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Abstract

Attention mechanisms extract regions of interest from image data� in order to

reduce the amount of information to be analyzed by time�consuming processes such

as image transmission� robot navigation� and object recognition� In this paper two

such mechanisms are described� The �rst one is an alerting system which extracts

moving objects in a sequence through the use of multiresolution representations�

The second one detects regions in still images which are likely to contain objects

of interest� Two types of cues are used and integrated to compute the measure of

interest� First� bottom�up cues result from the decomposition of the input image

into a number of feature and conspicuity maps� The second type of cues is top�down�

and is obtained from a�priori knowledge about target objects� represented through

invariant models� Results are reported for both the alerting and the attention

mechanisms� using cluttered and noisy scenes�

Subject terms� computer vision� visual attention� invariant object representa�

tions� alerting� multi�resolution�
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� Introduction

At the basis of all object recognition techniques is a correspondence problem be�

tween a set of features extracted from the image and a number of models� Given

the exponential complexity of this problem� it is of fundamental importance that

the features describing the input data be the most compact and discriminative� The

use of image segmentation and grouping algorithms only partially solves this issue�

since their results are very sensitive to noise and to the background underlying the

targets� As a result� the high amount of image primitives that must be considered

for the matching process still represents a major limitation to real�time applications�

For these applications� there is the need for further information selection mecha�

nisms� that identify a limited number of regions in the image� containing the most

relevant information� Since any measure of relevance highly depends on the appli�

cation at hand� ad�hoc techniques must be designed for each problem� For most

applications� however� a number of heuristics exist� that allow to identify relevant

parts of the image in a general�purpose way� The �rst one is object�s motion	

moving objects represent for instance the major source of information for dynamic

obstacle avoidance in robot navigation� The second one is object�s saliency 	 re�

gions containing information that statistically di
ers from the background is likely

to identify objects on which the actions of a robot� such as grasping� are to be

de�ned� These two relevance criteria are also applicable in other �elds� such as

automatic surveillance� and more generally� tasks based on human interaction such

as image retrieval from data�bases and image transmission for teleconferencing ���
�

Both relevance criteria have been widely studied in human vision� In dynamic

scenes� the generation of ocular�attention shifts is highly in�uenced by an alerting
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signal corresponding to the detection of object�s motion� This allows to foveate on

the moving object� and to keep its image stabilized in the fovea through smooth

pursuit �tracking� eye movements ��
� In static scenes� visual saliency represents

the major information source for the generation of ocular saccades� as well as for

shifts of internal attention ���
�

Figure � shows the proposed implementation for these two mechanisms� The

alerting subsystem� described in more detail in chapter �� is responsible for detect�

ing relevant regions in the time�varying case� It is based on a pyramidal represen�

tation of the input sequence� and it allows to rapidly locate moving objects� and

to extract a compact approximation of their shape� The attention subsystem� de�

scribed in chapter �� is responsible for detecting regions of interest in static images�

This is done by integrating bottom�up and top�down attentional cues into a single

representation called the saliency map through a relaxation process� Bottom�up

cues are obtained by extracting a number of feature �F�maps� and conspicuity maps

�C�maps�� Top�down cues are provided by comparing the images with objects of

interest represented through an associative memory�

Insert Figure � about here

Several ways to connect the alerting and attention subsystems can be designed�

depending on the task at hand� For autonomous robots� for instance� priority must

be given to the alerting subsystem� since moving objects represent possible obstacles

for the robot� If no moving objects are detected� the saliency map computed by the

attention subsystem will be used� allowing the robot to explore partially unknown

environments� In this case� it is important to prevent the attention system from
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repeatedly selecting the same regions� This can be done by storing each new saliency

map in a long�term memory called the history map ���
� This map can then be

used as an inhibitory input to the integration process� allowing new regions to be

selected�

� Alerting mechanism in dynamic scenes

The goal of the alerting subsystem is to rapidly detect and locate moving objects�

and to represent them through compact masks approximating their shape� Di
er�

ential methods are based on the substraction of subsequent frames in order to get

rid of the static background and to process only the moving regions of the image�

