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Abstract 

In cognitive models, cognitive control can be measured in 
terms of the number of control states that are used to do the 
task. In most cases more control leads to better performance. 
Attentional Blink is an example in which the opposite is true: 
more control leads to poorer performance. A hybrid ACT-
R/Leabra model is used to model both high- and low-control 
participants using two and one control states, respectively. 
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Introduction 

The term cognitive control is used to refer to cognitive 

processes that help us focus on our goals and plans, and 

prevent external stimuli and events from interfering with 

them. Most of the time a higher level of control improves 

performance on tasks. However, too much control can make 

behavior brittle and less flexible. It is therefore likely that 

cognition strives for a level of control that is just enough for 

proper performance (the minimal control principle, Taatgen, 

2005, 2007). In this paper we will discuss a task that 

demonstrates that too much control can hurt performance. 

The task is a Rapid Serial Visual Presentation (RSVP) task 

(Raymond, Shapiro, & Arnell, 1992).  

In RSVP tasks, participants are presented with rapid 

streams of visual stimuli. Each of these streams contains 0, 

1 or 2 targets that the participants have to identify. In the 

version that we will discuss in this paper, streams consist of 

20 characters that are presented at a rate of 100ms/character. 

The targets are letters, while distracters are digits. The 

streams of interest are the ones with two targets. In these 

streams the time between the two targets is of importance, 

usually referred to by the lag. A lag of 1 means the two 

targets appear in sequence, and are 100 ms apart in time 

(given our presentation rate), lag 2 means that there is one 

distracter in between the targets, etc. Example sequences 

are: 

 

Lag 1: 49204039GF3434329237 

Lag 3: 0230349023Y94D324294 

Lag 9: 9430R32305129K235209 

 

The phenomenon of interest is that on lags 2-5, but 

mainly on lag 2 and 3, accuracy one the second target is 

much lower than on the first target. On other lags, including 

lag 1, the accuracies are the same. This phenomenon is 

referred to as Attentional Blink. The interesting aspect from 

the viewpoint of cognitive control is that there are 

indications that less control improves performance. Certain 

experimental manipulations can decrease the amount of 

blink people exhibit, for example if the stimuli are presented 

in a star field (Arend, Johnston & Shapiro, 2006), when 

music is played in the background (Olivers & Nieuwenhuis, 

2005), or when participants receive instructions to focus less 

on the task (Olivers & Nieuwenhuis, 2006). In addition, 

there are strong individual differences in attention blink: 

some individuals do not exhibit attention blink at all 

(Martens, Munneke, Smid & Johnson, 2006).  

Nieuwenhuis, Gilzenrat, Holmes and Cohen (2005) have 

modeled the attentional blink using a neural network. Their 

model consists of three layers, input, decision and detection, 

and a cell representing the Locus Coeruleus (LC), which is 

connected to the decision and detection layers. The LC 

provides extra activation to these layers, making them more 

sensitive to targets. Once the decision layer has decided that 

an input is a target, it is stored in the detected layer, but it 

also sends a signal to the LC. The result of the signal to the 

LC is that its contribution to activating the decision layer 

temporarily diminishes, decreasing the detection rate of 

targets that appear within 200-300 ms. This decrease is 

relatively slow, so it has no effect on the lag 1 trials.  

Although the Nieuwenhuis et al. model is successful in 

predicting the outcome of several new experiments, the 

impact of control is outside the scope of that model. An 

additional finding in RSVP experiments is that in lag 1 

trials, the order in which the targets are reported is often 



reversed, while this almost never happens in any of the other 

lags (Hommel & Akyürek, 2005).  

Both phenomena, reduced control leads to less blink, and 

the reversed report of lag 1 targets, are outside the scope of 

the Nieuwenhuis et al. model, because it neither 

incorporates higher-level aspects of control nor the fine-

level details of perception. In this paper we will present a 

model that encompasses both. To incorporate both the fine 

details of perception and the higher-level control aspects, we 

used the hybrid model that combines the Leabra neural 

network architecture (O’Reilly & Munakata, 2000) and the 

ACT-R architecture (Anderson, 2007). More specifically, 

visual perception is handled by a Leabra model, which 

passes on the information to the visual input buffer of ACT-

R. ACT-R takes care of the classification of the symbol, and 

storing it, if it is a target.  

