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Attentional gain is modulated by 
probabilistic feature expectations 
in a spatial cueing task: ERP 
evidence
Anna Marzecová  1,2, Antonio Schettino  3, Andreas Widmann1, Iria SanMiguel4,5,6,  
Sonja A. Kotz7 & Erich Schröger1

Several theoretical and empirical studies suggest that attention and perceptual expectations influence 
perception in an interactive manner, whereby attentional gain is enhanced for predicted stimuli. The 
current study assessed whether attention and perceptual expectations interface when they are fully 
orthogonal, i.e., each of them relates to different stimulus features. We used a spatial cueing task with 
block-wise spatial attention cues that directed attention to either left or right visual field, in which 
Gabor gratings of either predicted (more likely) or unpredicted (less likely) orientation were presented. 
The lateralised posterior N1pc component was additively influenced by attention and perceptual 
expectations. Bayesian analysis showed no reliable evidence for the interactive effect of attention and 
expectations on the N1pc amplitude. However, attention and perceptual expectations interactively 
influenced the frontally distributed anterior N1 component (N1a). The attention effect (i.e., enhanced 
N1a amplitude in the attended compared to the unattended condition) was observed only for the 
gratings of predicted orientation, but not in the unpredicted condition. These findings suggest that 
attention and perceptual expectations interactively influence visual processing within 200 ms after 
stimulus onset and such joint influence may lead to enhanced endogenous attentional control in the 
dorsal fronto-parietal attention network.

Attentional and perceptual expectations are understood as mechanisms that facilitate perceptual processing. 
Attentional selection may be de�ned as a mechanism driven by information about behavioural relevance, while 
perceptual expectations are thought to capitalise on information about prior probability1,2. It has recently been 
proposed that attention and expectation dissociate in their in�uence on behavioural performance3–5. While 
attention increases detection sensitivity6–8, perceptual expectations are hypothesised to in�uence the response 
criterion, leading to a response bias3,4,9. �e current study addressed how attention and perceptual expectations 
dissociate in their electrophysiological signatures, and how they may interact to optimise perception.

Neural signatures of visuospatial attention
Neural signatures of attention have predominantly been studied with spatial cueing task10, in which stimuli are 
presented in the le� or right visual �eld (LVF/RVF). Attention is directed to a relevant location by a cue either in 
a transient or in a sustained fashion11,12. Enhancements of early visual event-related potentials (ERP) in response 
to stimuli at attended compared to unattended locations have been interpreted as re�ecting sensory gain for 
attended stimuli13,14. A modulation of the P1 component, the �rst positive de�ection with a peak around 100–
130 ms over lateral posterior electrode-sites, has been attributed to inhibitory processes in task-relevant and 
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task-irrelevant neural structures15,16. On the other hand, an enhancement of the N1 component (peaking around 
150–200 ms) in response to stimuli at attended locations has been interpreted as a facilitatory mechanism of 
attentional selection17,18, and discrimination processes19. �e N1 component is known to have separable anterior 
and posterior subcomponents, with the anterior N1 (N1a) peaking earlier over fronto-central electrodes, and the 
posterior N1 peaking later over lateral posterior occipital electrodes19,20. �e N1a has been suggested to re�ect 
the top-down (i.e., voluntary, endogenous) control of spatial attention20,21, controlled by the dorsal frontoparietal 
network22, while the posterior N1 has been linked to exogenous (i.e., bottom-up) object-based attentional selec-
tion in the ventral network20,21.

Neural signatures of perceptual expectations
Neural signatures of perceptual expectations are thought to be dissociable from attentional e�ects1,23. In classi-
cal oddball paradigms, for example, responses to unpredictable (deviant) stimuli are compared with responses 
to repeatedly presented stimuli that form a predictable sequence. Predictable (standard) stimuli elicit smaller 
responses than unpredictable (deviant) stimuli. Consistent with hierarchical predictive coding models of per-
ception24,25, reduced responses to predicted stimuli may be interpreted as reduced prediction errors. Prediction 
errors are de�ned as feedforward signals resulting from a comparison of sensory input with top-down predictions 
generated by higher cortical levels. Prediction errors encode portions of the sensory input that is yet unaccounted 
for by predictive signals, thereby enabling the formation of accurate percepts by updating an internal generative 
model of the environment. �is results in an increased prediction error signal for unexpected stimuli and a 
reduced prediction error in response to stimuli that are predicted by the model based on their prior probability. 
�us, an attenuation of ERPs as a function of expectations may be interpreted as reduced prediction errors26,27. 
As follows, amplitude suppressions of the N1 component in response to self-induced or self-generated auditory1 
or visual stimuli28,29, temporally predictable stimuli30,31, and repeated stimuli32, have been interpreted as reduced 
prediction errors as a function of expectations.

Attentional gain is influenced by expectations
�e degree of endogenous attentional engagement has been shown to be in�uenced by di�erent kinds of proba-
bilistic manipulations. Di�erent trial histories resulting in varying proportion of validly cued relative to invalidly 
cued trials33–36, di�erent perceptual-motor expectancies37, and statistical regularities in sequences38, all seem to 
modulate the size of attentional e�ects.

Attentional e�ects are also dependent on task-assignment. For instance, ERP e�ects observed in probabilistic 
spatial cueing tasks seem to di�er depending on whether attention is engaged on one location in a sustained 
fashion or allocated transiently on a trial-by-trial basis, as well as whether a behavioural response is required to 
attended stimuli only or to both attended and unattended stimuli30,39. It has been suggested that di�erent results 
between studies may be attributed to two potentially interwoven mechanisms, those of attentional gain and per-
ceptual expectations2,30,40. When attention is manipulated probabilistically, an increase in stimulus probability 
may generate perceptual expectations30.

