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Abstract

We address a largely open problem of multilabel classification over graphs. Unlike traditional

vector input, a graph has rich variable-size substructures which are related to the labels in

some ways. We believe that uncovering these relations might hold the key to classification

performance and explainability. We introduce Graph Attention model for Multi-Label learn-

ing (GAML), a novel graph neural network that can handle this problem effectively. GAML

regards labels as auxiliary nodes and models them in conjunction with the input graph. By

applying the neural message passing algorithm and attention mechanism to both the label

nodes and the input nodes iteratively, GAML can capture the relations between the labels and

the input subgraphs at various resolution scales. Moreover, our model can take advantage of

explicit label dependencies. It also scales linearly with the number of labels and graph size

thanks to our proposed hierarchical attention. We evaluate GAML on an extensive set of

experiments with both graph-structured inputs and classical unstructured inputs. The results

show that GAML significantly outperforms other competing methods. Importantly, GAML

enables intuitive visualizations for better understanding of the label-substructure relations

and explanation of the model behaviors.
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1 Introduction

Drug development costs billions of dollars over many years with multiple stages of refinement

and trial (Mullard 2014). For this reason, repurposing approved drugs is a critical alternative

to the full development cycle, offering a huge saving of money, time, and lives. A canonical

task in drug repurposing is to predict the drug effect on multiple related diseases. This can

naturally be formulated as a multilabel learning problem. Different from standard domains

like text or image, drugs are usually represented as variable size graphs of atoms linked by

chemical bonds. The irregularity and complexity of rich graph structures make multilabel

learning over molecular graphs very challenging. At the same time, graphs bring about new

kinds of information not previously seen in unstructured data, as evidenced in the recent

surge of research in graph representation learning (Hamilton et al. 2017b; Zhang et al. 2017).

Hence, a new proper treatment of the multilabeling over graphs is needed.

We hypothesize that the key for classification performance and explainability lies in uncov-

ering the relations between labels and subgraphs. Towards this goal, we design a new graph

neural network (Scarselli et al. 2009) called GAML (which stands for Graph Attention model

for Multi-Label learning). GAML treats all label classes as nodes (termed label nodes) and

merges them with other nodes (called input nodes) of an input graph to form a unified label-

input graph. In the joint graph, relations between labels and substructures can be effectively

captured through the interaction across the label nodes and the input nodes. Specifically, we

leverage the message passing algorithm (Pham et al. 2017; Schlichtkrull et al. 2017; Gilmer

et al. 2017) to simultaneously update the local substructure at every input node and to prop-

agate the substructure-contained messages from all the input nodes to the label nodes. By

using attention (Bahdanau et al. 2014; Xu et al. 2015), each label node can extract the most

related substructures to update its own state which will later be used to predict the presence of

the corresponding class. Attention also enables insightful visualization which helps explain

the prediction. To account for large number of classes and big input graphs, we propose a

new type of attention named hierarchical attention. Different from the standard approach that

calculates the score matrix between every input and label node directly, our attention mecha-

nism uses some intermediate attentional factors to save computation. In our model, implicit

dependencies among the labels are captured via common attended substructures. However,

when explicit dependencies among the labels are available (e.g, through expert knowledge),

GAML can easily integrate them by adding links and exchange messages between related

label nodes. Moreover, since the node update procedure runs iteratively, our model can learn

the label-subgraph (or label-substructure) relations at various resolution scales.

The flexibility and scalability of GAML make it attractive to many real-world problems.

In this paper, we focus on two major drug–multitarget prediction problems: predicting drug–

protein binding, and drug–cancer response. In the first problem, a drug is tested against

multiple target proteins; and in the second problem, a drug is tested against multiple cancer

types. We also evaluate our method on classical vector input which can be seen as a special

graph with a singleton node. In both cases, GAML proves to be superior against rival mul-

tilabel learning techniques. Finally, to get a clear picture of the learned label-substructure

patterns, we generate visualizations using real drug molecules extracted from our datasets.

In summary, our contributions are:

– Proposing a novel neural graph neural network named GAML that addresses an open

problem of multilabel classification over graphs. Our model can effectively capture the

(multi-way) relations among the labels and the input subgraphs. It can also incorporate

explicit label dependencies and is scalable to many labels and big graphs.
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– Demonstrating the advantages of GAML through a comprehensive suite of experiments

with quantitative evaluation and visualization.

2 Related work

Multilabel classification with label dependencies Most work in multilabel learning focuses

on capturing the implicit or explicit label dependencies. One strategy is applying Canonical

Correlation Analysis (CCA) to map input and label into a common latent space. Then from

this space, the model will reconstruct the target label. Extensions of this approach includ-

ing both shallow (Li and Guo 2015; Sun et al. 2011) and deep (Yeh et al. 2017) models.

For graphical model-based approach, the work in Ghamrawi and McCallum (2005) uses

Conditional Random Fields to model the three way relation between every pair of labels i ,

j and the input x using a feature function φ(yi , y j , x). Meanwhile, the work in Guo and

Gu (2011) constructs a fully connected cyclic Bayesian Network over labels and perform

structure learning on this network. The probability of a label yi conditioned on the input

x and other labels y¬i is modeled using a logistic regression network. Both methods are

computationally expensive and require inexact inference for large number of labels.

To model the joint distribution of labels but still keep computation reasonable, some

methods exploit chain rule factorization. The most notable one is Probabilistic Classifier

Chain (Dembczynski et al. 2010) which builds a separate binary classifier for each label

with input to the model is the combination of the original input and the previously predicted

labels. Other methods follow that idea but use recurrent neural networks (Chen et al. 2017;

Wang et al. 2016) to learn the relations better. However, the critical issues of these methods

are ordering and poor inference (since the output label at one step depends on the value of

the previous predicted labels not their distribution, which is very unstable). Although some

tricks like beam search (Wang et al. 2016), or automatic order selection (Chen et al. 2017)

have been implemented to improve the results, they can only solve part of the problem.