Experiment 

Method 

Forty-one volunteers from the Carnegie Mellon student 

population participated in this experiment, which was part 

of a larger experiment on individual differences in cognitive 

control. The larger experiment included three other tasks 

that we selected to assess levels of cognitive control: the N-

Back memory task (McElree, 2001), the abstract decision 

making task (ADM task, Joslyn & Hunt, 1998), and a dual-

tasking task (DTT task, Taatgen, van Rijn & Anderson, in 

press). In the N-Back task, participants were shown 

sequences of letters, and they had to detect repetitions of 

letters and judge how many letters back that repetition was. 

In the ADM task, participants had to ask questions about 

properties of objects, and sort the objects into bins once they 

had obtained enough information. In the DTT task, 

participants had to do two visual tasks and a time estimation 

task in parallel. Four participants had to be excluded from 

the dataset due to a problem in the experimental software.  

The stimuli consisted of sequences of 20 characters. 

Distracters were digits from 2 to 9, and targets were C, D, F, 

G, H, I, J, K, L, M, N, P, R, T, V, W and X. No consecutive 

characters were identical, and if there were two targets, they 

were different from each other. Targets were never in the 

first four positions in the sequence, nor in the last four. 

The experiment consisted of 6 practice trials, and 4 blocks 

of 37 experimental trials. Each block of experimental trials 

consisted of 5 zero-target trials, 5 one-target trials, and 27 

two-target trials. The two-target trials consisted of 3 trials of 

each 9 different lag lengths (1 through 9).  

Each trial was preceded by a 500 ms fixation point, after 

which symbols in the sequence were presented one at a time 

for 100 ms each. At the end of the sequence, participants 

were asked to type all the targets (if any) they had seen, and 

press enter. The next trial started immediately after the 

participant had pressed enter. 

Results 

Figure 1 shows the correctness on the second target by lag. 

There is a clear blink effect in lags 2-4, consistent with 

many earlier findings. On 16% of the Lag 1 trials, both 

targets were reported correctly, but in the wrong order.  
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Figure 1: Blink by Lag. Bars are standard errors. 

 

In order to assess individual differences, we calculated  

the AB magnitude (based on Martens et al., 2006) according 

to the following equation: 

 

(
T1lag2 T2lag2 | T1lag2

T1lag2
+
T1lag3 T2lag3 | T1lag3

T1lag3
) /2

 

 

In this equation, T1 means proportion correct 

identification of the first target (given the indicated lag), and 

T2|T1 means correct identification of the second target 

given a correct identification of the first target. An AB 

magnitude of 0 or less means there is no blink at all, while 

higher values imply more blink. We correlated the AB 

magnitude with outcomes of the other tasks that are 

associated with control. For the DTT task, the outcome most 

associated with control is how often participants make a 

response on the time estimation task, the one of three tasks 

that is not cued by visual input. Low levels of response are 

an indication of low-level control. The response rate on the 

DTT task and the AB magnitude correlated with r=0.46 

(p=0.005), indicated that more control in the DTT task 

implied a higher blink magnitude. Similarly, the score on 

the N-Back task and the AB magnitude had a correlation of 

r=0.42 (p=0.009). The correlation with the ADM task was 

only weak: r=0.29 (p=0.08). All of these correlations 

suggest that a higher level of control correlates with a higher 

AB magnitude. 

For the purposes of identifying non-blinkers in the 

dataset, we classified participants with a AB magnitude of 

0.2 or lower as non-blinker, and participants with 0.2 or 



higher as blinker (consistent with Martens et al., in press), 

amounting to 8 non-blinkers and 29 blinkers. 

 
Figure 2: Visual input module 

Model 

Overview 

Cognitive models allow a more precise characterization of 

what “more control” means. To keep outside events from 

completely controlling behavior, we maintain internal goals. 