Examples of this method are proposed in ���
 ��
 ��
� In ���
� after performing the

di
erence between successive frames� a ��D median �lter is applied on the di
er�

ence image in order to smooth the mask boundaries and eliminate small regions�

Despite the action of the median �lter� the resulting mask appears oversegmented�

In ��
� spatio�temporal derivatives of three subsequent images are used in order to

label image pixels as either dynamic or static by means of maximum�a�posteriori

�MAP� regularization� In order to speed up the convergence� deterministic relax�

ation is used rather than a stochastic one� However� this technique is still highly

computationally intensive� The method proposed in ��
 is based on global thresh�

olds followed by a local re�nement step based on MAP techniques� but the resulting

masks do not match our requirements in terms of compactness and localization with

respect to the moving objects� Another di
erential method is based on background

substraction� but requires an updated model of the static background in order to

isolate dynamic objects ��
�
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The proposed approach is based on simple temporal di
erences of subsequent

frames and requires only two frames in order to obtain satisfactory results� The key

data structure is a low�pass pyramid ��
 ��
	 Ilx�y�t�� l � �� ���� L �where L� � is the

number of pyramid levels�� which is built for each input image frame Ix�y�t�� The

pyramid is computing by using a set of ��splines basis functions� given their compact

support ���
� A corresponding number of temporal derivatives Dl
x�y�t� are then

computed� possibily through simple image di
erences �thus involving only � frames��

From each temporal derivative� two complementary quantities are extracted	 its

magnitude� and the locations of sign changes� High magnitude values are located at

moving objects boundaries� while signi�cant sign changes occur in textured patches

located at the interior of moving objects ��
� Signi�cant sign changes are represented

by binary images� whose values �lx�y � f�� �g are de�ned as follows	

�lx�y �

�
� if Dl

x�m�y�n�t� �D
l
x�u�y�v�t� � ���

� otherwise �
���

where �� is a �xed threshold computed according to the sequence noise andm�n� u� v

� f��� �� �g� Values of �lx�y � � thus express the presence of signi�cant �� ����

sign changes in a �x� window centered at pixel x� y� Given the complementarity

between the measuresDl
x�y and �

l
x�y� these two factors are locally combined together

through a max operator� in order to form primary motion�detection estimates	

El
x�y � maxfjDl

x�y�t� j� �
l
x�yg� ���

High�resolution levels of El
x�y detect temporal changes with a high spatial local�

ization� but may only yield information at the object boundaries� Lower�resolution

levels help to provide compact and unique masks for each moving object� by �lling

in regions of constant grey level�
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Multiple�resolutions motion�detection estimates El
x�y are combined through a

coarse�to��ne pyramidal relaxation process� Its goal is to locally propagate the

pixel values horizontally within each level as well as vertically � across contiguous

levels of the pyramid� The �vertical� component of the relaxation process combines

information at location �x� y� of level l�� with that at locations ��x�i� �y�j�� i� j �

f�� �g at the higher resolution level l� The �horizontal� component consists of a

di
usion process within each pyramid level� to �ll in gaps and reduce noise�

The updating rule of the vertical component is de�ned by an additive term

�lx�y ��
l
x�y� The �rst term �lx�y is a scaling factor which allows the image to remain

in its dynamic range after the increment �cf� de�nition of 	kx�y in eq� ��� The

factor �l
x�y is de�ned as a function of Dl��� If Dl��

x���y�� is smaller than a threshold

�� �proportional the estimated image noise�� then �l
x�y is the quadratic function

�k� �
�
Dl��

x�y � ��
��
� Otherwise� �l

x�y � g
�
Dl��

x�y � k� � ��
�
� where g��� is a sigmoidal

function� and k�� k� are positive constants ensuring �rst and second order continuity

of �l
x�y at ��� This algorithm corresponds to pushing the values of the estimates