Expert knowledge about label dependencies represented as trees (Deng et al. 2014) or

graphs (Bi and Kwok 2011; Chen et al. 2018) has been exploited for multilabel/multiclass

classification. In Chen et al. (2018), the authors build a graph neural network over the prede-

fined label graph. The input vector is copied for every label node and is concatenated to the

label embedding vector to form an initial state for that label node. Their method, however, is

limited to the vector input only whereas our model directly works on graph input with vector

input is the special case.

Multilabel classification with graph inputs Although graph classification has attracted a

significant interest in recent years (Takigawa and Mamitsuka 2017), there has been a limited

body of work on multilabel graph classification (Kong and Philip 2012). The line of work on

image tagging considers multilabel learning over a grid of pixels (Gong et al. 2013; Wang

et al. 2016; Wei et al. 2016). However, the standard treatment using CNN usually focuses

on attention over feature maps instead of exploiting the structural relations of objects in the

original image. A recent work in visual question answering that pushes forward the idea of

object graph is Teney et al. (2017), but the QA setting is different from ours. A special case of

our multilabel learning over graphs is multilabel learning over set (Pham et al. 2017) where

input is a collection of nodes with no explicit links.

Graph neural networks By leveraging the representation power of deep neural networks such

as CNN and RNN, a wide range of methods for learning over graphs (Defferrard et al. 2016;

Gilmer et al. 2017; Hamilton et al. 2017a; Kipf and Welling 2016a; Li et al. 2016; Niepert
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et al. 2016; Pham et al. 2017; Scarselli et al. 2009) has been proposed recently. These methods

can be grouped into more general categories such as Spectral Graph based (Bruna et al. 2013;

Defferrard et al. 2016; Kipf and Welling 2016a), Message Passing based (Gilmer et al. 2017;

Pham et al. 2017; Schlichtkrull et al. 2017), Random Walk based (Grover and Leskovec 2016;

Perozzi et al. 2014), Neural Net based (Li et al. 2016). Among them, Message Passing Graph

Neural Networks (MPGNNs) are very powerful since they can handle various kinds of graphs

including attributed graphs whose edges and nodes both have types. MPGNNs have found

many applications in bioinformatics such as drug activity classification (Pham et al. 2018),

chemical properties prediction (Gilmer et al. 2017), protein interface prediction (Fout et al.

2017) and drug generation (Jin et al. 2018). However, none of these methods properly handle

multilabel classification problems in which modeling multi-way relations among labels and

molecular subgraphs is the key factor.

Graph representation learning Many supervised learning problems over graphs (including

the multilabel classification problem we are working on) assume precomputed graph embed-

ding. Unsupervised learning methods for graphs (Narayanan et al. 2016; Shervashidze et al.

2011; Yanardag and Vishwanathan 2015) often exploit the common substructures among

graphs to ensure that graphs with similar structure will be represented as close points in

the embedding vector space. Graph embedding can also be achieved through graph recon-

struction or generation. This approach includes VAE/GAN based models (Kipf and Welling

2016b; Simonovsky and Komodakis 2018; Wang et al. 2017) and sequence based models (Li

et al. 2018; You et al. 2018).

3 Preliminaries

In this section we provide the mathematical formulation of multilabel classification and the

background knowledge about graph neural networks on which GAML is built. For clarity

and consistency, we use the following notations throughout the paper (unless being stated

explicitly): bold letters denote vectors (x is a vector); capital letters denote matrices (W is a

matrix); normal letters denote scalars (s is a scalar); {·} denotes a set; f (·) denotes a function

f with arguments separated by commas. Table 1 lists most common notations used in the

paper.

3.1 Multilabel classification

Multilabel classification is a supervised learning problem in which each input example may

be associated with more than one output class. Denote by X the input vector space and

C ≡ {1, 2, ..., C} the set of all classes labeled from 1 to C . Multilabel learning estimates a

function f that maps X onto the power set of C, written as f : X �→ PC . Because each

element of PC is a subset of C, it can be represented as a binary vector y of length C with

yc = 1 indicates that class c appears in the subset and yc = 0 otherwise (c = 1, C).

3.2 Graph notations

Consider an attributed graph G = (V, E) where V is the set of nodes and E is the set of edges.

Each node i is associated with a node feature vector vi which captures important properties

of a node. For example, if the graph G is a drug molecule (as depicted in Fig. 1), each node

is an atom and the node’s properties could be its atomic number, its charge, its valance, etc.
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Table 1 Notations used in the paper

Notation Description

c ∈ C Index of class, or label c, which is a member of set C

PC Powerset of C

t Inference (message passing) step

yc Label at label node c

vi Input feature vector at node i

xi State of input node i

mi , µi Message coming to node i

N (i) Neighborhood of node i

ei j Type of edge (i, j)

si j Unormalized attention score of node i to node j

ai j , bi j , αi j , βi j Attention probabilities of node i to node j

ηi Gate at node i

G, V,E Graph G with set of nodes V and set of edges E

relu(x) rectifier linear unit, which is max(x, 0)

lc State of label node c

yc Output at node c

f , g Element-wise nonlinear function

S[0]

O[1]

N[2]

C[3]

C[4]

C[5]

C[6]

C[7]

C[8]

C[9]

C[10]

C[11]

C[12]

C[13]

C[14]

C[15]

C[16]

Fig. 1 A drug molecule (PubChem SID = 502937) represented as an attributed graph. This graph has 17 nodes

numbered from 0 to 16 corresponding to 17 atoms. Nodes are characterized by atom types (sulfur, oxygen,

nitrogen, carbon) and edges are specified by bond types (single, double, aromatic)

In our current work, we only use the atomic number information. Thus, vi is the embedded

vector with respect to that atom type. Similar to nodes, each edge (i, j) is also associated

with an edge type ei j (for molecules, it is a bond type).

3.3 Message passing graph neural network

Let xi be the state of node i and N (i) = { j | (i, j) ∈ E} denote the neighborhood of node i .

