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Abstract

Zero-shot learning (ZSL) aims to classify images from

unseen categories, by merely utilizing seen class images

as the training data. Existing works on ZSL mainly lever-

age the global features or learn the global regions, from

which, to construct the embeddings to the semantic space.

However, few of them study the discrimination power im-

plied in local image regions (parts), which, in some sense,

correspond to semantic attributes, have stronger discrim-

ination than attributes, and can thus assist the semantic

transfer between seen/unseen classes. In this paper, to dis-

cover (semantic) regions, we propose the attentive region

embedding network (AREN), which is tailored to advance

the ZSL task. Specifically, AREN is end-to-end trainable

and consists of two network branches, i.e., the attentive

region embedding (ARE) stream, and the attentive com-

pressed second-order embedding (ACSE) stream. ARE is

capable of discovering multiple part regions under the guid-

ance of the attention and the compatibility loss. Moreover,

a novel adaptive thresholding mechanism is proposed for

suppressing redundant (such as background) attention re-

gions. To further guarantee more stable semantic transfer

from the perspective of second-order collaboration, ACSE

is incorporated into the AREN. In the comprehensive evalu-

ations on four benchmarks, our models achieve state-of-the-

art performances under ZSL setting, and compelling results

under generalized ZSL setting.

1. Introduction

Zero-shot learning (ZSL) [29, 1, 21, 46] is proposed for

solving challenging classification tasks, wherein, the label

spaces for the training set and test set are disjoint from each

other, and there are no training samples (zero-shot) for test

categories. Most recently, for traditional recognition sys-

tems [16, 23, 33, 32, 31, 47], two issues hinder their ad-

vancements, i.e., 1) annotating large-scale samples is both
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Figure 1. (a) Toy example of generating semantic vectors; cross-

es indicate ground-truth semantic vectors in the semantic space.

Four animals all have the attribute “tail” (shown in red dashed

box), as such, “tail” is misleading the afterward classification. (b)

Circles represent samples in the semantic space by direct embed-

ding (DE) images to this space. For DE, Bobcat and Leopard are

wrongly recognized as Tiger. (c) Squares are these samples in

the semantic space embedded by ARE; in this case, by preserv-

ing the discrimination from the part level, the confused unseen

images (Bobcat and Leopard) can be well distinguished and cor-

rectly recognized. Best viewed in color.

time consuming and expensive [52], and 2) new categories

are constantly emerging [50], and some of them are diffi-

cult (or even dangerous) to be collected, e.g., the identified

coffinfish in the deep-sea. In contrast, ZSL has the intrinsic

advantages of tackling the image annotation and novel class

recognition problems, which makes it a hot topic in recent

years.

To transfer semantic knowledge for images from two dis-

joint category spaces, the semantic description of each cat-

egory (for both seen/unseen classes), as the high-level side

information, is key for accomplishing ZSL. Widely-used
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side information includes attributes [11], word vectors [39],

sentences [36], and gaze [18], among which, attributes draw

the greatest attention, and are adopted in this paper. A gen-

eral scenario for ZSL is to find an embedding space based

on seen images. Typically, the semantic space (e.g., the s-

pace in Fig. 1(a), which is spanned by quantized attributes,

i.e., semantic vectors) [37, 13, 20, 1, 3, 36, 44, 39, 8, 42, 35,

27, 40], the image feature space [4, 26, 45, 26], and the la-

tent intermedium space [41] usually serve as the embedding

space. In that space, to further distinguish unseen images,

nearest neighbour search is used to match the tested image

representation with that of unseen class prototypes, i.e., se-

mantic vector w.r.t. each unseen class.

Most leading ZSL methods, whether end-to-end convo-

lutional neural network (CNN) based [27, 42, 22], or deep

feature-based approaches [19, 51, 26, 53, 54, 34], empha-

size on learning the embedding between the (learned) glob-

al image (or feature) and the counterpart semantic vector.

However, all these methods are actually based on global

projection of the whole image. After acquiring the seman-

tic vectors w.r.t. seen/unseen classes, there exist two draw-

backs for these global projection methods: 1) due to the

subtle difference of the seen image (tiger) and unseen im-

ages (bobcat, leopard) in the global feature space, they are

neighbors (circles in Fig. 1(b)) in the projected semantic s-

pace, where, it is hard to distinguish them; 2) the annotated

ground-truth semantic vectors of bobcat, leopard and tiger

are extremely similar (Fig. 1(a)). It is thus hard, by feed-

ing the global features to the embedding model, to learn a

desirable projection for matching the input similar images

with their confused semantic vectors. In contrast, ARE can

fit input images with their confused ground-truth seman-

tic vectors pretty well (in Fig. 1(c), squares are near their

ground-truth, i.e., crosses).

