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Abstract—Multitask learning (MTL) has recently gained a
lot of popularity as a learning paradigm that can lead to
improved per-task performance while also using fewer per-task
model parameters compared to single task learning. One of the
biggest challenges regarding MTL networks involves how to share
features across tasks. To address this challenge, we propose the
Attentive Task Interaction Network (ATI-Net). ATI-Net employs
knowledge distillation of the latent features for each task, then
combines the feature maps to provide improved contextualized
information to the decoder. This novel approach to introducing
knowledge distillation into an attention based multitask network
outperforms state of the art MTL baselines such as the standalone
MTAN and PAD-Net, with roughly the same number of model
parameters.

I. INTRODUCTION

The rapid improvements in the performance of machine
learning algorithms have led to a surge in their use for a
wide range of applications. Particularly for dense image pre-
diction tasks, we see machine learning being used abundantly
for applications that are critical to both human health and
safety; such as in medical diagnosis, security systems, and
autonomous driving. Consequently, improvements in accuracy,
inference speed, and parameter efficiency are becoming more
imperative for machine learning algorithms.

Multi-Task Learning (MTL) [1] has demonstrated the ability
to enhance performance through improved generalization as
a result of leveraging domain-specific knowledge between
related tasks [2]. Generally, MTL involves a single network
that can learn several tasks by simultaneously optimizing
multiple loss functions. Compared to single task networks,
MTL networks are potentially more parameter efficient [3],
leading to faster inference time, and can have improved
performance as a result of the inductive bias provided by
auxiliary tasks [4]. Recent MTL works for dense prediction
tasks [3, 5, 6] can achieve better performance on tasks such as
semantic segmentation, depth regression, and surface normals
estimation using only one network instead of using several
independent task-specific networks.

The most commonly addressed challenges with MTL net-
works include how to share the features, and how to balance
the training across tasks. Feature sharing is related to the
network architecture. Balancing training typically involves

using a loss function with tunable weights assigned to the
individual loss functions of each task. The goal is to tune
the weights such that one task does not dominate training.
Traditionally, a multitask loss function is represented as a
weighted sum of the losses for each individual task, as seen
in equation (1).

Ltotal =
∑
i

λiLi (1)

The majority of MTL works prior to [2] assign weights λi
uniformly for all tasks [7, 8, 9]. Recent works have more
sophisticated ways of balancing training across tasks, by
tuning the weights based on homoscedastic uncertainty [2, 10],
gradient size [11], or based on some performance metrics [12].
Recent developments in MTL architectures with attention, like
the Multi-Task Attention Network (MTAN) [3], have shown
resilience to different task balancing methods [3] such as equal
weights, uncertainty to weight loss [2], and dynamic weight
averaging (DWA) [3] inspired by GradNorm [11]. Working
within an attention based system, the focus of this paper is
on architectural modifications to improve performance rather
than modifying task balancing schemes.

Architecturally, an MTL network consists of shared layers
and task-specific layers. The sharing of the hidden layers are
typically done with either hard or soft parameter sharing [13,
14]. Hard parameter sharing includes sharing the hidden layers
between all tasks, and then choosing an arbitrary break-out
point that then connects to each of the task-specific heads
[13]. Soft parameter sharing involves each task having it’s
own model, where the distance of the model parameters are
regularized to keep the parameters across models similar [13,
14]. MTAN employs a soft parameter sharing scheme that
uses attention modules to automatically select the task-specific
features from a shared backbone. This will serve as the starting
point for developing our proposed architecture.

Another popular topic in MTL involves managing task inter-
actions. Studies [4, 13] have shown that choosing which tasks
are trained together has a direct impact on the performance of
the overall system. MTAN does not have a built-in system for
managing task interactions since the set of attention modules
for each task only communicate with the shared backbone.
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In this paper, inspired by [5, 6], we propose the Atten-
tive Task Interaction Network (ATI-Net), which incorporates
task-prediction distillation of the latent features between the
shared encoder and decoder of an attention based multi-task
network. The incorporation of distillation modules addresses
the absence of a task interaction system for the multitask
attention network. ATI-Net also takes a different approach to
task prediction distillation. Unlike other multitask distillation
works [5, 6, 15, 16] that will be discussed in the next
section, we do not use task prediction distillation as means
to refine the final output predictions. Instead, ATI-Net distills
low dimension features at an intermediate stage in the network
as means to augment the pool of shared features that interact
with the task-specific attention modules. Not only does this
approach improve performance, but distilling low dimensional
features ensures that our architecture remains highly parameter
efficient.