In a message passing graph neural network (Gilmer et al. 2017; Pham et al. 2017; Scarselli

et al. 2009), a node uses information from its neighbors to update its own state as follows:

xt
i = f

(

xt−1
i ,

{(

xt−1
j , ei j

)}

j∈N (i)

)

(1)
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where t denotes the update step; and f (·) is a non-linear function (e.g., a multi-layer percep-

tron (MLP)). At t = 0, we set x0
i = vi .

Equation (1) is generic for most graph neural network models. In practice, it can be divided

into two steps: message aggregation and state update. In the message aggregation step, we

combine multiple messages sent to node i into a single message vector mi :

mt
i = ga

(

xt−1
i ,

{(

xt−1
j , ei j

)}

j∈N (i)

)

(2)

where ga(·) can be an attention (Bahdanau et al. 2014; Xu et al. 2015) or a pooling architecture.

For example, the message aggregated using mean pooling has the following formula:

mt
i =

1

|N (i)|

∑

j∈N (i)

Wei j
xt−1

j (3)

where |N (i)| is the number of neighbor nodes of node i ; We is a projection matrix which

corresponds to the edge type ei j . Despite of simplicity, Eq. (3) has shown to be able to encode

graph structures in several message passing models (Gilmer et al. 2017; Pham et al. 2017;

Schlichtkrull et al. 2017).

During the state update step, the node state is updated as follows:

xt
i = gu

(

xt−1
i , mt

i

)

(4)

where gu(·) can be any type of deep neural networks such as MLP (Kipf and Welling 2016a;

Hamilton et al. 2017a), RNN (Scarselli et al. 2009), GRU (Li et al. 2016) or Highway Network

(Pham et al. 2017). In our model, we use Highway Network (Srivastava et al. 2015) for gu(·)

as it has been shown to be effective for long range dependencies thanks to its skip-connection

and gating mechanism. As a result, Eq. (4) now becomes:

xt
i =

(

1 − ηt
i

)

⊙ xt−1
i + ηt

i ⊙ x̂
t
i (5)

where ηt
i ∈ (0, 1) and x̂i

t
are the gate vector and the non-linear candidate vector of node i at

time t , respectively; ⊙ is the element-wise product. The formulas of ηt and x̂
t

are provided

below:

ηt
i = sigmoid

(

Wηxt−1
i + Uηmt

i

)

(6)

x̂
t
i = relu

(

Wx xt−1
i + Ux mt

i

)

(7)

where Wη, WxUη, Ux are parameters which can be different or shared among layers. During

experiments, we observed that models with parameter sharing run faster but still provide

comparable results. Hence, we applied this sharing scheme to our model. We abstract Eqs. (4-

7) into:

xt
i = Highway

(

xt−1
i , mt

i

)

(8)

After T steps of message passing, xT
i would capture the graph substructure centered at

node i with radius T . The graph summary vector (also called graph representation vector)

xG is the combination of the state vector of all nodes in the graph at step T . In the simplest

form, xG is the average of
{

xT
i

}

i∈V
, as follows:

xG =
1

|V|

∑

i∈V

xT
i
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Fig. 2 Message passing in the joint graph of input nodes and label nodes. In (b, c), dash red link indicates

message passing with attention while blue solid link indicates message passing with mean pooling (Color

figure online)

4 Method

In this section, we present our main contribution—Graph Attention model for Multi-Label

learning (GAML).

4.1 Multilabel classification over graphs

We generalize the definition of multilabel classification in Sect. 3.1 to the situation in which

inputs are graphs by considering a problem of learning a function f : XG �→ PC where XG

is the space of input graph representation vectors. We argue that in order to perform well on

this task, two types of relation must be captured: those within the label set and those between

the label set and input subgraphs.

For an input graph G, we consider all the C classes as auxiliary nodes (called label nodes)

alongside |V| existing nodes of the input graph G. Each label node c connects to all input

nodes and has the initial state l0
c ∈ R

dl which is the embedding of class c to a vector space.

On the other hand, each input node i also connects to all label nodes. It results in a joint

graph of C + |V| nodes, which naturally lends itself to the message passing scheme in the

graph neural network presented in Sect. 3.3. The idea is that by iteratively updating the states

of input and label nodes using message passing, complex label-label and label-substructure

dependencies emerge. See Fig. 2 for an illustration.

4.1.1 Input node update

Since an input node i connects to its neighbor nodes j ∈ N (i) and all the label nodes

c ∈ 1, C , the message passing update of the input node i at step t is formulated as follows:

xt
i = f

(

xt−1
i ,

{(

xt−1
j , ei j

)}

j∈N (i)
,
{

l t−1
c

}

c∈1,C

)

(9)

Note that Eq. (9) is derived from Eq. (1) with the introduction of new arguments
{

l t−1
c

}

c∈1,C
.

There are two types of message sent to the input node i . One contains structure information

from neighbor input nodes and the other contains label-related information from label nodes.
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Because these messages have different meanings, they should be aggregated into separate

message vectors. In case of neighbor input nodes, we use mean pooling to combine them as

similar to Eq. (3):

µt
i =

1

|N (i)|

∑

j∈N (i)

Wei j
xt−1

j

However, mean pooling may not be ideal to aggregate labels since it equalizes the importance

of each class towards the input node i . To overcome this issue, we use the attention mechanism

(Bahdanau et al. 2014; Xu et al. 2015) to compute a weighted sum of all the label nodes as

follows:

mt
i =

C
∑

c=1

at
ic l t−1

c (10)

where at
ic > 0,

∑C
c=1 at

ic = 1 is the attention coefficient from the input node i to a label

node c at time t , computed as:

st
ic = u⊺

s tanh
(

Ws xt−1
i + Us l t−1

c + bs

)

(11)

at
ic =

exp
(

st
ic

)

∑C
c′=1 exp

(

st
ic′

)
(12)

The set of all unnormalized attention scores st
ic in Eq. (11) forms a matrix St ∈ R

|V|×C ,

which we will reuse later.