The current goal can be in a certain state to keep track of 

progress of that goal. Any action or progress on the goal can 

change the state, or keep it as it is. Taken together, states 

and possible actions create a state space. The more states 

there are in the state space, the more it is associated with a 

higher level of control (Taatgen, 2007).  

We designed two possible control structures for a model 

of attentional blink, one with two states, which models the 

blinkers, and one with one state, which models the non-

blinkers. The first, blinker, model assumes two control 

states. One state is used to signify the model is searching for 

a target in the input stream. Once a target has been found, 

the model switches to a second state that is used to 

consolidate the target in memory. When the target is 

consolidated, the state switches back to the first state. When 

the model is in the consolidation state, it no longer fully 

processes the input stream. When the model switches back 

to the search state it has too much to do at the same time, 

creating an internal “traffic jam” that causes the model to 

sometimes miss targets in the 200-500ms range. The 

second, non-blinker, model uses only a single state. In other 

words, there is no state to protect the consolidation process, 

but it also misses targets less often.  

Vision 

The visual input is projected on the input layer of a Leabra 

(O’Reilly & Munakata, 2000) neural network of the ventral 

visual stream (Figure 2). This model processes the input, 

and arrives at a classification in the output layer, in which it 

has a single cell for each of the possible symbols in the 

input. Because of the speed in the visual presentation, the 

network is not always able to fully settle, and there is often 

still residual activation of the previous symbol. Figure 3 

shows an example of how activation in the output layer 

changes over time based on the “2829P” sequence. The 

consequence of the rising and falling of activations is that if 

the visual input is sampled at a particular moment, it is 

possible two output cells are active, in which case it is 

impossible to determine in which order the two have been 

presented. This explains why in lag 1 the two targets are 

often reported in the wrong order. 

Central Cognition and Control 

The ACT-R architecture is structured as a set of interacting 

modules. Modules communicate through buffers, but 

otherwise operate asynchronously. Each module can only 

work on one thing at a time, but because all the modules 

work in parallel, the cognitive system as a whole can work 

on several tasks at the same time. At this level of 

abstraction, cognitive control is a matter of optimally 

engaging all modules in doing the task or tasks. 
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Figure 3: Example of visual module output for the “2829P” sequence. Vertical lines indicate where a new stimulus is 

presented, e.g. at cycle 40 the symbol “2” is presented. Each cycle corresponds to 5ms real time. 
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Figure 4: Time diagram of a Lag 3 presentation: blinker model. 
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Figure 5: Time diagram of a Lag 3 presentation: non-blinker model. 

 

In the attentional blink tasks, several modules have to 

operate in parallel. The visual module has to scan the 

incoming stream of characters. These characters have to 

then go through a decision process, which determines 

whether a character is a target, which involves the 

procedural and declarative modules. Once a target is found, 

it has to be consolidated in ACT-R’s imaginal buffer, a 

place to temporarily store problem-related information.  

Figure 4 shows a diagram of how the model operates in 

the case of a Lag 3 sequence. Each row in the diagram 

represents one of ACT-R’s modules, with the exception of 

the top line, which shows the state of the display. Boxes in 

each row show activity in a module at a particular time, and 

the width of the box indicates the duration. The visual 

module follows the input, and outputs activations 

corresponding to the classification of the input. This input 

triggers production rules that try to determine whether the 

character is a target. The assumption of the model is that 

some characters can be recognized as non-targets straight 

away (with a probability of 60%). Other characters have to 

be classified by a declarative memory retrieval. In the 

example, the first “2” is immediately recognized as non-

target. The second character (“A”) is a target. Targets are 

always retrieved from memory to verify that they are 

targets. During this retrieval, the next character (“3”) is 

identified as a potential target. However, the memory 

retrieval that can verify this has to be postponed until the 

retrieval of the “A” finishes. However, once the retrieval of 

“A” finishes, the model decides “A” is indeed a target, and 

stores it in the imaginal buffer. In this version of the model, 

once a target has been found the production rule that 

initiates storing the target changes the control state to 

consolidate, blocking further processing of the input. Only 

when the imaginal buffer is done storing the target can the 

target detection process resume. As a consequence, the “8” 

and the “B” will not be considered as targets, leading to a 

blink trial in this particular example. Also note that the “3” 

that directly followed the first target is considered a 

potential target by the model, although delayed, which 

means that if this had been a Lag 1 trial and the “3” would 

have been a target, both targets would have been detected. 