In the following sections, there will be an overview of
the recent works in attention and task prediction distillation
within the context of MTL, followed by a detailed description
of the proposed ATI-Net architecture. Afterwards, we will
present the experimental conditions related to the dataset,
tasks performed, the corresponding evaluation metrics, and the
baselines. Finally, there will be a discussion about the corre-
sponding quantitative and qualitative experimental results.

II. RELATED WORKS

A. Task-Prediction Distillation

Task-prediction distillation involves having the multi-task
network make initial predictions for each task, then using the
features of these prediction to further refine the output of each
task. PAD-Net [5] is one of the first state-of-the-art methods to
incorporate task prediction distillation. It explores the effect of
using three different multi-modal distillation modules, where
each use a unique method of distilling the intermediate task
outputs to then generate the final task predictions. The best
performing module was their “module C” which uses an
attention guided message passing mechanism for information
fusion. An illustration of this distillation module and how it’s
been adapted in our architecture can be seen in Fig. 1. The
benefits of using attention is that it can act as gate function,
where the network can automatically learn to focus or to
ignore information from features from each task prediction. An
important detail about PAD-Net is that the front-end network is
first initialized with parameters as a result of pre-training with
the ImageNet dataset, and the rest of the network parameters
are randomly initialized [5]. In addition to initializing with
pre-trained parameters, the front-end network is first optimized
for the scene-parsing task before the entire multi-task learning
begins. Other works that use distillation for MTL include
JTRL [15], PAP-Net [16], and MTI-Net [6]. JTRL recursively
refines task results by using learning experiences from the task
interactions that are encapsulated by task attention modules.
Learning experiences for each task are then propagated from
one task to refine the prediction of another task at each
iteration [13, 15]. PAP-Net also uses a recursive procedure

Fig. 1. Illustration of the distillation module. F 1
i , F 2

i , F 3
i represent the

features of the initial predictions for 3 separate tasks. These features are then
propagated through a guided attention mechanism (GA) for passing messages
between different predictions. The refined features for each task are denoted
as F o,1

i , F o,2
i , F o,3

i . In ATI-Net, we encode these features and pass the
resulting average feature map to the shared decoder.

with both cross-task propagation and task-specific propagation
of the patterns from the initial predictions [16]. Contrary to
PAD-Net, the patterns involve pixel affinities rather than the
actual image features. MTI-Net makes initial task predictions,
then uses the features of these predictions at several scales
to further refine the output of each task by means of spatial
attention in a one-off recursive manner [6].

B. Attention-based Methods

There exist few methods to employ attention in a multitask
learning framework [13]. MTAN [3] is an attention based
multi-task network that consists of a shared backbone encoder-
decoder structure that is connected to rows of task-specific
attention modules. Each task in the system has it’s own
dedicated row of attention modules, where the function of the
modules is to automatically determine the importance of the
shared features from the shared backbone. A benefit of MTAN
compared to other soft parameter sharing schemes, like cross-
stitch networks [17] or NDDR-CNNs [18], is that the attention
modules are small compared to the general encoder and
decoder; making it scale better with more tasks. As previously
mentioned, MTAN is also resilient to different task balancing
methods. Another important feature is that the network was
able to achieve state of the art performance training end-to-
end without any pretraining.

III. PROPOSED METHOD

One limitation to the MTAN model is that it can only
use limited local information to produce the attention mask
[13]. Our approach improves performance by injecting a task
interaction system using task prediction distillation in the
latent space.

A. Model Architectures

The aforementioned works on task prediction distillation use
various distillation strategies as a means to produce the final
output predictions. Consequently, these works are motivated
to employ expensive recursive strategies or manipulate the



Fig. 2. ATI-Net architecture which includes task prediction distillation between the general encoder and decoder of a multi task attention network. The
latent features from the general encoder are passed through task-specific decoders to generate intermediate prediction features. These features then undergo
multi-modal distillation to generate output feature maps for each task. The feature maps are averaged and then passed to the general decoder. Encoder and
decoder based attention modules then extract features from the shared backbone to generate the final predictions.

features at multiple scales in order to obtain the best final
predictions. Rather than distilling after the prediction layer of
an existing network [5, 6, 15, 16], we propose to distill the
latent features between the shared encoder and decoder of a
multitask attention network. Consequently, ATI-Net provides
more refined and contextualized features to the shared decoder.
This allows the attention modules to select better features
for each task; leading to improved per-task performance.
Additionally, since we are not performing task prediction
distillation at the end of the network, we are not obliged
to operate with features maps corresponding to the full size
output resolution. Consequently, we propose generating the
initial predictions by passing the low resolution latent features
through a series of lightweight dedicated decoder heads to
reduce the dimensionality of the feature channels prior to
distillation. This drastically reduces the number of parameters
introduced to the model. An overview of the proposed ATI-
Net for semantic segmentation, depth regression, and surface
normals estimation can be seen in Fig. 2. The dedicated
decoder heads are illustrated by the Deconv blocks. Specif-
ically, our proposed dedicated decoder heads for each task
are comprised of a series of 3 deconvolution layers to reduce
the channel dimension from 512 to 64. Each deconvolutional
layer consists of a 2D convolution with a 1x1 kernel, a batch
normalization, and a ReLu activation. The output of each
deconvolution operation are the initial prediction features for
its corresponding task.