Since the high-level abstractions of some image regions

can lead to the attribute concept [10], and in order to alle-

viate the above problems, we resort to the regions (parts)

in the images. We observe that 1) besides the global im-

age representation, properly discovered regions account for

better knowledge transfer from seen to unseen class, and 2)

some regions can capture local appearance differences for

the same attribute concept, e.g., the region blocks of dif-

ferent tails are different in appearance. In this sense, part

regions are more discriminative than the corresponding at-

tribute. Therefore, projecting region representation into the

semantic space can preserve more such local differences.

In this way, tiger, bobcat, zebra, and leopard can be well

recognized from each other (Fig. 1(c), squares). In term of

discriminative feature learning, the part based feature has

long been established as a powerful one [12, 25]. Moti-

vated by the above observations, to facilitate the seman-

tic transfer between seen/unseen images in the part level,

we propose an end-to-end attentive region embedding net-

work (AREN) (Fig. 2) for ZSL. To sum up, our contribu-

tions are:

1) An attention mechanism is leveraged to automatical-

ly discover semantic/discriminative regions (parts), without

any part detection or annotation. Moreover, a novel adap-

tive thresholding mechanism is further proposed to suppress

redundant attentive regions and introduce robustness, there-

fore leading to the attentive region embedding (ARE) sub-

net. This is the first attempt to introduce attention to ZS-

L/GZSL freely, without any part detection/annotation.

2) To capture second-order appearance differences col-

laboratively with different attentive regions, an attentive

compressed second-order embedding (ACSE) is further in-

corporated into the AREN framework. This is the first

time second-order statistics have been explored within ZS-

L/GZSL.

3) Integrating ARE and ACSE together yields the end-to-

end AREN framework, which is trained with the guidance

of a compatibility loss with frozen classifier weights (taken

from the seen class attributes).

2. Related Works

(Generalized) Zero-shot Learning. As the pioneering

work of ZSL, Lampert et al. [21] propose direct attribute

prediction (DAP) model, which first learns the attribute

classifiers, and then calculates the posterior of a test class

for a given image. However, DAP neglects the association-

s between different attributes. To mitigate the unreliabili-

ty of the individually learned attribute classifiers, a random

forest solution [17] is advocated. As a whole, the leading

methods for ZSL are the embedding based ones equipped

with the compatibility loss, which can well associate the

images and their attributes. Specifically, Akata et al. [1]

proposed ALE, where a bilinear-style hinge loss is lever-

aged. LATEM [44] was then introduced to incorporate non-

linearity to the model. Other embedding based approach-

es include DEVICE [13], SJE [3], CMT [39], ESZSL [37],

SAE [20], and DEM [52]; for a more detailed description of

them, refer to [46]. Most of the methods mentioned above

adopt deep features and emphasize the model itself, thus

resulting in relatively inferior ZSL performances. Most re-

cently, another branch of approaches, i.e., end-to-end train-

able CNN models, have been proposed. The most repre-

sentatives of these train CNN model by 1) alleviating pre-

diction bias, i.e., QSFL [42], 2) gradually zooming global

image objects, i.e., LDF [22], and 3) automatically learning

the relations, i.e., RN [50]. However, none of them focus on

the part (region) level for enhancing the semantic transfer in

ZSL. By expanding the search label space to also consider

seen classes during testing, ZSL becomes Generalized ZS-

L (GZSL). All ZSL methods can be adopted to solve GZSL

task by obeying the data splits proposed in [46].

Attention. Attention [49], widely used and extensive-
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Figure 2. The architecture of the proposed Attentive Region Embedding Network (AREN) model, and the upper branch is ARE, meanwhile,

the bottom branch is ACSE. For ARE: the input image x is first fed into the backbone net, thus generating the last convolutional feature

map Z which undergoes the attentive region discovery module, and the K attentive feature maps Γk, k = 1, 2, · · · ,K is produced. Then,

AT is applied to them. Global max pooling, concatenation and embedding to semantic space are further conducted. For ACSE: Z is first

compressed by 1×1 convolution, leading to Zcps. Zcps and attentive feature maps after AT are used to construct the second-order vectors,

then vector max pooling and ebmbedding to semantic space are leveraged. Finally, compatibility losses are used for ARE/ACSE training.

ly studied in recent years, has been successfully applied to

various fields such as visual question answering [48] and

semantic segmentation [9]. Inspired by the above achieve-

ments, an attention mechanism is incorporated into our

AREN framework, with the guidance of associating images

and their attributes, i.e., the function of the compatibility

loss. In this way, the learned attention maps can capture

multiple semantic regions that are useful for semantic trans-

fer between seen/unseen images.

Transductive setting: In addition to seen images, utiliz-

ing the unseen images (without labels) during the training

phase yields the transductive setting for ZSL/GZSL [14]. In

this paper, our focus is inductive ZSL/GZSL, i.e., the most

general setting in the realistic scenario.