Attention and perceptual expectations interact to optimise perception
In the predictive coding framework, attention is understood as a gain mechanism that modulates the variability 
or precision of prediction errors41. �e neuronal gain of ascending prediction errors is modulated by expectations 
about their variability or precision42. An interactive pattern between attention and expectations is hypothesized, 
as predictability leads to an increased precision and, therefore, the attentional gain is increased for expected vs. 
unexpected sensory input43. In studies that have manipulated attention and expectations independently, interac-
tive e�ects of attention and expectation have indeed been observed. In an fMRI study with a modi�ed version of 
a cueing task44, stimuli at expected spatial locations elicited an attenuated BOLD response in the primary visual 
cortex (V1) relative to stimuli at unexpected locations when they were unattended (i.e., task-irrelevant). However, 
a reversed pattern was observed in the attended (i.e., task-relevant) condition, showing an increased BOLD to 
stimuli at expected relative to unexpected spatial locations. Furthermore, an fMRI study using multi-voxel pattern 
analysis (MVPA) have reported that attention increases the disparity between representations of expected vs. 
unexpected stimuli in category-speci�c visual areas45. Similarly, an auditory ERP study46 showed that the ampli-
tude of the N1 component was highest in response to tones that appeared in the attended and predictable stream 
of stimuli relative to attended/unpredictable, unattended/predictable, and unattended/unpredictable conditions. 
�ese observations seem consistent with the precision-weighting hypothesis. However, several other recent EEG 
studies that investigated the potential interrelation between attention and expectations have revealed di�erent 
patterns of results47,48. In our recent study48, we used the modi�ed spatial cueing task proposed by Kok et al.44 
and identi�ed distinct stages of interactive in�uence of attention and prediction on visual ERPs. We observed 
independent e�ects of attention and prediction on the amplitude of the posterior-occipital N1 component, cor-
roborating the hypothesised attentional gain enhancement by attention, and the attenuation by prediction. An 
interaction between attention and prediction was observed within 200 ms, albeit re�ected in the selective mod-
ulation by expectations in the unattended condition, presumably in the higher-level areas of the dorsal attention 
network. �is interaction e�ect also showed larger attentional modulation of predicted compared to unpredicted 
stimuli.

The present study: rationale and a priori hypotheses
�ere are several important di�erences between studies on the interactive in�uences of attention and prediction 
that may contribute to discrepant patterns of �ndings. First, in some studies expectations have been manipu-
lated by instruction or cues44,48, while, in other studies, predictability was manipulated in an implicit manner46. 
It has been shown that, if both attention and prediction are manipulated by instructions or cues, task-relevance 
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and probabilistic information are integrated in the pre-stimulus period48, which complicates teasing apart their 
e�ects on sensory responses evoked by a forthcoming stimulus. Second, in some studies, the attention and expec-
tation manipulations concerned a common feature (e.g., spatial location44,48, or timing49). In such a situation, 
full orthogonality may not be present as information provided by predictive cues is inherently task-relevant and 
therefore requires attentional processing. To gain a deeper understanding on these interactive e�ects, it seems 
crucial to probe whether attention and prediction interactively in�uence ERP responses even if they are manip-
ulated in a fully orthogonal manner.

In the current study, we used a novel variant of a spatial cueing paradigm to achieve a fully orthogonal manip-
ulation of spatial attention and probabilistic feature expectations. Spatial attention was manipulated in a sustained 
fashion by cues that instructed to attend to grating stimuli appearing in one visual �eld throughout an experi-
mental block. Expectations were manipulated in a probabilistic fashion and were related to an independent fea-
ture of the gratings, namely their orientation. Within one block, gratings of one orientation were presented with 
higher probability compared to gratings of the other orientation. Importantly, both attention and prediction were 
manipulated in a sustained manner. Feature expectations were task-irrelevant to ensure that the manipulation of 
attention and expectations would be fully orthogonal.

We expected a general increase in P1 and N1 amplitudes due to attentional selection. Moreover, we hypothe-
sised that these signatures of attentional gain would be in�uenced by perceptual expectations and, therefore, we 
expected to observe an interactive pattern between attention and prediction. Based on previous studies demon-
strating that the N1 component is sensitive to both attentional selection and prediction46,50, we assumed that an 
interaction between attention and prediction would be observed in the time window of the N1 component, with 
the largest N1 amplitude for predictable and attended stimuli. Based on our previous study with a similar task 
parameters48, we expected the stimuli to evoke strongly lateralized posterior-occipital responses. �erefore, we 
also explored asymmetries of visual evoked potentials at parieto-occipital sites by subtracting ipsilateral from 
contralateral activity51, and we assessed e�ects of attention and perceptual expectations on event-related laterali-
sations (ERL), which are considered markers of selective attention: P1pc, N1pc, N2pc. We assumed that attention 
and perceptual expectations may modulate the N1pc, i.e., the lateralised analogue to the posterior-occipital N1.

Methods
Participants. Using G*Power 3.152 software and referring to the observed effect size of the prediction 
e�ect (i.e., the comparison of the predicted vs. unpredicted condition) in the time window of the N1 component 
in our previous study48, a sample of 17 participants was estimated to achieve power of ~0.85 (with the signi�cance 
level set at p = 0.05). We recruited twenty-four volunteers through a database of participants at the University 
of Leipzig. One participant was excluded from further analysis due to a technical failure of EEG recording, two 
because they did not maintain eye �xation (detected based on eye-tracking data; see below), and three due to 
excessive motor artefacts in the EEG signal. �e remaining 18 participants (13 female, 5 male) with a mean age of 
24 years (SD = 4, range: 19–30) were predominantly right-handed (lateralisation quotient53: M = 89%, SD = 22%, 
range = 17%–100%), had normal or corrected-to-normal vision, and no history of psychiatric or neurological 
impairment. A�er being informed about the nature of the study, they gave written informed consent to partic-
ipate. �ey either received course credits or were reimbursed for their participation (€ 6 per hour). �e ethics 
approval for the study was obtained from the Ethics Committee of the Faculty of Medicine at the University of 
Leipzig, and the study was conducted in accordance with the approved guidelines and regulations.