Inspired by [5], the initial prediction features are then re-
fined through Multi-Modal Distillation modules. This involves
passing each of the initial prediction features of the auxiliary

tasks as inputs to self attention blocks. We define auxiliary
tasks for a given task “t” as all tasks used in the training of the
multi-task model except for “t”. In other words, an auxiliary
task is a task whose prediction features are used to help further
refine the prediction features of another task. For example, the
auxiliary tasks for semantic segmentation in our experiments
are depth regression and surface normal estimation. The self
attention blocks take the predictions of the auxiliary tasks and
pass each one through a convolutional layer and a sigmoid
activation. The output of the self attention blocks for the
auxiliary tasks are then concatenated and summed along the
channel dimension, and finally added to the initial prediction
features of task “t”. The aforementioned procedure occurs for
each of the tasks, and the corresponding refined outputs then
needed to be encoded to fit as input to the general decoder.
To encode the distilled features, the reverse operation from
the decoder heads is performed, which consists of a series of
3 convolutional blocks that increased the channel dimensions
from 64 back to 512. This operation is represented by the
task-specific encoder blocks in Fig. 1. The re-encoded feature
maps for each task are averaged together, and then fed into the
general decoder. This averaging of the feature maps is denoted
by the X̄ block in Fig. 2.

Even with the additional intermediate task-specific decoder-
encoder heads, the increase in the number of parameters
compared to the original multitask attention network was only
3.3%. With the enhanced backbone in place, the encoder and
decoder based attention modules have an improved pool to
select task shared features from. The five arrows connecting
the general encoder and decoder to the task-specific attention



modules represents the connections to the five attention mod-
ules found in each attention block in Fig. 2. These connections
propagate task shared features, which is represented by the
arrows that cascade down to the other sets of task-specific
attention modules. The output of the decoder based task-
specific attention modules are then passed through prediction
layers to generate the final outputs.

B. Training Configurations

The distillation modules will only be activated halfway
through the entire training. This means that for the first half
of the training, the features from the shared encoder will be
sent directly to the shared decoder. For the second half of
the training, the features from the shared encoder will pass
through the Deconv blocks to produce the initial prediction
features as seen in Fig. 2. This is to ensure the modules
are actually distilling meaningful features across tasks. At this
halfway point, the task-specific attention modules will also be
reset to a randomly initialized state. This allows the attention
modules to relearn the meaningful mappings of task shared
features from the enhanced backbone.

IV. EXPERIMENTS

A. Dataset

We perform our experiments on the most commonly
used benchmark dataset NYUv2 [19]. NYUv2 contains 1449
densely labeled RGB-depth images generated by recordings of
indoor scenes using a Microsoft Kinect device. Specifically,
following [3], we use the raw dataset that includes incomplete
depth values for certain images. The train set and validation
set are comprised of 795 and 654 images respectively to
learn depth regression, surface normal estimation, and 13-
class semantic segmentation. The pseudo ground truth surface
normals data is from [7], which also includes some incomplete
values for the same associated pixels from the depth maps. The
resolution of the images used are [288×384].

B. Overview of tasks

Semantic Segmentation involves assigning a class label to
every pixel in an image. The training objective is to minimize
the depth-wise cross entropy loss between the predicted labels
(ŷ) with the ground truth (y) for all NS pixels. The loss
function is formulated as seen in equation (2).

LSemantic = − 1

NS

∑
nεNS

ynlog(ŷn) (2)

Depth Regression involves assigning a continuous depth
value at each pixel. The training objective is to minimize
the L1 norm (i.e. absolute error) between the predicted depth
values (d̂) and the ground truth (d) for all ND pixels.

LDepth =
∑
nεND

||dn − d̂n|| (3)

Surface Normal Estimation deals with predicting the
surface orientation of the objects present inside a scene.

The training objective is to minimize the element-wise dot
product between the normalized predicted estimates (ŷ) with
the ground truth (y), for all NN pixels.