3. Methodology

Notations. Suppose that the training set (seen classes)

S = {(xs
i , y

s
i ), i = 1, 2, · · · , Ns} is given, where xs

i ∈ XS

is the i-th data samples (totally Ns samples) with a corre-

sponding seen class label as ysi , here ysi ∈ YS , and YS is

the label set of seen classes. In ZSL, given the testing set

U = {(xu
i , y

u
i ), i = 1, 2, · · · , Nu} from the unseen classes,

where xu
i ∈ XU and yui ∈ YU is the i-th unseen sample and

its label, respectively; the seen and unseen label sets are dis-

joint, i.e., YS ∩ YU = ∅. Moreover, we denote the seman-

tic vector (class prototype) set w.r.t. seen/unseen classes as

{asi}
Cs

i=1 and {aui }
Cu

i=1, herein, asi/a
u
i ∈ R

Q is the semantic

vector corresponding to the i-th seen/unseen class. Cs/Cu is

the category number for seen/unseen classes, and Q is the

dimension of the semantic vector, and also the dimension of

the semantic space. The difference for ZSL and GZSL [46]

lies in that, for GZSL, while testing the seen/unseen image

xtest
j , its predicted label set is Y = YS ∪ YU .

3.1. The Attentive Region Embedding Network

The Attentive Region Embedding Network (AREN) is

illustrated in Fig. 2, which consists of two branches, i.e.,

the Attentive Region Embedding (ARE) and the Atten-

tive Compressed Second-order Embedding (ACSE). In par-

ticular, ARE is the main body for capturing discrimina-

tive regions automatically, without any part-level annota-

tion/detection. Meanwhile, ACSE is targeted at grasping

more subtle semantic information by second-order infer-

ence. To achieve the ZSL, in both ARE and ACSE, the em-

bedding to semantic space is leveraged, which is the com-

monly utilized strategy [42, 22, 52, 27] in the end-to-end

deep network based ZSL framework.

3.1.1 Attentive Region Embedding

In Fig. 2 (upper stream), the last convolutional feature

map Z of the backbone (e.g., ResNet101) for input im-
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age x, is fed into the ARE, which first undergoes the At-

tentive Region Discovery (ARD) module, followed by an

adaptive thresholding (AT) procedure. In this way, the at-

tention regions can be effectively focused and highlighted.

The AT operation can further purify the generated attention

regions by filtering out the ones with low attentive strength,

thus generating some feature maps with all zero elements.

Afterward, unlike the widely-used global average pooling,

we leverage the global maximum pooling for these feature

maps and then concatenate them, which leads to the repre-

sentation vARE(x) for an image x in the region space. Specif-

ically, we formulate vARE(x) as follows:

vARE(x) = G(T (R(Z))), Z = B(x), (1)

where B, R, T , and G are the backbone network opera-

tion, the ARD operation, the AT operation, and the GM-

P/concatenation operation, respectively. The model param-

eters in Eqn. (1) are omitted to ease reading.

Due to our AT operation, some segments of the cascaded

region vector vARE will be all zeros. As validated in the ex-

periments of subsection 4.5, vARE can achieve an improved

performance over its counterpart without an AT operation.

Finally, to accomplish the ZSL/GZSL task, vARE is embed-

ded into the semantic space. The projected representation

yARE in the semantic space for x is defined as

yARE = E(vARE). (2)

The parameters in Eqn. (1) and (2) are jointly trained

with the guidance of a cross-entropy-like compatibility

function[22, 1, 42, 3, 27] (we will revisit the compatibili-

ty loss in detail in subsection 3.2).

Attentive Region Discovery Module: To discover the

multiple attentive regions of an input image x, which serve

as the bridge for semantic transfer from the part level, we

leverage the attention mechanism to automatically learn

to focus. With the supervision of high-level semantic at-

tributes (from compatibility loss) in the topmost layer of the

net, we hope that the discovered regions can match with the

annotated semantic attributes. In this way, the yielded re-

gions are essentially communicating between seen/unseen

classes, e.g., a child has heard the description of “zebra” as

looking like a “horse” with black-white stripes; then when

she sees the picture of “zebra”, by focusing on the black-

white stripy regions, she can tell it’s a “zebra”. In this sec-

tion, we will elaborate on the ARD module, i.e., mapping

R : Z → R(Z), where, Z is the last convolutional feature

map of the backbone net. Z is a 3D tensor, and we suppose

Z ∈ R
H×W×C , where C, H , and W are the size of the

channel, height, and width, respectively. Let z(h,w, c) ∈ R

be the response value in location (h,w) of the c-th channel

from Z. We further denote the desirable region number as

K, where, desirable means that 1) the number of regions is

discriminative for distinguishing seen/unseen images; and

2) some of these regions are matched with the semantic at-

tributes, e.g., the region of leg matches the attribute “leg”.