Stimuli and apparatus. �e stimulus display consisted of a Gabor patch (4.8° × 4.8° sinusoidal grating 
enveloped by a Gaussian, SD = 0.69°) embedded in random noise smoothed with a Gaussian �lter (SD = 0.69°), 
and centred on the horizontal meridian 3.5° to the le� and right of the �xation cross. �e orientation of the Gabor 
patch was either 45° or 135°, with spatial frequency of either 2.6 cycles per degree (cpd) or 1.7 cpd. �e phase was 
pseudorandomised and sampled from the range of 0° to 330° in 16 steps of 22°. �e stimulus was presented on 
a grey background. �e stimulus contrast was adjusted individually for each participant in a weighted up-down 
adaptive procedure (see below). Stimuli were created, presented, and responses to them collected using MATLAB 
(�e Mathworks, Inc, Natick, MA) in conjunction with Psychophysics Toolbox 354,55. �e experimental procedure 
was presented on a 19” CRT monitor (G90fB, ViewSonic, Walnut, CA; resolution 1024 × 768 pixels, refresh rate of 
100 Hz). Participants viewed the display from a distance of 57 cm with their heads on a chinrest. �e experiment 
was conducted in a dimly lit and electrically shielded chamber.

Procedure. Each block started with a presentation of an attention cue (words ‘LEFT’ or ‘RIGHT’), which 
instructed participants to attend to the le� visual �eld (LVF) or the right visual �eld (RVF) throughout the block 
(see Fig. 1A). Attention cues were presented in the centre of the screen for 1000 ms (see Fig. 1C). Each trial 
started with a presentation of a cross (“+” sign) at the centre of the screen that participants were required to �xate 
throughout the whole experiment. A�er a variable interval (600–900 ms), a Gabor patch was presented for 50 
ms randomly either in the LVF or RVF. Perceptual expectations were manipulated probabilistically by presenting 
Gabor patches of more likely (predicted: 75% of Gabor patches within block) or a less likely (unpredicted: 25% 
Gabor patches) orientation. Within block version 1, 75% of Gabor patches had 45° orientation while 25% of 
Gabor patches had 135° orientation, and vice-versa for block version 2 (see Fig. 1B). Gabor patches were of high 
(i.e., 2.6 cpd; 50% of stimuli) or low (i.e., 1.7 cpd; 50% of stimuli) spatial frequency. Participants were asked to 
perform a discrimination task only on the attended side and to respond to either high or low spatial frequency by 
pressing a designated button on a response box with their right hand. �e response instruction was counterbal-
anced between participants, so that half of the participants responded to higher spatial frequency gratings and 
another half responded to lower spatial frequency gratings. �e response window was 1650 ms, followed by an 
inter-trial interval varying between 50–350 ms (see Fig. 1C).
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�e blocks consisting of 16 trials were administered in a �xed order: 32 blocks of the task with the same cued 
VF (e.g., ‘LEFT’ attention cue) were followed by 32 blocks in which the other VF was cued (e.g., ‘RIGHT’ attention 
cue). Within 32 blocks with the same attention cue, 16 blocks of the task had one orientation-probability contin-
gency (i.e., block version 1; see Fig. 1B) and were followed by 16 blocks of another orientation-probability contin-
gency (i.e., block version 2; see Fig. 1B). �e order of both attention cueing conditions and orientation-probability 
contingency was counterbalanced across participants. Experimental blocks were preceded by a training run in 
which participants were familiarised with 4 blocks of the task (one block of each kind). �e task consisted of 1024 
trials in total, divided in 64 blocks. A�er each 4 blocks, participants could rest for a variable period of time.

�e stimulus contrast was adjusted at the beginning of the experiment, using an adaptive staircase proce-
dure56. In this procedure, the trial sequence and timing were kept identical to the experimental task, but attention 
cues were not included, and participants were asked to identify the spatial frequency of patches appearing in both 
visual �elds. �e just noticeable di�erence was set at 90%. �e task was repeated at least twice and the contrast 
value calculated from the last run was used in the experiment (M = 0.18, SD = 0.04).

Eye tracking. To ensure that participants maintained �xation during the trials, we recorded their eye move-
ments with an infrared eye-tracking system (EyeLink 1000; SR Research Ltd., Mississauga, Ontario, Canada) at 
a sampling rate of 500 Hz. �e monocular recordings were controlled by the EyeLink So�ware. Due to observed 
horizontal and vertical o�set of eye �xation, eye-tracking data were corrected by subtracting a median o�set cal-
culated for each block. Subsequently, trials during which gaze was not �xated on the area 1° degree around the �x-
ation cross at the time of the presentation of the grating (50 ms) were excluded from the EEG analysis (M = 5.2% 
per condition and participant, range: 0–20.3%). If participants did not maintain central �xation in more than 50% 
of the trials, their data were not included in analyses (2 participants, see above).

EEG recording. �e electroencephalogram (EEG) was continuously recorded at a sampling rate of 500 Hz 
from 59 Ag/AgCl active electrodes using a BrainAmp amplifier and the Vision Recorder software (Brain 
Products™ GmbH, Munich, Germany). Electrodes were mounted into an elastic cap (actiCAP) following the 
extended international 10–20 system57. An electrode placed on the tip of the nose served as an online refer-
ence, a ground electrode was placed on the forehead, and two electrodes were attached to the earlobes for o�ine 
re-referencing. Electrooculogram (EOG) was recorded using electrodes placed at the outer canthi and below and 
above (electrode Fp1) the le� eye.