For generality, Eqs. (10–12) are written in a more compact form:

mt
i = Attention

(

xt−1
i ,

{

l t−1
c

}

c∈1,C

)

(13)

We call the attention in Eq. (13) input-to-label attention.

In the state update phase, the new state xt
i of the input node i is computed as:

xt
i = Highway

(

xt−1
i ,

[

µt
i , mt

i

]

)

where [·] denotes vector concatenation and Highway(.) is defined in Eq. (8).

4.1.2 Label node update

By connecting to every input node, a label node c can receive information about various

substructures in the graph G through multiple steps of message passing. Among these sub-

structures, only a few are related to the class c. Therefore, we use the attention mechanism

to extract the most useful substructures for predicting class c and store them in the message

vector as follows:

mt
c = Attention

(

l t−1
c ,

{

xt−1
i

}

i∈1,|V|

)

(14)

where Attention(.) is similar to the function defined in Eq. (13) with the role of input nodes

and label nodes swapped. We denote this function label-to-input attention. The unnormalized

score matrix St from Eq. (11) is reused here to save computation and improve consistency.

However, the attention coefficients are be normalized over rows instead of columns of St ,

i.e.,

at
ci =

exp
(

st
ic

)

∑|V|
i=1 exp

(

st
ic

)
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Finally, we compute the new state of the label node c using a different Highway Network

as:

l t
c = Highway

(

l t−1
c , mt

c

)

4.1.3 A priori label dependencies

When explicit label dependencies are available, a label graph can be formed in the same way

as the input graph. Messages between label nodes is aggregated using mean-pooling as in

Eq. (3):

µt
c =

1

|N (c)|

∑

f ∈N (c)

Wec f
l t−1

f

The state of the label node c is updated as:

l t
c = Highway

(

l t−1
c ,

[

mt
c,µ

t
c

])

4.1.4 Vector input as a special case

In many traditional multilabel classification problems, the input is represented as vector

instead of graph. This can be seen as a special case of our model where the input graph G

collapses into a single node x. With this observation, the state update of the input node at

step t is:

mt = Attention
(

xt−1,
{

l t−1
c

}

c∈1,C

)

xt = Highway
(

xt−1, mt
)

The state of a label node c is updated as:

l t
c = Highway

(

l t−1, xt−1
)

4.2 Learning

After T steps of message passing, we pass each class-specific final state vector lT
c to a

multi-layer perceptron (MLP) with sigmoid activation on top to predict the present of class

c:

oc = MLP
(

lT
c

)

Here the value of oc is in (0, 1). The MLPs for all classes share the same parameters. For

learning, we use a binary cross-entropy loss function which is defined as:

L = Etrain

(

C
∑

c=1

yc log oc + (1 − yc) log(1 − oc)

)

where Etrain denotes the mean over all training data.
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4.3 Scale to big graphs andmany labels

When the number of nodes in the input graph (|V|) and the number of classes (C) are large,

it becomes expensive to calculated the unnormalized score matrix St ∈ R
|V|×C in Eq. (11)

for all steps t = 1, 2, ..., T . To handle this problem, we propose a new attention technique

called hierarchical attention. At each layer, we define K (K ≪ min {|V|, C}) intermediate

attentional factors between input nodes and label nodes. The input-label attentions are broken

down into two steps as follows:

– For label-to-input attention, we do factor-to-input attention then label-to-factor attention.

– For input-to-label attention, we do factor-to-label attention then input-to-factor attention.

Label-to-input message aggregation. More concretely, the label-to-input message aggrega-

tion in Eq. (10) is replaced by:

mt
i =

K
∑

k=1

at
ikλ

t−1
k ; for λt−1

k =

C
∑

c=1

bt
ck l t−1

c

where λt−1
k is the kth intermediate factor (k ∈ 1, K ) that aggregates all label nodes; mt

i is the

message to the input node i ; at
ik is factor-to-input attention probability (i.e.,

∑K
k=1 at

ik = 1);

and bt
ck is label-to-factor attention probability (i.e.,

∑C
c=1 bt

ck = 1).

To compute at
ik and bt

ck we define two score matrices St
1 =

[

st
1;ik

]

∈ R
|V|×K and St

2 =
[

st
2;ik

]

∈ R
C×K as follows:

st
1;ik = u

⊺

1 tanh(W1xt−1
i + zt−1

k ) (15)

and st
2;ck = u

⊺

2 tanh(W2l t−1
c + zt−1

k ) (16)

where u1, u2 ∈ R
dz , W1 ∈ R

dx ×dz , W2 ∈ R
dl×dz and zt

k ∈ R
dz , (k = 1, K ) are parame-

ters. Then factor-to-input attention probability and label-to-factor attention probability are

computed as:

at
ik =

exp(st
1;ik′)

∑K
k′=1 exp(st

1;ik′)
; bt

ck =
exp(st

2;c′k
)

∑C
c′=1 exp(st

2;c′k
)

Input-to-label message aggregation. Likewise the two-step input-to-label message aggrega-

tion is computed as:

mt
c =

K
∑

k=1

αt
ckχ

t−1
k ; for χ t−1

k =

|V|
∑

i=1

β t
ik xt−1

i

where χ t−1
k is the kth intermediate factor (k ∈ 1, K ) that aggregates all input nodes; mt

c is the

message to the label node c; αt
ck is factor-to-label attention probability (i.e.,

∑

k αt
ck = 1);

and β t
ik is input-to-factor attention probability (i.e.,

∑

i β t
ik = 1). The attention probabilities

are respectively computed as:

αt
ik =

exp(st
1;ik

)
∑|V|

i ′=1
exp(st

1;i ′k
)
; β t

ck =
exp(st

2;ck
)

∑K
k′=1 exp(st

2;ck′)

where the scores st
1;ik

and st
2;ck

are computed using Eqs. (15,16).