Inspired by the application of attention models to various

fields, such as image captioning [49], we employ the atten-

tion mechanism to the ZSL field as well, with the aim of

grasping the semantic regions and further narrowing the se-

mantic gap between seen/unseen images.

Specifically, by taking Z as input, we generate K 2-

dimensional masks Mk ∈ R
H×W , (k = 1, 2, · · · ,K):

Mk = MMaskGeneratek (Z), (3)

where MMaskGeneratek(·) is a mask generation operation

which is implemented by convolution on Z followed by the

Sigmoid thresholding. Thus, the value mk(h,w) in location

(h,w) of Mk can reflect the strength that location (h,w) of

Z falls into the k-th region. Furthermore, suppose the k-

th attentive convolutional feature map is Γk ∈ R(Z). In

particular, Γk is obtained by

Γk = OReshape(Mk)⊗Z. (4)

In Eqn. (4), OReshape(·) reshapes the input to be the same

size as that of Z, ⊗ indicates an element-wise product.

Adaptive Thresholding: After the ARD, the generat-

ed K attentive maps usually have redundancy, such as the

background noises. To purify these maps, we propose the

AT operation. AT takes these K attentive feature maps (in

Eqn. (4)) as inputs, calculates the maximum value of each

2D mask map (Mk), yielding the maximum value vector

mv ∈ R
K×1 w.r.t. these K mask maps. Then, the maxi-

mum value of mv is achieved, denoted as ATmax:

ATmax = max
16k6K

mv(k). (5)

ATmax is the global maximum value of these K attention

mask maps in Eqn. (3). An adaptive coefficient α (0 6 α 6

1) is introduced, based on which, we denote the final thresh-

olding bound as TB = α × ATmax. To this end, if the k-th

value in mv is less than TB , the corresponding attentive

feature map Γk will be set as all zero elements. Throughout

the paper, for a given fixed K, there is only one parameter α
to be tuned. Experimental evaluation shows improvements

in performance by setting a proper value for α.

3.1.2 Attentive Compressed Second-order Embedding

In Fig. 2, after acquiring the last convolutional feature

map Z and the K purified attentive feature maps (from the

ARE), i.e., T (Γk), k = 1, 2, · · · ,K, with some of them

having all zero-elements, we resort to second-order pool-

ing [24] to alleviate the semantic gap between seen/unseen

images. We first compress Z by a 1×1 convolution. The re-

sulting compressed feature map Zcps has Ncps(=20 through-

out this paper) channels. In this way, the resulting com-

pressed second-order representation will be compact and

efficiently trainable.
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For each T (Γk), the second-order pooling with Zcps

yields the k-th second-order representation Pk, which may

be equal to all zero vector due to the attentive mechanism.

Pk is formulated as:

Pk = Zcps ⊚ T (Γk), (6)

where ⊚ is the seconder-order operation [24] between two

input matrices. A vector maximum pooling is utilized to

pool these K vectors, thus generating the final ACSE repre-

sentation vACSE(x) for the input image x.

Similarly, vACSE(x) is embedded into the semantic space

to achieve ZSL/GZSL. The projected representation yACSE

implies the second-order statistics for better semantic trans-

fer. To the best of our knowledge, this is the first time that

second-order representation is incorporated into ZSL.

3.2. The Compatibility Loss

In this section, we discuss the problem of embedding to

the semantic space, which is the most utilized strategy for

making ZSL extendable. In general, the ZSL task formu-

lates a mapping (prediction) function f : XS 7→ Y from

the (seen) training set, as follows:

f(x,W ) = argmax
y∈Y

F (x, y;W ). (7)

Given the trained parameters W , the function in Eqn. (7)

is used to predict an unseen image xu. To associate the

visual and semantic information, the score function F (·),
parameterized by W , is typically formulated as the bilinear

compatibility function [1, 13, 37, 3, 22, 42, 27, 46]:

F (x, y;W ) = θ(x)Wφ(y), (8)

where θ(x) and φ(y) are the visual embedding of image x
and the semantic embedding of label y, respectively.

In the context of the proposed ARE and ACSE, vARE(x)
and vACSE(x) serve as the visual embeddings of input image

x, i.e., Eqn. (8) can be reformulated as follows:

FARE(x, y;ΘARE,WARE) = vARE(x)
T
WAREa

y∗,

FACSE(x, y;ΘACSE,WACSE) = vACSE(x)
T
WACSEa

y∗,
(9)

where ΘARE and ΘACSE are the whole learnable parameters

w.r.t. vARE(x) and vACSE(x) respectively, WARE and WACSE are

the embedding parameters for mapping vARE(x) and vACSE(x)
to the semantic embedding ay∗, which is the L-2 normal-

ized semantic vector w.r.t. class y.