EEG data preprocessing. EEG preprocessing was carried out using EEGLAB58. Data were re-referenced 
o�ine to the average of the le� and right earlobes. Vertical electrooculogram (VEOG) and horizontal elec-
trooculogram (HEOG) were calculated from the EOG data. �e data were �ltered with a 0.1 Hz high-pass and a 
40 Hz low-pass windowed sinc �nite impulse response (FIR) �lter (Hamming window, �lter order 8250 and 184 
for high-pass and low-pass �lter, respectively). Independent Component Analysis (ICA) was used to remove 
eye-blinks, muscle artefacts, and noisy channels from continuous data, based on measures computed with 
FASTER (correlation with EOG channels, spatial kurtosis, power spectrum slope, Hurst exponent)59 and SASICA 
(low autocorrelation, focal topography, correlation with HEOG and VEOG)60. On average, 3.4 components per 

Figure 1. Experimental procedure (A) Stimulus conditions (note that response requirements with respect to 
spatial frequency were counterbalanced between participants). (B) Block order (note that the order of both 
attention cueing conditions and orientation-probability contingency was counterbalanced across participants). 
(C) Trial timeline.
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participant were removed (range: 1–6). Noisy channels whose data’s joint probabilities exceeded a threshold of 3 
standard deviations were excluded and interpolated using spherical interpolation (on average 1.8 channels, range: 
0–4). Subsequently, stimulus-locked epochs of −200 to 500 ms were de�ned, and baseline corrected using the 
200 ms window before stimulus presentation. Finally, epochs with an amplitude change exceeding 75 µV on any 
channel were rejected from further analysis.

Behavioural and EEG data analyses. �e e�ectiveness of attention manipulation was assessed in the 
behavioural data by calculating the proportion of false alarms (FA) in the unattended condition (i.e., responses 
to stimuli that appeared on the unattended side). To assess the accuracy in the spatial frequency discrimination 
task, the proportion of false alarms for attended Gabor patches of spatial frequency that did not require a response 
and proportion of misses for Gabor patches of response-relevant spatial frequency were calculated. �e e�ects of 
the probabilistic manipulation were assessed by comparing, using paired-sample t-tests, mean response times to 
predicted vs. unpredicted stimuli (i.e., more likely or less likely appearing in the block).

Discrimination performance was analysed based on signal detection theory (SDT)61–63. �e proportion of 
trials in which stimuli with a task-relevant spatial frequency at the attended side were correctly identi�ed were 
considered as hits. Trials, in which stimuli with task relevant spatial frequency were presented at the attended side, 
but were not responded to, were de�ned as misses. Trials, in which stimuli with task-irrelevant spatial frequency 
were presented at the attended side and they were responded to, were de�ned as false alarms. Trials in which 
stimuli with task-irrelevant spatial frequency were presented at the attended side and response to them was cor-
rectly withheld, were de�ned as correct rejections64–66. Based on the proportions of hits, misses, false alarms and 
correct rejections, non-parametric estimates of sensitivity (A’) and response bias (B”D) were calculated. A’ ranges 
from 0.5 (signal is indistinguishable from noise) to 1 (perfect performance)67. B”D ranges from −1 to 1, these 
values signifying extreme bias in favour of no (i.e., reporting an absence of task-relevant spatial frequency) vs. 
yes (i.e., a reporting a presence of task-relevant spatial frequency) responses68,69, whereas 0 indicates no response 
bias. A’ was compared against 0.5 (chance level) and B”D was compared against 0 (no response bias) by means of 
one-sample t-tests. �ese two measures were also compared between unpredicted and predicted conditions using 
paired-sample t-tests.

Average ERP waveforms were computed separately for each participant and condition, for channels contralat-
eral (i.e., le� hemisphere for RVF stimuli and right hemisphere channels for LVF stimuli) and ipsilateral (i.e., 
right hemisphere channels for RVF stimuli and le� hemisphere channels for LVF stimuli) to the side at which the 
stimulus was presented. For the predicted condition, we included only trials, which directly preceded unpredicted 
trials, in order to balance the number of trials across conditions. In the unpredicted condition, we excluded tri-
als that were repetitions of unpredicted orientation, in order to avoid potential confounding e�ects of stimulus 
repetition. �e resulting mean amount of trials per condition and participant was 79 (SD = 15, range: 44–103; 
attended/predicted: M = 79, SD = 18; attended/unpredicted: M = 79, SD = 14, unattended/predicted: M = 79, 
SD = 10, unattended/unpredicted; M = 78; SD = 16). A grand mean was calculated by averaging each condition 
across participants.

�e N1 component, identi�ed via visual inspection, was characterised by an anterior distribution; therefore, 
mean amplitudes in the cluster of six fronto-central electrodes (‘F1/2i’, ‘Fz’, ‘F1/2c’, ‘FC1/2i’, ‘FCz’, ‘FC1/2c’) in the 
time window of 150–196 ms (±23 ms around the peak of the component) were analysed. A repeated measures 
ANOVA (rANOVA) including factors attention (attended, unattended), prediction (predicted, unpredicted), and 
electrode location (ipsilateral: ‘F1/2i’ and ‘FC1/2i’, midline: ‘Fz’ and ‘FCz’, contralateral: ‘F1/2c’ and ‘FC1/2c’), was 
conducted.

To capture asymmetries of early visual evoked potentials at parieto-occipital sites, ERLs were computed by 
subtracting ipsilateral from contralateral activity sites. �ree ERLs were assessed in the cluster of three lateral 
posterior electrodes (PO7/8c-i, P7/8c-i, P5/6c-i), namely the P1pc (76–106 ms; ±15 ms around the peak ampli-
tude), N1pc (136–186 ms; ±25 ms around the peak amplitude), and N2pc (242–288 ms; ±23 ms around the peak 
amplitude).

We additionally analysed the e�ects of attention and prediction on the contralateral and ipsilateral P1 compo-
nents, as well as P3 subcomponents – P3a and P3b (see Supplementary Information).

Details of the statistical procedures. Statistical analyses were performed in R 3.3.170, using packages ez 
v4.3 71, MASS 7.3-4572, car 2.1-273, and all the respective dependencies.