It is clear that with this decomposition strategy, the number of computation steps reduces

from O (|V|C) to O ((|V| + C) K ) for K ≪ min {|V|, C}.
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4.4 Detecting higher-order relation

Higher-order label-label relation The iterative message passing scheme spreads information

to distant nodes. Two labels can indirectly interact with each other after two step of updates:

a label sends messages to input nodes which then redistribute the information back to other

labels. This brings about higher-order label correlation.

Multi-resolution substructure-label relation Likewise, after t steps, an input node accumu-

lates information from other nodes within t hops. Because t varies from 1 to T , our model can

detect label-specific substructures with multiple resolutions via the label-to-input attention.

This capability is discussed in detail in Sect. 5.1.8.

5 Experiments

We present empirical results on two comprehensive sets of experiments: one on graph-

structured input (Sect. 5.1) and the other on traditional unstructured input (Sect. 5.2).

5.1 Multilabel classification with graph-structured input

Our experiments focus on biochemical databases of potential drugs. A drug is a moderate-

sized molecule with desirable bioactivities treated as labels. In the molecular graph of a drug,

nodes represent atoms and edges represent bond types.

5.1.1 Datasets

We use two real-world biochemical datasets:

– 9cancers For this dataset, the goal is to predict drug activity against nine types of cancer

(see Table 2). The activity is binary indicating whether there is a response, i.e., the drug

reduces or prevents tumor growth. We first download nine separate datasets for each

cancer type from PubChem.1 Then, we search for drug molecules that appear in all

datasets, which results in about 22 thousand molecules in total. Among them, there are

3,356 molecules active for at least one type of cancer. We select all the active molecules

and 10,000 fully inactive molecules to create the final dataset for experiment.

– 50proteins This dataset is about drug-protein binding prediction. Again, drugs are treated

as input graphs while proteins are labels. We obtain the raw version from BindingDB.2

In this dataset, the number of unique proteins (also called targets) is 595 and the number

of unique drugs (or ligands) is 55,781. We select top 50 proteins that are bound by most

ligands to construct our experimental dataset. There are 36,349 ligands in total with the

average number of proteins to which one ligand binds is 1.35.

We divide each dataset into train/valid/test sets with the proportions of 0.6/0.2/0.2, respec-

tively. The detailed statistics are shown in Table 3 and the number of label occurrences is

shown in Fig. 3. The labels in 50proteins are sparse as each ligand links to at most 10 proteins

(but the majority of ligands bind to only 1 or 2 proteins). Meanwhile, the labels in 9cancers

are denser with nearly a thousand of drugs positive to all cancers.

1 https://pubchem.ncbi.nlm.nih.gov/.

2 http://www.bindingdb.org/bind/index.jsp.
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Table 2 Assay ID and name of

nine cancers in 9cancers dataset

extracted from PubChem

Assay ID Cancer type %Positive

1 Lung 12.28

33 Melanoma 9.97

41 Prostate 11.77

47 Central nervous system 12.22

81 Colon 14.50

83 Breast 16.22

109 Ovarian 12.76

123 Leukemia 18.91

145 Renal 12.03

%Positive denotes the average percentage of positive examples for each

cancer type over the total number of 13,356 molecules

Table 3 Statistics of all multilabel datasets with graph-structured inputs

Dataset #labels avg. #nodes avg. #edges #node types #edge types

9cancers 9 27.68 29.95 43 4

50proteins 50 25.31 27.49 14 4

(a) 9cancers (b) 50proteins

Fig. 3 Histogram of the number of common labels that each instance associates to in 9cancers and 50proteins

5.1.2 Baselines

For comparison, we employ the following data representations and associated multilabel

classifiers:

Molecular fingerprint The first set of baselines works on molecular fingerprints. A molecular

fingerprint is a binary vector whose each element is associated with a particular type of

substructures in the molecular graph. We use the well-known Morgan algorithm from RDKit3

to generate multiple fingerprints with an increasing radius from 1 to 5 to account for fine-

grained levels of substructures. Then, these fingerprints are concatenated to form a final

feature vector. For each radius, we set the length of the fingerprint hash vector to 100. This

results in the final feature vector of size 500. We evaluate two models running on top of this

vector representation:

3 http://www.rdkit.org/
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– The first model is a SVM with RBF kernels set as a base classifier for Binary Relevance

algorithm (Tsoumakas and Katakis 2007). We denote this model as fp + SVM + BR.

– The second model is a Highway Network (HWN) (Srivastava et al. 2015) followed by a

fully connected neural network with sigmoid activation function. All highway layers share

parameters. We denote the combination of fingerprint and HWN as fp + HWN. In this

model, the dependencies among classes are implicitly captured through the intermediate

hidden layers.

String representation SMILES is one of the most popular string representation of molecules

which encapsulates the graph structure into its grammar. We consider SMILES as a sequence

of characters and model it using a GRU (Cho et al. 2014). When reaching the end of the

sequence, the last state of the GRU is fed to a 2-layer MLP that outputs prediction for all

labels. This SMILES+GRU combination has been recently proven to be highly effective in

drug evaluation and design (Segler et al. 2017).

Graph representation The last set of baselines handle graph-structured input directly. We

select two representative models: Weisfeiler-Lehman Graph Kernels (WLs) (Shervashidze

et al. 2011) for graph kernel based methods and Column Networks (CLNs) (Pham et al. 2017)

for graph neural network based methods.

– WL is an unsupervised graph2vec model that maps a graph into a characteristic repre-

sentation vector. Each element of this vector is the count of a specific rooted subgraph

(or tree) in the graph. Because the length of the graph representation vector is equal to

the vocabulary size of the trees which is very big, in practice, the similarity (kernel)

matrix for every pair of graphs is used instead. We precompute the kernel matrix for both

training and testing data using the Weisfeiler-Lehman algorithm. The maximum height

of the trees is chosen to be 3. For 9cancers, it results in about 49 thousand different

tree structures for the entire graph dataset. Meanwhile, the total number of graphs is

only about 13 thousands. Therefore, increasing height more than 3 will add very little

information about graph similarity as the proportion of matching substructures approach

zero. The kernel matrix for training graphs is used as input to a SVM wrapped by Binary

Relevance (WL+SVM+BR) for multilabel classification.