We further denote the normalized attribute matrix w.r.t.

all these Cs seen classes as A ∈ R
Q×Cs

, and the class out-

puts of image x on the final layer of ARE and ACSE are

OARE(x;ΘARE,WARE) = A
T
W

T

AREvARE(x),

OACSE(x;ΘACSE,WACSE) = A
T
W

T

ACSEvACSE(x),
(10)

To learn all these parameters (ΘARE,WARE,ΘACSE,WACSE) in

Eqn. (10) in an end-to-end manner, i.e., to train the proposed

AREN (Fig. 2), the loss function is

L = λ1LARE + λ2LACSE, (11)

where λ1 and λ2 are trade-off parameters. LARE and LACSE

are specified as

LARE =
1

Ns

Ns∑

i=1

L(OARE(x
s
i ;ΘARE,WARE), y

s
i ),

LACSE =
1

Ns

Ns∑

i=1

L(OACSE(x
s
i ;ΘACSE,WACSE), y

s
i ),

(12)

where L is some classification loss. In this paper, cross-

entropy (CE) loss is used. Compared with traditional CE

loss, the difference lies in that the weights of the CE loss

layer are frozen as A and are fixed without updating dur-

ing the training phase. In this way, the attribute matrix A
can guide the attentive region discovery, and progressively

project the input image to the direction of its semantic rep-

resentation. To this end, we term the designed two stream

loss function L as compatibility loss.

3.3. Prediction

In the AREN framework, the tested unseen image can be

projected into the semantic space by ARE/ACSE, enabling

it to perform a separate prediction.

Prediction by ARE: A test image xu can be projected into

the semantic space, thus resulting in the ARE representation

φARE(x
u) (= W T

ARE
vARE(x

u)). To predict the class label, the

location of the maximum compatibility score can be chosen

as the predicted label:

yu∗ = arg max
c∈YU

φARE(x
u)Tau

c . (13)

Prediction by ACSE: Similarly, suppose the ACSE repre-

sentation of xu is φACSE(x
u) (= W T

ACSE
vACSE(x

u)). The pre-

dicted class label is:

yu∗ = arg max
c∈YU

φACSE(x
u)Tau

c . (14)

Combining ARE and ACSE: After obtaining the ARE and

ACSE representations of xu, i.e., φARE(x
u) and φACSE(x

u),
we first calculate their combined vector, and then predict

the label in the same way as Eqn. (13) / Eqn. (14):

yu∗ = arg max
c∈YU

(γ1φARE(x
u)T + γ2φACSE(x

u)T)au
c . (15)

4. Experiments

4.1. Datasets and Settings

Four widely used ZSL datasets, i.e., CUB [43],

AWA2 [46], SUN [30], and APY [11], are employed to
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validate the proposed AREN. Specifically, CUB contain-

s a total of 11,788 bird images from 200 classes, each

of which has a 312D continuous semantic vector. We

use the standard split (SS) and the proposed split (PS) of

150/50 (seen/unseen) for evaluation, as done in [46]. AWA2

is an extension of AWA, whose images cannot be accessed.

As such, we adopt AWA2, which includes 37,322 images of

animals from 50 classes, among which 40/10 (seen/unseen)

splits under SS/PS settings are evaluated, an 85D semantic

vector is associated with each class. SUN is a scene image

dataset, consisting of 14,340 images from 717 categories.

SS/PS splits of 645/72 for seen/unseen classes are lever-

aged, and a 102D continuous semantic vector is constructed

for each class. APY, with a total of 15,339 images, contains

32 categories with 64D attribute, and the seen/unseen splits

are 20/12, evaluated under SS/PS settings. As in [46], af-

ter obtaining the AREN model, we conduct both ZSL and

GZSL evaluations under the PS setting, only ZSL evalua-

tion under the SS setting, for all four datasets.

4.2. Training Details and Parameters

For fair comparison with the published approaches, [46]

reproduced nearly all leading methods using the 2,048D

ResNet101 features. As such, the backbone net in Fig. 2

is taken as the ResNet101 net [16].

As with the initial pre-training on the ImageNet

dataset [38], the input image size for these four datasets

is 224×224. Therefore, the size of the last convolution-

al feature map Z for ResNet101 is 2048 × 7 × 7. For

each dataset, the AREN is trained for 100 epochs with an

initial learning rate selected from [0.0001, 0.003] (which is

robust). The parameter (λ1, λ2) is fixed as (0.5, 0.5) dur-

ing the training of AREN, while, when the ARE and ACSE

are trained separately, it is taken as (1, 0) and (0, 1), re-

spectively, to ensure that only their own loss function con-

tributes to the gradient updating. In the ARE, the num-

ber K of the part regions is experientially selected from

{k ∈ N+|4 6 k 6 12}, and the AT parameter α is se-

lected from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. In the ACSE, the

compressed channel number Ncps is set to 20.

When testing unseen images, as for the separate test-

ing of the ARE and ACSE, the combination coefficien-

t (γ1, γ2) (in Eqn. (15)) is set to (1, 0) and (0, 1), respec-

tively. Meanwhile, for the jointly trained AREN, (γ1, γ2) is

set to (0.5, 0.5) to achieve the fused matching results.