El
x�y further towards a bimodal distribution image� which is then staightforward to

threshold�

At the end of this algorithm the pyramid contains multiple�resolution binary

masks M l
x�y of the moving objects� Thanks to the di
usion component of the re�

laxation process� the shape of these regions tends to adapt to the shape of the

underlying objects� However� given their dependency on temporal derivatives com�

puted over multiple frames �� ��� and given the existence of non�zero values of El
x�y

on uncovered background� the shape of these regions is generally larger than the un�

derlying objects� A re�nement process is thus required� to extract a more accurate
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representation of the object shapes� To this end� the assumption is made that the

shape of the objects is approximately convex� A convex polygonal approximation of

the object�s contour can then be computed for each region� in a coarse�to��ne way�

Within each region Rl
i identi�ed by a coarse�resolution maskM l

x�y� l 
 �� all points

Kl
i � f�x� y� � Ri� j Dl

x�y j
 ���r�Ilx�y 
 ��g of high spatio�temporal gradients

are selected� where r� is the Laplacian operator and ��� �� are �xed thresholds�

The polygonal approximation for the underlying object is then obtained through

the convex hull of the set Kl
i � This representation obtained at a coarse level l is

then propagated to higher�resolution levels of the pyramid� This can be done very

e�ciently by restricting the convex hull computation at level l � � in a search win�

dow de�ned as the region enclosed in the convex hull at level l projected to the level

l � ��

This method has been successfully tested on a variety of real indoors and outdoors

image sequences �teleconference� tra�c scenes� corridor scenes� etc��� The choice

of the four parameters ��� ��� ��� �� appears not to be critical� Although ad�hoc

variations within a range ��� may lead to slight improvements� a �xed set of values

��� � ��� �� � ��� �� � ��� �� � ��� provided satisfactory results for all sequences�

Figure � reports the results obtained by the alerting system on two image se�

quences� showing for each sequence	 the motion masks M l
x�y �for l � �� and

the polygonal approximations for the re�ned masks� respectively at a coarse level

�l � ��� and at the highest resolution level �l � ��� It can be seen that� also for

complex� non�convex objects such as the walking person� the �nal results correctly

outline the shape of the moving object�
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Insert Figure � about here

� Visual attention in static scenes

The goal of the visual attention system is to select regions of interest from the

analysis of static scenes� Previous work has been done in two directions� On one

hand� biologically�plausible models have been proposed� which simulate human

performance on synthetic test images ��
 ���
� On the other hand� algorithms have

been proposed for the extraction of salient locations in real images ���
 ��
� However�

salient locations are in these cases identi�ed with simple features� such as corners

and edges� In the proposed approach� regions of interest can be computed on the

basis of more global properties� This makes it suitable for applications dealing

with complex images� containing noisy� textured objects� As shown in �gure �� the

attention system integrates two main components� called bottom�up and top�down�

which are described in the following sections�

��� The bottom�up subsystem

The bottom�up subsystem extracts salient regions according to data�driven cri�

teria� This is done in three stages	 �i� extraction of a number of feature maps

F k
x�y k � �� ����K� representing the input image according to di
erent criteria �ii�

computation of a corresponding number of conspicuity maps �C�maps� Ck
x�y which

enhance regions containing features that largely di
er from their surround and

�iii� integration of the C�Maps into a single saliency map Sx�y� which identi�es the

selected regions�

From each RGB image� two chromatic and three achromatic feature maps are

�



computed �K � ��� The chromatic ones are obtained through color�opponency

�lters� whose spatial pro�le is a ��D Gaussian	 F
red�green
x�y � R�

x�y � G�
x�y and

F
blue�yellow
x�y � B�

x�y �
R�

x�y�G
�

x�y

� � where R�G�B� are the normalized RGB compo�

nents of the image� convolved with a Gaussian operator�

The achromatic feature maps are obtained through di
erential operators applied

on the intensity image Ix�y� These operators correspond to a bank of �lters� de�ned