�e signi�cance level for all frequentist tests was set at p = 0.05. In case the assumption of normality was 
violated – as indicated by statistically signi�cant Shapiro-Wilk tests – Box-Cox transformation was performed74 
to identify the lambda value with the highest log-likelihood. With respect to rANOVAs, Greenhouse-Geisser 
corrected p-values were reported in case the assumption of sphericity was violated, and generalized eta squared 
was used as a measure of e�ect size75. Paired comparisons were conducted by means of paired-sample t-tests, and 
Pearson’s r was used as a measure of e�ect size76.

Frequentist analyses were complemented by estimating Bayes Factors (BF10)
77–81. For the Bayesian rANOVA, 

participants were included in all models as a random factor and their variance was considered as nuisance. We 
focused on the subset of all models, in which an interaction can be included only if all constituent e�ects or 
interactions are also included (i.e., attention, prediction, and their interaction; or attention, prediction, later-
alisation, and their interaction)81. We compared these models against the null model (i.e., including only the 
random factor). In addition, we compared the BF10 of the full model (i.e., all main e�ects and interactions) with 
models that included only main e�ects, in order to better characterize the independent contribution of attention 
and prediction. �e calculation of BF10 was performed using the BayesFactor 0.9.12–2 package81,82 using 10,000 
Monte-Carlo sampling iterations. �e null hypothesis was speci�ed as a point-null prior (i.e., standardized e�ect 
size δ = 0), whereas the alternative hypothesis was de�ned as a Je�rey-Zellner-Siow (JZS) prior, i.e., a folded 
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Cauchy distribution centred around δ = 0 with a scaling factor of r = 0.70779,80. Data were interpreted as positively 
in favour of the null (or alternative) hypothesis if BF10 was at least lower than 0.3 (or larger than 3), whereas BF10 
close to 1 would be only weakly informative77,78.

Data availability. �e data generated and analysed during the current study are available from the Open 
Science Framework, https://osf.io/rqvh3.

Results
Behavioural results. The mean proportion of false alarms in the unattended condition was 0.0004 
(SD = 0.001), suggesting that participants followed the instruction provided by the attention cues. �e mean 
proportion of false alarms for attended stimuli that did not require a response was 0.16 (SD = 0.13) and the mean 
proportion of missed responses to attended and task-relevant spatial frequency was 0.09 (SD = 0.07). �e mean 
response time in the unpredicted condition was 601 ms (SD = 74), while the mean response time in the predicted 
condition was 600 ms (SD = 69). �ese means were not statistically di�erent (M = 0.33 ms, t17 = 0.06, p = 0.953, 
r = 0.01). Bayesian analysis indicated positive evidence in favour of the null hypothesis, BF10 = 0.24 ± 0.01%.

�e analysis of signal detection measures showed that discrimination performance (A’) was above chance in 
both the predicted (M = 0.92, SD = 0.05, t17 = 38.74, p < 0.001, r = 0.99) and unpredicted conditions (M = 0.93, 
SD = 0.05, t17 = 40.63, p < 0.001, r = 0.99). A’ was not statistically di�erent between unpredicted and predicted 
conditions (M = 0.002, t17 = 0.44, p = 0.662, r = 0.11). Bayesian one-sample t-test showed very strong evidence 
for above-chance performance in both the predicted (BF10 = 6.11 × 1014 ± 0%) and unpredicted conditions 
(BF10 = 1.29 × 1015 ± 0%). Bayesian paired t-test comparing the two conditions indicated positive evidence in 
favour of the null hypothesis, BF10 = 0.26 ± 0%. Analysis of response bias (B”D) revealed a signi�cant bias towards 
yes (i.e., a bias towards reporting a presence of task-relevant spatial frequency) responses in the predicted condi-
tion, M = −0.36, SD = 0.50, t17 = −3.08, p = 0.007, r = 0.60, while the bias did not seem to be statistically reliable 
in the unpredicted condition, M = −0.27, SD = 0.62, t17 = −1.84, p = 0.083, r = 0.41. �e di�erence between the 
unpredicted and the predicted condition was not signi�cant, M = 0.10, t17 = 1.64, p = 0.119, r = 0.37. Bayesian 
analysis showed evidence for response bias in the predicted condition, BF10 = 7.31 ± 0%, while the data were not 
informative for the unpredicted condition, BF10 = 0.98 ± 0%. Bayesian t-test comparing the two conditions indi-
cated only anecdotal evidence for the null hypothesis (BF10 = 0.75 ± 0%).

EEG results. N1a. In the fronto-central electrode-cluster, a three-way rANOVA (attention: attended, unat-
tended; prediction: predicted, unpredicted; electrode location: ipsilateral, midline, contralateral) on N1 ampli-
tude values between 150–196 ms post-stimulus onset revealed a signi�cant main e�ect of electrode location 
(F(2,34) = 10.90, p < 0.001, η2

G = 0.010), with more negative amplitudes at the contralateral (M = −2.47 µV, 
SD = 1.26 µV) than midline (M = −2.24 µV, SD = 1.24 µV) or ipsilateral electrodes (M = −2.07 µV, SD = 1.12 µV; 
see Fig. 2). Furthermore, a signi�cant interaction between attention and prediction was observed (F(1,17) = 6.60, 
p = 0.020, η2

G = 0.020), indicating that the N1 was most negative for attended and predicted stimuli (see Fig. 2). In 
the predicted condition, a signi�cant di�erence between attended and unattended stimuli was found (M = −1.10 
µV, t17 = −2.58, p = 0.019, r = 0.53), while the responses to attended and unattended stimuli did not signi�cantly 
di�er in the unpredicted condition (M = −0.17 µV, t17 = −0.37, p = 0.717, r = 0.09). �e main e�ects of prediction 
and attention were not signi�cant, Fs < 2.41, ps > 0.14, η2

G < 0.037, neither was a three-way interaction between 
attention, prediction, and electrode location, F(2,34) = 0.80, p = 0.458, η2

G = 0.001.
Bayesian analysis showed positive evidence for the null model compared to the full model 

(BF10 = 0.01 ± 12.57%). However, strong evidence in favour of a model that included a main e�ect of attention, 
a main e�ect of prediction, and their interaction, was observed, BF10 = 173.87 ± 5.84% (see Table 1). Bayesian 
t-tests were used to compare the magnitude of the attention e�ect separately in the predicted and the unpredicted 
condition. In the predicted condition, the alternative hypothesis (i.e., attention e�ect) was 3.08 times more likely 
than the null hypothesis (BF10 = 3.08 ± 0%). In the unpredicted condition, evidence in favour of the null hypoth-
esis (i.e., no attention e�ect) was observed (BF10 = 0.26 ± 0.01%). �e �nding of a reliable attention e�ect only in 
the predicted condition, but not in the unpredicted condition, conforms to the hypothesis that attentional gain 
and probabilistic feature expectations modulate the N1a component in an interactive manner.