4.3. Evaluations in ZSL setting

We compare our proposed methods against current state-

of-the-art models, on all four aforementioned ZSL datasets,

under SS/PS settings [46]. Average Class Accuracy (ACA)

is adopted as the evaluation metric. Table 1 presents the ex-

perimental results, from which, it can be concluded that i)

ARE, ACSE and AREN consistently outperform the com-

Table 1. ZSL results (ACA, in %) on evaluated four datasets. Our

methods and most of the compared methods use ResNet101 as

the backbone net for fair comparisons. SS = Standard Split, PS =

Proposed Split. The best result is marked in red, the second best

in blue, and the third best in bold.

Method

CUB SUN AWA2 APY

SS PS SS PS SS PS SS PS

DAP [1] 37.5 40.0 38.9 39.9 58.7 46.1 35.2 33.8

IAP [1] 27.1 24.0 17.4 19.4 46.9 35.9 22.4 36.6

CONSE [28] 36.7 34.3 44.2 38.8 67.9 44.5 25.9 26.9

CMT [39] 37.3 34.6 41.9 39.9 66.3 37.9 26.9 28.0

SSE [53] 43.7 43.9 54.5 51.5 67.5 61.0 31.1 34.0

LATEM [44] 49.4 49.3 56.9 55.3 68.7 55.8 34.5 35.2

ALE [2] 53.2 54.9 59.1 58.1 80.3 62.5 30.9 39.7

† DEVISE [13] 53.2 52.0 57.5 56.5 68.6 59.7 35.4 39.8

SJE [3] 55.3 53.9 57.1 53.7 69.5 61.9 32.0 32.9

ESZSL [37] 55.1 53.9 57.3 54.5 75.6 58.6 34.4 38.3

SYNC [5] 54.1 55.6 59.1 56.3 71.2 46.6 39.7 23.9

SAE [20] 33.4 33.3 42.4 40.3 80.7 54.1 8.3 8.3

PSR [4] – 56.0 – 61.4 – 63.8 – 38.4

SCoRe[27]∗ 59.5 – – – – – – –

QFSL− [20] 58.5 58.8 58.9 56.2 72.6 63.5 – –

‡ DEM [52]∗ – 51.7 – 40.3 – 67.1 – 35.0

LDF [22]∗ 67.1 – – – 83.4 – – –

SP-AEN [8] – 55.4 – 59.2 – – – 24.1

RN [50] – 55.6 – – – 64.2 – –

UDA [19] 39.5 – – – – – – –

♮ TMV [14] 51.2 – 61.4 – – – – –

SMS [15] 59.2 – 60.5 – – –

QFSL [42] 69.7 72.1 61.7 58.3 84.8 79.7 – –

ARE 70.2 72.5 60.8 59.0 86.3 66.9 44.0 35.5

♭ ACSE 69.0 71.5 61.5 59.7 86.5 65.2 43.5 38.7

AREN 70.7 71.8 61.7 60.6 86.7 67.9 44.1 39.2

† : Inductive & ResNet101 feature based methods.
‡ : Inductive & End-to-end trainable CNN based methods.
♮ : Transductive.
♭ : Proposed & Inductive & ResNet101 as backbone, end-to-end trainable.
∗ : Indicates that ResNet101 is not used as backbone net.

pared counterparts by a large margin, under both SS/PS set-

tings. For example, ARE achieves 72.5% on CUB under

the PS setting, which has improved the ACA up to 17%,

compared with the recently proposed RN method whose A-

CA is only 55.6%. ii) For some datasets, the jointly trained

AREN model performs slightly worse than the separately

trained ARE and ACSE. The reasons lie in that 1) the co-

efficient (λ1, λ2) of the loss function in Eqn. (11) and the

prediction coefficient (γ1, γ2) in Eqn. (15) are only roughly

set, and, thus, may not lead to the best optimized model;

and 2) the separate models (ARE and ACSE) are powerful

enough, and the joint training disturbs their discrimination.

iii) Most importantly, under the inductive setting, we are on

par with and have even surpassed some of the leading trans-

ductive methods (such as QFSL).

4.4. Evaluations in GZSL Setting

To evaluate the GZSL, the searched label space for a giv-

en test image is enlarged to include both unseen (YU ) and

the seen classes (YS). Under the PS setting [46], the test

images come from both seen and unseen classes. To begin

with, we present the evaluation protocol for GZSL. Suppose

that the ACA for the testing samples from the unseen class-

es is ACAYU , and meanwhile, ACAYS for testing samples
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Table 2. GZSL results (in %) in PS setting; our methods and most of the compared methods are taking ResNet101 as the backbone net for

fair comparisons. ts = ACA on YU , tr=ACA on YS , and H = harmonic mean. The best number is marked in bold.