by the oriented Gaussian �st derivative	

GD��x� y� �� � �
u

�x
� exp

�
�u�

���x

�
� exp

�
�v�

���y

�
� ���

where u � x cos� � y sin� and v � �x sin� � y cos �� This �lter is used at ��

di
erent orientations to provide both the local orientation feature map	 F orient
x�y �

argmax� fIx�y � GD��x� y� ��g� and the edge magnitude feature map	 Fmagn
x�y �

max� fIx�y � GD��x� y� ��g� The same derivatives are used to compute a third

achromatic feature map de�ning the local curvature� obtained through the diver�

gence operator on the normalized gradient of I	 F curv
x�y � div

h
rIx�y
krIx�yk

i
�

The �ve feature maps described above are processed by a �conspicuity� opera�

tor to assign a bottom�up measure of interest to each location� This measure is

obtained by comparison of local values of the feature maps to their surround� To

this end� another bank of multiscale� di�erence of oriented Gaussians �DOOrG�

�lters is used� Both Gaussians Gon
x�y� G

off
x�y are elliptic rather than isotropic� with

a �xed eccentricity factor �y
�x

� �
� � This property de�nes a preferential direction

� for the �lter which allows to better detect oriented blob�like regions from the

feature maps� The coe�cients of each Gaussian component are normalized by the

constraint
P

u�vG
on
u�v �

P
u�v G

off
u�v � �� so that the overall �lter has zero DC com�

ponent� yielding zero response to a constant feature map� The scale ratio of the
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two Gaussians is also �xed	
�off
�on

� �� Three di
erent values of �on are used for

each �lter� thus giving three classes of multiscale �lters� As for the GD� �lters� each

DOOrG �lter is also computed at multiple ��� orientations�

To get rid of the sign of the response� and to increase the contrast� the results of

the convolution are recti�ed and squared� This corresponds to computing a bank

of multiscale conspicuity maps� for three values of the scale parameter �i and eight

orientations �j	 Ck
x�y��i� �j� � �F k

x�y � DOOrGx�y��i� �j���� In order to obtain a

unique conspicuity map for each feature� the �i� �j parameters are factored out by

taking the local maximum	 Ck
x�y � maxi�jfC

k
x�y��i� �j�g�

��� The integration process

The next stage of bottom�up attention requires the integration of the C�maps into

a single saliency map S� This is done through a non�linear relaxation process which

reduces noise� and increases the coherence of the di
erent C�maps in an incremental

way� The saliency map is then obtained by thresholding the average value of the

C�maps� once a convergence criterion is satis�ed�

At each iteration of the relaxation process� the value of each Ck
x�y�t� is updated

by an additive factor	 	kx�y�t� ��k
x�y�t�� The term 	kx�y is a scaling coe�cient de�ned

by	

	kx�y �

�
M �Ck

x�y if �k
x�y � �

Ck
x�y �m otherwise �

���

where m�M are respectively the minimumand maximumvalues of all C�maps� This

coe�cient guarantees that the update will keep new values of Ck
x�y�t��� within the

original range �m�M 
�

The quantity �k
x�y represents the most important part of the increment it is

obtained by minimizing an energy functional E�t� through a gradient�descent pro�
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cedure	 �k
x�y � � �E

�Ck
x�y

� The energy function is the linear combination of four

di
erent functions	 E �
P�

i�� 
iEi� where each Ei� i � �� ���� � represents a mea�

sure of �incoherence� of the con�guration of the C�maps� and 
i� i � �� ���� � are

weighting coe�cients used to normalize �k
x�y in range ��� �
�

E� represents the local inter�map incoherence� i�e� the fact that di
erent C�

maps enhance di
erent� con�icting regions of the image� This energy term is

computed through the sum of local �variances� across di
erent C�maps	 E� �

P
x�y

P
k �C

k
x�y �

�
K

P
hC

h
x�y�

�� The second energy component represents the intra�

map incoherence� i�e� the inadequacy of each C�map as a representation of a few

convex regions of attention� This is evaluated through the overall response of the