– CLN, on the other hand, is a supervised graph message passing neural network. We use

the same model as in Pham et al. (2017) with a mean pooling layer on top message

passing layers to compute the graph representation vector. This vector is then fed to a

2-layer MLP to predict all labels. Different from our GAML, a CLN only captures the

relations between the labels and the subgraphs at the topmost layer rather than at every

layer.

The hyper-parameters of fp + HWN and SMILES + GRU are obtained through validation.

Meanwhile, the hyper-parameters of CLN are set similar to the optimal hyper-parameters of

our model (see below).

5.1.3 Model setting

In our model, the sizes of the node and edge embedding are both set to 50. We perform grid

search for other hyper-parameters with the label embedding size in {10, 30, 50, 70, 100},

the number of factors in {1, 5, 10, 15, 20}, and the number of message passing layers in

{2, 4, 6, 8, 10}. Dropout is set for every graph input node with the rate of 0.3. We do not

use dropout for label nodes as it results in low F1 score although it makes the model less

overfitting. In addition, we set the batch size to 60 and 100 for 9cancers and 50proteins,
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Fig. 4 Learning curves on

50proteins with different number

of message passing layers

n ∈ {2, 4, 6, 8, 10}. Best viewed

in color

(a) Micro AUC (b) Micro F1

Fig. 5 Micro AUC (a) and micro F1 (b) on 50proteins with different number of message passing layers

n ∈ {2, 4, 6, 8, 10}. Best viewed in color

respectively. We use Adam optimizer (Kingma and Jimmy 2014) with an initial learning rate

of 0.001. During training, the learning rate will be reduced by half if the validation loss does

not improve after 20 consecutive epochs. We train our model for a maximum of 300 epochs

and may stop early after decaying the learning rate 4 times.

5.1.4 Evaluation metrics

We use popular metrics for multilabel classification which are micro, macro (sometimes called

per label) F1 and micro, macro AUC. While micro F1 favors labels with many examples due

to its global averaging, macro F1 treats all labels equally regardless of their sample size,

hence, is a good indication of the model performance on small labels.

5.1.5 Parameter sensitivity

To have a deep understanding of how GAML works for graph structured input, we investigate

the contribution of different hyper-parameters including: the number of message passing

layers (Figs. 4, 5), the number of attention factors (Fig. 6), and the type of attention (Fig. 7).

We report results for 50proteins, but similar results are also observed for 9cancers.
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(a) Micro AUC (b) Micro F1

Fig. 6 Micro AUC (a) and micro F1 (b) on 50proteins with different number of factors k ∈ {1, 5, 10, 15, 20}.

Best viewed in color

(a) Micro AUC (b) Micro F1

(c) Micro Precision (d) Micro Recall

Fig. 7 Results on 50proteins with different type of attentions. Label-to-Input refers to unidirectional attention

from label to input nodes; Input-to-Label refers to attention in the reverse direction; Both refers to bidirectional

attention. Best viewed in color
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From Fig. 5, it is seen that when the number of layers n is small, e.g. n = 2, the model

performs sub-optimally. Increasing the number of layers usually improves the results. We

hypothesize that at higher level, input nodes receive a wider range of structural information

through message passing. However, when n ≥ 6, the improvement rate becomes steady and

the model is more likely to overfit (see Fig. 5c). We believe there are two reasons for this

situation: (i) the structure information from distant nodes is much less important than that

from close neighbors; and (ii) the structure information at every node becomes more global

and indistinguishable, causing difficulty for the model to detect meaningful substructures

during prediction.

Another factor that affects the model performance is the type of attention. Generally,

using attention provides better micro F1 score than not using it. However, the input-to-label

attention seems to be redundant and causes misleading to the model. We observed that when

the input-to-label attention is available, the model often has higher loss and lower micro

AUC (see Fig. 7a, c). Meanwhile, the label-to-input attention is important as it helps the label

nodes focus on particular substructures of the input graph to give accurate prediction. One

interesting thing to note here is that the improvement of micro F1 by using attention mainly

comes from micro Recall (as can be seen from Fig. 7b, d, e) and since the denominator in

the micro Recall formula is constant (which is equal to the number of positive examples in

the dataset), the number of true positives actually increases.

GAML performs worst in term of both micro AUC and micro F1 when the number of

attention factors k is 1 which is equivalent to collapsing all the neighbor nodes into one

aggregating vector. For other values from 10 to 20, the results are quite comparable, which

suggests that a small value of k is usually sufficient.

5.1.6 Performance results

Table 4 shows the classification results for graph structured input. GAML consistently beats

all baselines on all evaluation metrics. In particular, our model achieves about 2–3% higher

F1 and about 0.25–1% higher AUC than the second best method (CLN) on both datasets. We

believe this improvement comes from the fact that our model can associate labels with useful

multi-resolution substructures of the input graph through attention mechanism while CLN

does not have this capability. Furthermore, it is also clear that the models learning directly

on graphs such as WL + BR or CLN usually provide better results than those learning on

strings or vectors. For example, CLN achieves roughly 2% improvement in term of micro

and macro F1 compared to its vector counterpart fp + HWN. Whereas, WL+BR produces

about 2–4% higher macro and micro AUC than fp+SVM+BR.