ERLs: P1pc, N1pc, N2pc. A two-way rANOVA on the P1pc (76–106 ms a�er stimulus onset) showed that this 
component did not seem to be reliably modulated by attention (F(1,17) = 0.01, p = 0.916, η2

G < 0.001) or predic-
tion (F(1,17) = 4.15, p = 0.057, η2

G = 0.019). An interaction between prediction and attention also exceeded the 
signi�cance level, F(1,17) = 4.29, p = 0.054, η2

G = 0.043. Bayesian analysis showed anecdotal evidence against 
the full model when compared to the null model, BF10 = 0.35 ± 3.02%. �is was also the case for the model with 
the highest BF10, namely a model including prediction (BF10 = 0.49 ± 1.31%; see Table 1). �erefore, no reliable 
modulation of the P1pc by attention or prediction has been observed conclusively.

In the time window of the N1pc component (136–186 ms post-stimulus onset), a signi�cant main e�ect of 
attention was observed, F(1,17) = 18.47, p < 0.001, η2

G = 0.058. Attended stimuli elicited a larger lateralised neg-
ativity (M = −3.17 µV, SD = 2.39) than unattended stimuli (M = −2.06 µV, SD = 1.80; see Fig. 3). �e N1pc was 
also larger for predicted (M = −2.76 µV, SD = 2.06) relative to unpredicted stimuli (M = −2.47 µV, SD = 2.07; see 
Fig. 3), as evidenced by a signi�cant main e�ect of prediction (F(1,17) = 4.69, p = 0.045, η2

G = 0.004). �e interac-
tion between attention and prediction was not signi�cant, F = 0.16, p = 0.690, η2

G < 0.001. Bayesian analysis indi-
cated that the model including the main e�ect of attention (BF10 = 63,554.46 ± 0.83%) was 7.44 more likely than 
the full model. �e model including both main e�ects, attention and prediction, was 3.89 times more likely than 
the full model. Moreover, the model including main e�ects of attention and prediction (BF10 = 33,230.40 ± 2.07%) 
was found to be only 0.52 less likely than the model including attention only; however, the BF value does not allow 

https://osf.io/rqvh3/?view_only=4bed734c8fef460f962548eb277c438a
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to reliably adjudicate which of these models should be treated as preferred. Taken together, these results show that 
the lateralized N1pc component has been modulated by attention and probabilistic expectations in an additive 
manner.

Figure 2. (A) ERPs from the averaged cluster of fronto-central electrodes (F1/2i’, ‘Fz’, ‘F1/2c’, ‘FC1/2i’, ‘FCz’, and 
‘FC1/2c’), depicting the attentional modulation in the predicted and unpredicted condition respectively. �e 
N1a time window (150–196 ms) is marked with grey panels. (B) Beanplots102 showing the interaction e�ect in 
the N1a time window. �ick horizontal lines represent means; thin lines represent individual data points; and 
coloured parts represent estimated density of distributions. (C) Topography of the attentional modulation of the 
N1a in the predicted and unpredicted condition.
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In the time window of the N2pc component (244–288 ms post-stimulus onset), amplitude was more neg-
ative in the attended (M = −0.16 µV, SD = 2.36) than the unattended condition (M = −0.78 µV, SD = 2.11), as 
evidenced by a signi�cant main e�ect of attention (F(1,17) = 5.01, p = 0.039, η2

G = 0.040). �e main e�ect of 
prediction and the attention × prediction interaction were not signi�cant, Fs < 0.67, ps > 0.501, η2

G < 0.001. 
Bayesian analysis indicated that the model with a main e�ect of attention should be preferred over the null 
model (BF10 = 25.02 ± 0.92%). In addition, this model was 18.81 times more likely than the full model, 
BF10 = 1.33 ± 4.52% (see Table 1). �e result shows that the N2pc, a marker of selective attention, is higher for 
attended vs. unattended stimuli, but it is not modulated by perceptual expectations.

Discussion
�e current study investigated whether early electrophysiological signatures of attentional gain are modulated 
by probabilistic feature expectations. We used a novel version of the spatial cueing task, in which cues instructed 
participants to attend to a given visual �eld throughout each block and to discriminate gratings based on their 
spatial frequency. Conditional probability of the gratings’ orientation was manipulated within blocks, so that the 
orientation was either predicted (more likely) or unpredicted (less likely). �us, spatial attention and perceptual 
expectations were manipulated orthogonally. We analysed the signature of attentional gain re�ected by the mod-
ulation of the N1 component. We hypothesised that attentional gain would be modulated by prediction about 
features of visual stimuli. If attentional selection is facilitated by stimulus predictability, an interaction between 
attention and prediction in the time window of the N1 component would be observed.