Laplacian operator	 E� �
P

k

P
x�y

�
r�Ck

x�y

��
� To avoid the fact that the regions

of attention may grow to include an excessive portion of the image� the third en�

ergy component penalizes a con�guration of C�maps whose overall activity is too

high� This forces the C�maps to share a limited amount of global activity� through

a competitive relation between each local value Ck
x�y and the average value of all

pixels which are located outside a local neighborhood N �x� y� centered on �x� y�	

E� �
P

k

P
x�y�C

k
x�y � m� �

P
�u�v� ��N�x�y��C

k
u�v � m�� The fourth energy measure

is introduced to force the values of the C�maps to either one of the extrema of the

range �m�M 
� E� is thus proportional to the distance of each Ck
x�y to both extrema	

E� �
P

x�y�C
k
x�y �m� � �M �Ck

x�y��

The updating term 	kx�y�t� ��
k
x�y�t� computed through this algorithm depends on

the values of the coe�cients 
i� i � �� ���� �� By appropriately assigning these values

it is possible to force the updating term in directions which favor speci�c energy

components� However� this requires a�priori knowledge on the image which is not
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always available� For this reason� these parameters are assigned values that give

equal importance to each energy component� i�e� 
i �
�
� � �maxx�y�k j �Ei

�Ck
x�y

j����

This method has been used for a large number of di
erent images �currently about

one hundred�� For most of them� a dozen iterations are su�cient to rapidly converge�

i�e� to reduce the absolute value of the updating terms below a �xed threshold� set

to ����� At convergence� the average sum of the C�maps �
K

PK
k��C

k
x�y is taken as

the saliency map S� Thanks to the contribution of the fourth energy component

to the updating term� the values of the saliency map are almost binary� For this

reason� even if the convergence criterion is not perfectly satis�ed� the relaxation

process is always stopped after only �� iterations� and the results of S are binarized

by thresholding at the middle of the range �m�M 
�

Insert Figure � about here

Figure � shows the results on some synthetic images� used as visual search ex�

periments on human vision� The selected regions allow to reproduce well�known

pop�out phenomena� Figure � shows the results of the integration process on some

real images� The attention regions are correctly located at some of the major fore�

ground objects� It should be noticed that only a limited number of regions can be

detected in two of these images� This is a consequence of the �rd energy component�

which penalizes an excessive total size in the regions of attention� Since these two

images contain several foreground objects� only a few of them could be selected at

once� One technique for the retrieval of the remaining ones is to use the history

map introduced in section �� This map stores the results of previous saliency maps�

and can be used as a further input to the relaxation process� which penalizes loca�
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tions belonging to previous attention regions� In this way� the system can select an

unlimited number of attention regions in an iterative way �cf� ���
 for more details��

Insert Figure � about here

��� The top�down subsystem

The top�down attention subsystem uses knowledge about the task to select the

regions of the image most likely to contain objects of interest� This is done by

learning descriptions of target objects through distributed associative memories

�DAM� ���
� The top�down measure of interest at a location �x� y� is then computed

in terms of the similarity of the image contents at that location with the stored

models�

In order to ensure some degree of invariance to the representation of the tar�

gets� a preprocessing step is required� based on the complex�log �or log�polar�

transform of the image ���
� Given a center point �x	� y	� of the transform� a com�

plex number is used to represent it in a compact way in the polar�log domain

z	 � x	 � jy	� This transform maps a point �x� y� of the image into the coordi�

nates z � log�
p
�x� x	�� � �y � y	��� � jatan�y�y�

x�y�
�� This transformation allows

to simulate the focal�peripheral �elds of an image� and maps scalings and rotations

into translations along the real and imaginary axes respectively� These shifts can

be factored out by considering the energy spectrum j F�u� v� j of the complex�log

image�

The components of j F�u� v� j are ordered in a vector x representing the input

stimulus to the DAM� During the learning phase� the DAM �nds an association
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matrixM between a set of input stimuli xh and their class yh� If all stimulus and