5.1.7 External knowledge of label dependencies

A priori label dependencies are known to improve model performance as they bring structural

constraints to the output space (McCallum and Pereira 2001; Tsochantaridis et al. 2004). We

consider the setting where label dependencies form a graph. The multilabeling becomes node

classification in the label graph conditioned on the input graph. We investigate the case of

50proteins where the labels are sparse. We compute the protein-protein interaction (PPI)

scores by using Human Integrated Protein-Protein Interaction rEference (HIPPIE) (Alanis-

Lobato et al. 2016). HIPPIE provides a normalized scoring scheme that integrates multiple

PPI sources (Schaefer et al. 2012), hence, is reliable. The PPI scores have already been

normalized in the range of [0, 1]. We add an edge between two proteins if their interaction
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Table 4 The performance in the multi-label classification with graph-structured input (m-X: micro average

of X; M-X: macro average)

Dataset Metrics Fingerprint SMILES Molecular Graph

SVM HWN GRU WL+SVM CLN GAML

9cancers m-AUC 81.94 85.95 83.29 86.06 88.35 88.78

M-AUC 81.37 85.85 82.74 85.74 88.23 88.50

m-F1 50.63 57.44 55.97 54.55 59.48 62.03*

M-F1 50.71 57.29 55.99 54.54 59.50 62.14*

50proteins m-AUC 79.85 77.46 79.11 81.62 82.08 82.82

M-AUC 74.77 73.78 75.25 77.60 78.36 79.35*

m-F1 17.21 16.37 16.08 17.04 18.37 20.47*

M-F1 18.40 15.87 14.96 18.66 17.72 19.83*

SVM and HWN work on fingerprint representation; GRU works on string representation of molecule known

as SMILES; WL + BR and CLN work directly on graph representation. Bold indicates better values

*p < 0.05

Table 5 Results on incorporating

external knowledge of label

dependencies

Model 50proteins

m-AUC M-AUC m-F1 M-F1

GAML 82.82 79.35 20.47 19.83

GAML + PPI 82.61 79.29 21.15 20.28

Bold indicates better values

score is larger than a predefined threshold (which set to 0.5 in our experiment). Since the

interaction scores are asymmetric, the edges are directed. Table 5 reports results of our model

when external label dependencies are introduced. The results are improved on F1 measures

but not on the AUC scores suggesting that the external label constraints may help balance

recall and precision when labels are sparse.

5.1.8 Attention visualization

In Fig. 8, we show the label-to-input attention scores at different message passing layers

when our model runs on 9cancers to see how our model matches labels to substructures of

the input graph. At the first layer, the label nodes often attend to many input nodes. The

reason is that input nodes at this level only contain information about their types. In addition,

the attended input nodes are usually special atoms like Oxygen (8) or Nitrogen (7) instead

of the common Carbon (6). However, the attention becomes more focused when going up to

higher layer since the structure information at each input node has been updated via message

passing. Sometimes, new substructures emerge and the model may switch its attention to

these substructures if it finds them to be more appropriate.

From the label-to-input attention matrices in Fig. 8, we can map back to the molecule

graph to detect meaningful substructures toward labels. In Fig. 9, we can observe the shift

in the model attention with respect to the evolution of structures across layers. In particular,

at layer 2, the model focuses most on the O-N substructure. However, at layer 3, the model

changes its attention to N[6], N[5] and C[11] instead of Os. The reason is that the model

becomes more interested in the appearance of two adjacent Ns in an aromatic group, which
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Fig. 8 Normalized label-to-input attention probability at 6 layers of GAML over 4 different molecular graphs

sampled from 9cancers. Darker color refers to higher probability. Columns correspond to input graphs and

rows correspond to layers with the first layer drawn on top then the second layer and so on. Each tick in the

x-axis is labeled with the atomic number of the corresponding node in the input graph (6: Carbon, 7: Nitrogen,

8: Oxygen, 17: Chlorine). Best view in color (Color figure online)

cannot be captured within two hops by starting at O. Therefore, an attention shift is performed

by the model.

Note that although the attention shift looks disruptive in Fig. 8 as the model is highly

attentive (due to well training), it is actually smooth under graphical view in Fig. 9 since

the substructures rooted at N[6], N[5] and C[11] all contains the substructure O-N from the

previous layer. This suggests a human-like concept transferring mechanism through atten-

tion where the old concept is not totally discarded but still exists as part of the new concept

with less focusing from the brain. From layer 3 to layer 6, the model performs one more

small attention shift (from N[6] to N[8]). We hypothesize the model does that to keep itself

attended to the left ring only (instead of both the left and the right rings). This is reasonable

because when N[8] receives more redundant information about the right ring, its attention

score reduces from 0.48 (the 5th row) to 0.27 (the 6th row). The strong focus of the model

on a particular substructure is also well demonstrated in Fig. 9. As we can see in the last

row, although C[10] (at the last column) contains information about the whole molecu-

lar graph, its attention score is still significantly smaller than of the substructure rooted at

N[8].

To discovery typical rooted substructures at a particular depth for a group of classes,

we select a node with the best attention score averaged over the present classes for every

molecular graph in the training data. Then, we perform clustering on the representation

vector of these nodes to find similar substructures. Figure 10 shows an example of such

common substructures shared by different molecules that is typical to all classes in 9can-

cers.
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Fig. 9 Attention visualization on substructures of a molecule with PubChem SID of 491286. This molecule

is the second example in Fig. 8. Each row specifies the top 3 substructures with the highest attention score

(sorted in descending order from left to right) at the corresponding layer. For each substructure at layer k, the

root atom as well as its neighbor atoms and bonds up to k hops are highlighted in green. Each atom is displayed

with its atomic number and its index number (in square brackets) in the molecule. Best view in color (Color

figure online)

5.2 Multilabel classification with unstructured input

We now test whether our proposed method can work on the traditional setting where the

input is a vector.