Expectations about task-irrelevant features do not influence decision sensitivity, but may influ-
ence decision bias. We did not observe clear-cut behavioural e�ects of perceptual expectations. Previous 
studies have shown that context-speci�c expectations may in�uence decision sensitivity83,84. However, according 
to a framework proposed by Summer�eld and Egner5, feature expectations generated on the basis of prior proba-
bility, rather than the decision sensitivity, are expected to in�uence a decision criterion. �erefore, they may lead 
to a response bias, and seem to improve metacognitive judgements3,9. It has been suggested that, in experiments 
studying e�ects of perceptual expectations, modulations of decision sensitivity may rather be attributed to atten-
tional confounds5. In the current study, in which spatial attention and feature expectations were manipulated fully 
orthogonally, we observed evidence indicating that predicted and unpredicted stimuli did not di�er with respect 
to decision sensitivity. �e data, however, were less informative concerning the hypothesis that predictions would 
modulate response bias. Reliable evidence of response bias was observed in the predicted condition, whereas the 
data were non-informative concerning the presence of response bias in the unpredicted condition. Statistically 
ambiguous evidence regarding response bias in the current experiment may be attributed either to low statisti-
cal power or methodological di�erences between previous studies and the present one. Firstly, unlike previous 
studies4,9, expectations were manipulated in an implicit fashion; hence no cue would inform participants about 
the likelihood of the stimuli. Secondly, our manipulations of expectations were orthogonal with regards to the 
behavioural task. Previous studies have suggested that predictions related to task-irrelevant dimensions of stimuli 
may facilitate behaviour38 and in�uence ERP responses re�ecting attentional gain46. However, at present it is not 
clear whether explicit top-down information is necessary to observe a clear behavioural in�uence of expectations.

Component Model BF10 ± % pe

anterior N1  
(150–196 ms)

Att 100.64 1.08

Pred 0.25 1.47

Lat 0.14 0.76

Att + Pred 25.78 1.32

Att + Pred + Lat 4.61 3.75

Att + Pred + Att*Pred 173.87 5.84

Att + Pred + Lat + Att*Pred + Lat + Pred*Lat + Rel*Lat + Pred*Rel*Lat 0.01 12.57

P1pc  
(76–106 ms)

Att 0.18 1.19

Pred 0.49 1.31

Att + Pred 0.09 6.64

Att + Pred + Att*Pred 0.35 3.01

N1pc  
(136–186 ms)

Att 63,554.46 0.83

Pred 0.34 1.16

Att + Pred 33,230.40 2.07

Att + Pred + Att*Pred 8,544.00 3.08

N2pc  
(244–288 ms)

Att 25.02 0.92

Pred 0.189 1.02

Att + Pred 4.72 1.34

Att + Pred + Att*Pred 1.33 4.52

Table 1. Bayes factors (BF10) and percentage of proportional errors (% pe) for each model of interest, obtained 
by using JZS priors with a scaling factor of r = 0.707 (see Methods and Results sections for details). �e models 
with the best explanatory power are highlighted in bold.
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Top-down attentional gain is modulated by expectations about stimulus features. To inves-
tigate whether attention and perceptual expectations jointly in�uence early signatures of attentional gain, we 
focused primarily on the N1 component. We observed that the N1a component has been jointly modulated by 
attention and perceptual expectations. As hypothesised, the N1a amplitude was largest in response to attended 

Figure 3. (A) ERLs of the main e�ects of attention and expectations in the averaged cluster of lateral posterior 
electrodes (PO7/8c-i, P7/8c-i, P5/6c-i). �e N1pc time window (136–186 ms) is marked with grey panels. (B) 
Beanplots depicting the e�ects of attention and prediction in the N1pc time window. (C) Topographies of the 
N1pc in the respective conditions. �e same topography (contralateral-ipsilateral ERP) is plotted in the le� and 
the right hemisphere.
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and predicted stimuli. Only for gratings with predicted orientation, the N1a response was larger in the attended 
relative to unattended condition. On the other hand, no reliable attentional modulation was observed for stimuli 
with the unpredicted orientation.

�e N1 attention e�ect is commonly associated with attentional facilitation12,17. It has been suggested that 
anterior and posterior-occipital subcomponents of the N1 may re�ect di�erent functional roles and have di�er-
ent neural generators. �e N1a generators have been localised in the parietal lobe, near the intraparietal sulcus, 
while sources of the posterior subcomponent have been localised in the extrastriate cortex85,86. �e modulation 
of the anterior subcomponent of the N1 may be linked to voluntary (i.e., top-down, endogenous) control of 
spatial attention in the dorsal frontoparietal network22, while the posterior subcomponent of the N1 presumably 
originates from regions in extrastriate cortex, including the occipital gyrus and ventral fusiform gyrus. Previous 
studies have suggested that modulations of the posterior N1 may be linked to exogenous (i.e., bottom-up) 
object-based attentional selection subserved by the ventral network20,21. Considering the dissociation between 
N1 subcomponents, a joint e�ect of attention and prediction on the anterior N1 component may be linked to a 
modulation within the dorsal and fronto-parietal network in control of voluntary attention shi�s. �e current 
data suggest that attentional facilitation, as indexed by the N1a component, may be contingent on the perceptual 
expectations about stimulus features.

ERLs are reliably modulated by attention. We further explored e�ects of attention and perceptual 
expectations on posterior occipital components by subtracting ipsilateral from contralateral activity51, a proce-
dure that exploits the well-known attention-dependent asymmetrical representation of perceptual environments 
in the visual system87. Among the di�erent ERL components, the N1pc is commonly elicited following unilateral 
presentation and is assumed to re�ect saliency-based, bottom-up attentional orienting88,89, followed by the N2pc 
component thought to index attentional capture by relevant stimuli90,91. In the present study, we observed reliable 
modulations of the N1pc and the N2pc by spatial orienting, consistent with the idea that these components re�ect 
perceptual and attentional tuning to task-relevant features.