The non-blinker model 

Although the model described above changes state to 

protect its memory consolidation, this is an unnecessary 

exertion of control. If the model does not change state when 

a target has been detected, detection of the second target can 

proceed while the first target is consolidated. Figure 5 

shows an example trace of that variation of the model. Once 

the target “A” has been detected and transferred to the 



imaginal buffer, the next candidate, “3” is requested from 

declarative memory. The next production rule samples this 

visual input again, now detecting two potential targets (“B” 

and “3”), because both output cells of the neural network are 

active.  

Reversal of target on Lag 1 

Figure 6 demonstrates how reversals can occur. Delayed by 

the possibility that “2” is a target, the model samples the 

visual buffer at a moment when both the “A” and “B” cells 

are active. Having no means to determine the order of the 

two, the model decides to retrieve the “B” first. 
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Figure 6: Example of a reversal of targets 

Parameters 

The model has a number of parameters that influence its 

outcome. The main parameter that was used to fit the model 

was the probability that a character could be recognized as a 

foil straight away (60%). Other parameters that will 

probably influence the outcome when changed are the 

latency factor that determines how long declarative 

retrievals take (set so that they take about 50ms), and the 

time to store an item in the imaginal buffer (left at the 

default of 200ms). In addition, the Leabra model has several 

parameters, but those were left untouched for the purpose of 

fitting the data. 

Model Results 

To assess the model we divided the dataset in blinkers and 

non-blinkers according to the criteria discussed earlier. 

Figure 7 shows the model/data comparison for the blinker 

group (r=0.97, MSE=0.03), and Figure 8 for the non-blinker 

group (r=0, MSE=0.04).  The blinker model has a good 

correlation between model and data and a low MSE. The 

non-blinker model has no correlation with the data because 

there is no meaningful variability in the data to model. 

However, the MSE is comparable to that of the blinker 

model, confirming that there is a decent fit. 

Figure 9 shows the proportion of trials in which the two 

targets were reported in the wrong order for both groups 

together (there was no difference between blinkers and non-

blinkers).  
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Figure 7: T2 correctness for blinkers (n=29), model/data 

comparison. 
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Figure 8: T2 correctness for non-blinkers (n=8), 

model/data comparison. 

 

Discussion 

The central question that we tried to address in this paper is 

how cognitive control can be made more concrete in terms 

of a cognitive model. Our hypothesis is that more control is 

associated with more possible control states. More control 

states gives more top-down control of the task’s execution, 

but at the cost of flexibility. The experiment as a whole 

showed that the amount of blink in the RSVP task correlated 

with control aspects of other tasks, which is consistent with 

findings by Arend et al. (2007) and Olivers and 

Nieuwenhuis (2006) that attentional blink is related to 

control factors.  
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Figure 9: Proportion in which targets are reported in the 

wrong order, model/data comparison 

 

The RSVP model, with two control states for high control 

and one control state for low control, managed to fit the data 

very well. Further support for the model can be found in 

ERP data. Martens et al. (2006) collected ERP data for both 

blinkers and non-blinkers. They found that the P300, which 

we associate with imaginal buffer activity, is present only if 

a target is detected. Moreover, it is later for blinkers than for 

non-blinkers. This is the case for both T1 and T2, but the 

effect on T2 is much larger. Our model currently only 

predicts a difference on T2. The T1 difference may be due 

to a different factor all together, and may be related to the 

proportion in which distracters can be dismissed without 

memory retrieval. 

This model is also a demonstration of how a symbolic 

architecture, ACT-R, and a neural network architecture, 

Leabra, can work together. The perceptual part of the model 

was clearly outside the current capabilities of ACT-R, while 

the control aspects were outside of Leabra’s scope.  
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