5.2.1 Datasets

Four datasets are used in this experiments: media_mill, bookmarks, Corel5k and NUS-WIDE

(see Table 6 for statistics). The former two belong to the text categorization domain where

each instance is a document represented as binary bag-of-words. Meanwhile, the latter two

belong to the image classification domain where each image is represented as a real-value

feature vector. For all datasets, we follow the predefined train/test split so that our results can

be comparable to others.
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Fig. 10 Common substructures shared by some molecules that are typical to all classes in 9cancers. Pictures

from left to right show the evolution of the rooted substructures with depth from 2 to 5. Along the rows, the

molecules are sorted by the average attention scores computed at the topmost layer. Best view in color (Color

figure online)
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Table 6 Statistics of all multilabel datasets with unstructured input

Dataset #labels #features #total #train #test

media_mill 101 120 43,907 30,993 12,914

bookmarks 208 2150 87,856 70,285 17,571

Corel5k 374 499 5,000 4,500 500

NUS-WIDE 81 128 269,648 161,789 107,859

5.2.2 Baselines

For comparison, we consider the following methods:

– State-of-the-art classical methods for multilabel classification (MLC) evaluated in Mad-

jarov et al. (2012), which are representative for broader classes of algorithms. They are

RAkEL (Tsoumakas and Vlahavas 2007) for ensemble methods, ML-kNN (Zhang and

Zhou 2007) for algorithm adaptation methods, HOMER (Tsoumakas et al. 2008) for

label power set methods and Calibrated Label Ranking (Fürnkranz et al. 2008) for pair-

wise ranking. Most of these methods are implemented in well-known multilabel machine

learning systems, such as Tsoumakas et al. (2011) and Read et al. (2016) with careful

hyper-parameters tuning by the authors. Thus, their result are strong and reliable. For

presentation compactness, we only report the best results in Madjarov et al. (2012).

– Collective multilabel classification with CRF (CML) (Ghamrawi and McCallum

2005). This model can learn pairwise relations among labels via CRF, hence, should

be selected as baseline for comparison. We use the Java implementation of CML

released on Github4 and search for the optimal values of “train.gaussianVariance” in

{0.01, 0.03, 0.1, 0.3, 1, 3, 10}. However, we can only test this model on media_mill and

NUS-WIDE since the other two datasets are not accepted by the implementation.

– A Highway Network (HWN) (Srivastava et al. 2015), similar to what described in

Sect. 5.1.

5.2.3 Model setting

The label embedding size is set to 50 for NUS-WIDE and media_mill, 75 for bookmarks and

30 for Corel5k. We project input vector to a low dimensional space by using a single layer

neural network with ReLU activation before feeding it to GAML. The size of the projected

vector is 55 for NUS-WIDE, 75 for media_mill, 110 for bookmarks and 50 for Corel5k. For

all datasets, the number of message passing layers is set to 6. In training, the batch size for

NUS-WIDE is 500 while for the other datasets, it is 100. We use k-fold cross validation where

k is 9 for Corel5k and 5 for other dataset. The optimizer is Adam with an initial learning

rate of 0.001. We reduce the learning rate by half if the valid loss does not decrease after 5

consecutive epochs for Corel5k and 20 for other datasets. The maximum number of epochs

is 300 and the early stopping condition is 4 times of the learning rate decay.

5.2.4 Results

The classification performance of all the methods is presented in Table 7. The deep networks

(HWN and GAML) outperform traditional methods and CML on most datasets except for

4 https://github.com/cheng-li/pyramid/wiki/CRF.
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Table 7 The performance in the multi-label classification with unstructured input (m-X: micro average of X,

M-X: macro average of X)

Dataset Metrics Best in

Madjarov et al. (2012)

CML (Ghamrawi and

McCallum 2005)

HWN GAML

media_mill m-F1 56.3 45.78 56.73 57.53

M-F1 11.3 3.95 13.50 14.17

bookmarks m-F1 26.8 – 32.51 33.33

M-F1 11.9 – 20.43 21.68

Corel5k m-F1 29.3 – 15.28 22.13

M-F1 4.2 – 1.83 3.82

NUS-WIDE m-F1 – 30.42 38.50 39.83

M-F1 – 3.84 9.31 11.38

Missing results are because NUS-WIDE was not tested in Madjarov et al. (2012) and CML implementation

did not work on bookmarks and Corel5k. Bold indicates better values

Corel5k – the smallest dataset. Especially, on bookmarks, our model improves the micro F1

and macro F1 over the best traditional methods by about 7% and 10%, respectively. In the

case of Corel5k, the best traditional method is CLR (see Madjarov et al. 2012), a ranking-

based method that uses SVM as a base classifier. SVM appears to be more robust than deep

networks on small datasets like Corel5k. Compared to HWN, GAML achieves better results

on all datasets. This supports our model’s strength in learning relations between labels and

the input at multiple levels of abstraction.

Remark on running time

Kernel methods such as SVM and WL + SVM are not very scalable against data size due

to the quadratic storage and cubic running time for inversion of the kernel matrix. Training

these models may take tens of hours on a single CPU with a moderate data size of 30K.

Deep learning methods such as HWN, GRU, CLN and GAML do not suffer from the same

limitation and they are trained on GPUs, hence run much faster. HWN runs significantly

faster than GAML since it only deals with flat vectors instead of structured graphs. CLN is

lightly faster than GAML (about 10%) since it shares similar message passing complexity.

6 Discussion

We introduced GAML, a new graph neural network to tackle an open problem of multi-

label learning over graph structured data. The key insight is to realize that label nodes and

input nodes can be put into a joint graph to model the multi-way relations among labels and

subgraphs. This is achieved through a message passing scheme that exchanges information

between connected nodes across multiple steps and an attention mechanism that enables

selective flowing of information between label nodes and input nodes. Our model is highly

flexible and scalable. We evaluated GAML using an extensive set of experiments on both

graph structured and unstructured inputs. Our results clearly demonstrate the efficacy of the

proposed model.
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This work opens up a wide room for the future at both applied and theoretical fronts.

GAML is directly applicable to many other domains. One example is shopping basket rec-

ommendation, where users play the role of labels (with or without profile), and item basket

modeled as input graph of items. Alternatively, items recommendation to user group works

in a similar way, where the user group forms a social graph, and items play the role of labels.

At the modeling front, a next step is to extend GAML from label node classification to full

graph prediction, where edges are also predicted. Additionally, the current setting is open for

auxiliary tasks, e.g., the input graph is node-labeled.
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