Method

CUB SUN AWA2 APY

ts tr H ts tr H ts tr H ts tr H

DAP [1] 1.7 67.9 3.3 4.2 25.1 7.2 0.0 84.7 0.0 4.8 78.3 9.0

IAP [1] 0.2 72.8 0.4 1.0 37.8 1.8 0.9 87.6 1.8 5.7 65.6 10.4

CONSE [28] 1.6 72.2 3.1 6.8 39.9 11.6 0.5 90.6 1.0 0.0 91.2 0.0

CMT [39] 7.2 49.8 12.6 8.1 21.8 11.8 0.5 90.0 1.0 1.4 85.2 2.8

SSE [53] 8.5 46.9 14.4 2.1 36.4 4.0 8.1 82.5 14.8 0.2 78.9 0.4

† LATEM [44] 15.2 57.3 24.0 14.7 28.8 19.5 11.5 77.3 20.0 0.1 73.0 0.2

ALE [2] 23.7 62.8 34.4 21.8 33.1 26.3 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [13] 23.8 53.0 32.8 16.9 27.4 20.9 17.1 74.7 27.8 4.9 76.9 9.2

SJE [3] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [37] 12.6 63.8 21.0 11.0 27.9 15.8 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [5] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0 7.4 66.3 13.3

SAE [20] 7.8 54.0 13.6 8.8 18.0 11.8 1.1 82.2 2.2 0.4 80.9 0.9

PSR [4] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 32.3 13.5 51.4 21.4

‡ DEM [52]∗ 19.6 57.9 29.2 20.5 34.3 25.6 30.5 86.4 45.1 11.1 75.1 19.4

QFSL [42] 33.3 48.1 39.4 30.9 18.5 23.1 52.1 72.8 60.7 – – –

RN [50] 38.1 61.1 47.0 – – – 30.0 93.4 45.3 – – –

♭ ARE 38.4 76.4 51.2 19.0 29.3 23.1 17.5 93.2 29.5 11.6 75.3 20.1

ACSE 34.6 80.1 48.4 15.2 28.8 19.9 18.2 92.9 30.4 9.6 76.5 17.1

AREN 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7 9.2 76.9 16.4

♭ ARE+CS♦ 61.3 66.6 63.8 41.7 35.2 38.2 55.6 79.8 65.5 28.0 53.7 36.8

ACSE+CS♦ 61.3 68.4 64.7 36.8 34.9 35.8 53.5 79.2 63.9 30.8 50.8 38.3

AREN+CS♦ 63.2 69.0 66.0 40.3 32.3 35.9 54.7 79.1 64.7 30.0 47.9 36.9

†: Inductive & ResNet101 feature based methods. ‡: End-to-end trainable CNN based methods. ♭: Proposed & Inductive &

ResNet101 as backbone, end-to-end trainable. ∗: Indicates that ResNet101 is not used as backbone. ♦: CS, i.e., Calibrated

Stacking [6], means reducing the prediction scores for the seen classes.

from the seen classes. Their Harmonic mean H can then

be calculated as H =
2×ACA

YU ×ACA
YS

ACA
YU +ACA

YU
. To this end, the

harmonic mean H is taken as the main evaluation criterion

for our models under the GZSL setting.

ACAYU (ts), ACAYS (tr), and their harmonic mean H

for the evaluated datasets are listed in Table 2. From Ta-

ble 2, we can draw the following conclusions: i) On CUB,

AWA2, and APY datasets, the proposed methods without

calibrated stacking (CS) in H are comparable to/better than

current state-of-the-art methods. ii) Our initial results typ-

ically achieve a high tr, but a low ts, which indicates that

calibrated stacking [6] is needed. As shown in the last three

rows, after the CS operation, the H mean, tr and ts become

the best in most cases. iii) the overall AREN model, w/o a

CS operation, shows a lower performance than the separate

ARE and ACSE models, for some datasets. This is likely

for the same reasons as in the ZSL model.

4.5. Ablation Study

In the following, the CUB and AWA2 datasets are taken

as examples for ablation analysis.

Coefficients in loss function. For the AREN model,

there exist two parameters, i.e., λ1 and λ2, in Eqn. (11). By

varying their values from {0.1, 0.5, 1.0, 1.5, 2.0} and fixing

other parameters as defaults, we run different models for

10 epochs and produce the ACA maps w.r.t. λ1 and λ2 un-

der SS/PS settings for ZSL. The changing tendency of ACA

w.r.t. (λ1, λ2), overall, is stable and consistent (Fig. 3).

AT coefficient in ARE. To observe the influ-

ence of the AT coefficient α for K fixed atten-

tive maps, we conduct experiments varying α from
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Figure 3. The ACA-(λ1, λ2) maps on CUB under SS/PS settings.
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Figure 4. The ACA-α curves under ZSL setting.

