Lee, A. S. Paek, and I. So Kweon. At-

tentionnet: Aggregating weak directions for accurate object

detection. In ICCV, 2015.

[58] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional random

fields as recurrent neural networks. In ICCV, 2015.

3649