Additive influence of attention and perceptual expectations on the N1pc. A novel �nding regard-
ing prediction e�ects was observed on the amplitude of the N1pc: the N1pc was signi�cantly larger for predicted 
than unpredicted stimuli. �e increase in the N1pc as a function of valid feature expectations runs counter to 
the hypothesis that responses to expected stimuli would elicit smaller prediction error signals than unexpected 
stimuli. It could be speculated that perceptual processing may be facilitated by valid probabilistic expectations due 
to an increase in the precision of prediction errors in stimulus-speci�c populations (i.e., in the hemisphere con-
tralateral to stimulus). �is ‘sharpening hypothesis’ has been corroborated by recent fMRI92, ERP93,94 and mag-
netoencephalography (MEG) studies95. In particular, Barascud et al.95 have proposed that the complexity of the 
predicted stimulus may determine whether responses to predicted stimuli are increased or decreased  compared 
to responses to unpredicted stimuli. Less complex predicted signals may lead to smaller response amplitudes due 
to adaptation e�ects based on low-level transitional probabilities, while complex predicted signals (such as the 
random noise-�ltered grating stimuli with randomised phase used in the present study) may lead to increases in 
response amplitude due to precision-weighting.

Of note, Bayesian analysis comparing the model that included both main e�ects (i.e., attention and prediction) 
with the attention e�ect only showed very weak evidence in favour of the latter model. �e current results do not 
allow to reliably adjudicate between the two models, therefore, this �nding should be treated with caution. Future 
high-powered studies could arbitrate between the model that considers attentional in�uence only and a model 
which considers an additive in�uence of attention and perceptual expectations on N1pc amplitudes.

Additive and interactive effects of attention and perceptual expectations. We conclude that per-
ceptual expectations may have di�erentially in�uenced dissociable processes assumed to be related to N1 sub-
components. On the one hand, exogenous (‘bottom-up’) attentional capture by task-relevant features was reliably 
observed independently of expectations about stimulus. Expectations, however, have additively in�uenced the 
N1pc component, and led to a facilitation of perceptual processing for expected stimuli independent of attention. 
On the other hand, the voluntary endogenous attention e�ect, assumed to be re�ected in the N1a, was observed 
for predicted stimuli only and not for the unpredicted stimuli, pointing to an interactive in�uence of attention and 
expectations, and a possible dependence of top-down attentional facilitation e�ects on the availability of percep-
tual expectations about stimulus features.

�e observation of interactive e�ects is consistent with several previous studies. An increased response 
to predicted and attended stimuli in the V1 was �rst found in an fMRI study44 that employed a modi�ed 
spatial cueing task, in which attention and prediction were manipulated by two independent cues. Moreover, 
another study45 reported that attention increases disparity between representations of expected vs. unexpected 
stimuli in category-speci�c visual areas. A similar pattern of results was reported in an auditory EEG study46. 
Participants were asked to attend to one of two streams of predictable or unpredictable auditory stimuli and to 
detect tones of attenuated loudness. �e auditory N1 was found to be selectively increased for stimuli embed-
ded in an attended and predictable stimulus stream. �e N1 attention e�ect was present only in the predictable 
condition, while it was not present in the unpredictable streams. Taken together, these data indicate that atten-
tional selection may be facilitated by statistical regularities in the environment38. On the other hand, the �nding 
of additive e�ects on early posterior-occipital responses would seem in line with another recent MVPA study, 
in which expectations and task-relevance additively improved classi�cation accuracy of grating orientation in 
the V192.
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How do attention and perceptual expectations interact to optimise perception? According to 
the predictive coding theory, attention is associated with a mechanism that modulates precision (i.e., the inverse 
of variability) of ascending prediction errors24,41,42,96,97. Prediction errors that encode the content of sensory input, 
which is yet unexplained by the internal model of the environment, are believed to be modulated by the inference 
about the precision of prediction errors. �e precision is inferred to be higher for predicted, regularly repeat-
ing stimuli, which may increase gain of prediction error signals38,43,95. �e current data provide support for this 
hypothesis. However, similarly to our previous study48, the interplay of attention and expectation has not reliably 
in�uenced the posterior parieto-occipital responses presumably re�ecting lower-level processing in the unimodal 
visual areas, which have shown additive in�uences of attention and expectations. �e interplay between attention 
and expectations, however, was re�ected in modulations of the N1a component, presumably related to processing 
in the higher-level areas of the dorsal fronto-parietal network.

It should also be noted that some recent fMRI and M/EEG studies reported a di�erent pattern of interaction 
between attention and expectations, whereby a modulation by expectations was either selectively present or more 
pronounced in the unattended47,48,50,98, or conversely, in the attended condition99,100. Di�erences in how the inter-
action patterns are manifested may be attributed to diverse manipulations of attention and expectations1. �e 
interactions between attention and prediction may unfold di�erently dependent on the information provided by 
the manipulation of expectation, which may either be contextual in nature47,48,50,99, or can relate to the perceptual 
features of the stimuli, as in the current study. Moreover, the complexity of stimulus features, which may either 
a�ord or exclude low-level neural adaptation based on transitional probabilities, needs to be further consid-
ered95,101. Furthermore, if attention or expectations are manipulated probabilistically, they may provide varying 
degree of certainty, or con�dence, about upcoming stimuli prior to stimulus presentation, leading to baseline 
shi�s41. Future studies could investigate how these issues contribute to the interactive top-down in�uences on 
sensory processing.

Conclusions
To summarise, attention and prediction seem to interactively optimise visual perception within 200 ms a�er stim-
ulus onset. When spatial attention and perceptual expectations were manipulated in an orthogonal fashion, atten-
tional selection was contingent upon perceptual expectation of visual stimuli. �e attentional modulation of the 
anterior N1 component, which is thought to re�ect top-down attentional orienting in the dorsal fronto-parietal 
network, was only observed for stimuli with expected orientation, whereas it was absent for unexpected stimuli. 
�e attentional capture by task-relevant stimuli re�ected in the N1pc component did not interact with percep-
tual expectations. However, expectations additively in�uenced early lateral posterior responses, consistent with 
a perceptual sharpening of the expected input. �ese �ndings suggest that, within 200 ms post-stimulus onset, 
attention and perceptual expectations may in�uence visual processing in a dissociable and interactive manner, 
where top-down attentional engagement is dependent on probabilistic feature expectations.
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