response vectors are written in two matrices X and Y� M is de�ned by Y �MX�

and is solved by minimizing kMX �Yk�� This corresponds to M � YX�� where

X� � �XTX���XT is the Moore�Penrose generalized inverse of the matrix X�

Once the matrix M has been constructed� it can be used on a novel stimulus

vector x� to produce a classi�cation through an output vector y�� Through a sta�

tistical interpretation of DAMs in terms of multiple linear regression� a coe�cient

of determination R� � �var�x��� RSS� �var�x��� is obtained for each association

produced by the DAM on an unknown stimulus x�� where RSS is the residual sum

of squares ���
� The value of R� � ��� �
 evaluates the quality of the association	 it

is � for a perfect association� and � when no correlation exists between the stimulus

and the produced response�

The top�down measure of interest is given by the R� measure� representing the

�quality� of the recognition� In order to avoid the application of the DAM to all

vectors xu�v centered at each location �u� v� of the input image� a number of relevant

�indexing� points is required� These points are given by the bottom�up subsystem�

and are obtained by detecting a limited number of peaks f�xi� yi�� i � �� ���� Qg in

the saliency map S� after just two iterations of the relaxation process� In order to

spread the results of the R� measures over a neighborhood centered on each point

�xi� yi�� and to obtain a distributed representation for the top�down map T � the

values R��xi� yi� are convolved with an isotropic Gaussian �lter	

Tx�y �

QX
i��

R��xi� yi� � exp

�
�
�x � xi�� � �y � yi��

���T

�
� ���

The top�down map T can directly be integrated with the bottom�up system by

modifying the updating rule of the relaxation process �cf� previous section�� The
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updating term of the modi�ed rule is given by the product between the scaling

coe�cient 	kx�y�t� de�ned similarly to the previous section� and a new term !k
x�y�t� �

�
��k

x�y�t� � ��� ����Tx�y�t� � ��
�
� The parameter � � ��� �
 determines the relative

importance assigned to the bottom�up and top�down subsystems�

Figure � shows the results obtained for a DAM trained to recognize instances of

the pen and the white�ink bottle� The top�down map shows a very low R� value at

one peak of the saliency map� corresponding to an unknown object �the cup�� The

�nal saliency map obtained by integrating the top�down map with the relaxation

process is shown in �g� ��d� For comparison� the saliency map obtained from the

bottom�up system alone is shown in ��e� The top�down information forces the

relaxation process to suppress the region containing the unknown object� although

this would have been selected by the bottom�up process� to the expense of the

white�ink bottle�

Insert Figure � about here

� Conclusions

In this paper two types of attention mechanisms have been described� The �rst

one analyzes a multi�resolution representation of the spatio�temporal derivatives

of an image sequence in order to extract the location and shape of moving objects�

The second one processes still images� and discriminates between their features

to extract regions containing objects of interest� Although both mechanisms are

mostly based on a data�driven approach� it has been shown that it is possible to

customize the system through the use of a�priori knowledge of target objects�
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Both mechanisms use highly distributed� though iterative computations �cf� pyra�

midal relaxation and integration of C�maps�� However� the number of iterations

required for both of them is very limited� being set to a �xed value� The remaining

steps are based on simple �ltering operations� The overall system can thus be easily

implemented using specialized hardware� providing an e
ective tool to reduce data

and computation time for further processes�

Applications of these mechanisms are currently being done in two directions� The

alerting system is used for automatic highway�control problems ��
� It allows to

count the number of vehicles� providing the initial data for a tracking system which

computes vehicle kinetic functions such as trajectory� velocity and acceleration�

The attention system is used in several contexts	 for defect detection from natural

surface images� and for applications of object recognition of man�made objects� The

availability of the attention system improves the performance of object recognition

in multiple ways� Obviously� it reduces the amount of data to process� Most

importantly� however� it allows to hypothesize the presence of a single object within

each region of attention� which leads to a huge reduction in the complexity of the

matching process� This can be exploited in the use of e�cient recognition schemes�

such as geometric hashing�
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