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, where α =
0 indicates ARE without AT, α = 1.0 means the strongest

AT is added (only the attentive map with largest activate

value is preserved, while all other maps are set to zero-

elements), and if α > 1.0, ARE becomes un-trainable. ZSL

results under SS/PS settings are illustrated in Fig. 4. The

curves show that improvements in ACA are achieved, which
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Figure 5. The ACA-Ncps curves of ZSL setting w/w/o attention.

well confirms the effectiveness of the AT mechanism.

Channel compression in ACSE. We present the trend

of ACA w.r.t. varying values of Ncps over a discrete val-

ue range of {1, 10, 20, 50, 100, 200, 500}. ZSL results are

shown in Fig. 5. We can see that the ACSE with smal-

l values of Ncps achieves better ACA results in nearly all

cases. In particular, we achieve an accuracy of 89.2% for

AWA2:SS, under Ncps = 50. Only see ACSE-w (ACSE

with attention) curves for comparison. Attention in ACSE.

In Fig. 2, the Zcps from the ACSE and K attentive fea-

ture maps from ARE are used collaboratively to gener-

ate a second-order vector. We further observe two cases,

i.e., 1) the current ACSE with attention (ACSE-w), and

2) the ACSE without attention (ACSE-w/o), i.e., second-

order vector is obtained by Zcps ⊚ Zcps. For fair com-

parisons, we make the dimensions of the final vectors for

ACSE-w and ACSE-w/o (almost) the same. To reuse the

results in Fig. 5 from ACSE-w, we vary the values of Ncps

from Υ = {46, 144, 203, 320, 453, 640, 1012} for ACSE-

w/o attention, thus making the dimensions of the generated

vectors from the two cases approximately the same. From

Fig. 5, it can be concluded that ACSE-w is consistently bet-

ter than ACSE-w/o.

Global versus part features: The global model is

trained by taking the original ResNet101 with its fully con-

nected layer as the backbone, followed by the projection to

semantic space and the same compatibility loss as ours. The

ACAs of the global baseline (GB), ARE, and ACSE are list-

ed in Table 3, which shows significant improvements have

been made by our models.

4.6. Visualization

The ARE models with PS split are used to visualize

what the learned regions look like, and unseen images from

AWA2 and CUB are considered (Fig. 7). Based on the

above ten mv values for each image, ATmax (Eqn. (5)) is

obtained, and TB is thus acquired by multiplying α with

ATmax, e.g., for “horse”, let α = 0.8, only six attention

maps (in red rectangle boxes) are reserved, the discarded

four masks are backgrounds w.r.t. the sky. To this end, the

Table 3. ZSL results (ACA, in %) of global/part features.

Method

CUB AWA2

SS PS SS PS

GB 60.2 62.7 81.7 60.3

ARE 70.2 72.5 86.3 66.9

ACSE 69.0 71.5 86.5 65.2

AT mechanism is automatically suppressing the backgroud

noises. Moreover, global objects and semantic parts are ad-

dressed by these learned masks, e.g., the 4-th mask of “mal-

lard” corresponds to “whole body”, and the 1-st mask of “k-

ingbird” fucuses on “head”. ARE/ACSE models of PS split-

s are further used to visualize the distribution of the unseen

test images on AWA2 by t-SNE visualization [55] (Fig. 6).

ARE ACSE
Figure 6. t-SNE visualization of unseen class images on AWA2.

(a) AWA2:PS, unseen images

(b) CUB:PS, unseen images

dolphin 0.82 0.58 0.78 0.85 0.92 0.61 0.56 0.56 0.76 0.74

horse 0.98 0.53 0.89 0.50 0.83 0.98 0.85 0.58 0.60 0.88

kingbird 0.56 0.27 0.38 0.86 1.00 0.34 0.14 0.33 0.89 0.65

mallard 0.87 0.27 0.62 1.00 0.80 0.20 0.19 1.00 0.210.91

Figure 7. In both (a) and (b), (attention) masks in red rectangle are

selected by AT mechanism. For each row, the first one is the input

image, the left ones are its ten attentive feature masks, the number

below is the maximum value mv within the mask.

5. Conclusions

An attentive region embedding network (AREN) is pro-

posed for solving the challenging ZSL/GZSL task, which

consists of two branches, i.e., the upper stream attentive

region embedding (ARE) and the bottom stream (atten-

tion guided) compressed second-order embedding (ACSE).

Both ARE and ACSE are embedded into the semantic s-

pace, where ZSL/GZSL is conducted through nearest neigh-

bor matching. An adaptive thresholding (AT) is also in-

corporated into the ARE. Actually, the AT can also be ap-

plied to many other general tasks which requires an atten-

tion mechanism, such as visual question answering. Inte-

grating ARE and ACSE together leads to the AREN mod-

el, which has achieved some new state-of-the-art results for

both ZSL and GZSL, on the standard benchmarks.
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