LNormals = − 1

NN

∑
nεNN

yn · ŷn (4)

C. Evaluation Metrics

As mentioned, the three tasks that will be performed on the
NYUv2 dataset are depth regression, surface normal estima-
tion and 13-label semantic segmentation. For depth regression,
we will be evaluating the absolute error and the relative error
of the estimations with respect to the ground truth values
obtained from the Kinect depth sensor. The absolute error is
equivalent to the depth loss LDepth, and relative depth error
is computed in accordance with equation (5), where dn is the
ground truth depth value for pixel n, and d̂n is the depth
estimate from our model.

Errorrel =
∑
nεND

||dn − d̂n||
dn

(5)

For surface normal estimation, we will evaluate the mean
and median angle distance error with respect to the pseudo
ground truths values obtained from [7]. Specifically, we com-
pute the mean and median of the angular distance between
the 3-dimensional predicted and ground truth normal vectors.
Angular distance is simply the arccosine of the sum of the
element-wise product of the normalized predicted and ground
truth vectors, as seen in equation (6), where ŷn and yn are
the predicted and ground truth normal vectors for pixel n
respectively. We will also be considering the proportion of
the predictions that fall within 11.25, 22.5, an 30.0 degrees of
error.

Dθ = arccos(
∑
nεNN

ŷn · yn) (6)

Finally, for 13-label semantic segmentation, we evaluate
the mean intersection over union (mIoU) and the absolute
pixel accuracy. In a multi-class setting, the mean intersection
over union can be interpreted as taking the mean of the IoU
computation in equation (7) for every class, where TP, FP,
and FN are true positives, false positives, and false negatives
respectively.

IoU =
TP

TP + FP + FN
(7)

D. Baselines

The baselines used in our experimentation include three
single task networks (one for each task) and three multitask
networks. Similar to [3], our model can be applied to any
feed forward encoder-decoder architecture designed for dense
prediction tasks. To make a uniform comparison, all baselines
will use the same SegNet backbone.

• Single-Task, One Task: This is simply the standard
SegNet model for single task learning. In table I, the



TABLE I
VALIDATION SET PERFORMANCE METRICS TAKEN ACROSS ALL TASKS. THE VALUES USED ARE THE AVERAGE PERFORMANCE METRICS FROM THE FINAL

10 (OUT OF 200) TRAINING EPOCHS. THE NUMBER OF PARAMETERS FOR EACH MODEL RELATIVE TO MTAN ARE ALSO INCLUDED. VALUES IN
BOLDFACE INDICATE THE BEST VALUE IN A GIVEN COLUMN FOR THE MULTITASK LEARNING MODELS.

Segmentation Depth Surface Normal
Angle Distance Within t◦

Model Rel (Higher Better) (Lower Better) (Lower Better) (Higher Better)
Param. mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

One Task 1.69 27.45 54.64 0.6517 0.2829 29.85 23.67 24.83 48.34 60.17

MTAN 1.00 28.39 55.78 0.6152 0.2685 31.57 27.50 18.68 41.40 54.51
Split 1.13 15.12 40.95 0.7725 0.3213 36.81 33.37 13.70 32.89 45.07

PAD-Net 1.03 27.70 54.76 0.6393 0.2670 33.05 28.25 19.38 40.83 52.93
ATI-Net 1.03 28.66 56.80 0.6076 0.2582 30.95 25.97 21.42 44.23 56.72

results are presented in one row. However, the results
for each task were obtained used a separate task-specific
model.

• Multi-Task, Split [3]: This is a standard baseline in
multitask learning, where all features are shared across
tasks until there is a split at the final prediction layer
(a.k.a hard parameter sharing). Specifically, this is the
same implementation from [3].

• Multi-Task, MTAN [3]: This is the SegNet based MTAN
taken from the public repository of the authors of [3].

• Multi-Task, PAD-Net [5]: This is the implementation of
PAD-Net presented in [5], but with a SegNet backbone.
The features from the shared SegNet encoder are fed
to each of the task-specific SegNet decoders to generate
the initial predictions. The final predictions are generated
after task prediction distillation.

E. Implementation Details

A SegNet [20] backbone is used in ATI-Net and all baselines
in our experimentation. SegNet is an encoder-decoder archi-
tecture for image segmentation, where the encoder consists
of a series of convolutions followed by 2×2 max pooling
layers. Specifically, the 13 convolutional layers are from VGG-
16 [21] with the original fully connected layers removed.
The decoder architecture mirrors the encoder in structure
while using upsamples and convolutions. The final pixel-wise
classification layer from the original SegNet is not included
since the backbone is used to provide features to the attention
modules and not to make classifications.

MTAN has demonstrated state-of-the-art performance on
dense prediction tasks using completely uninitialized network
parameters. Therefore, ATI-Net and all comparative models
are trained from scratch. To establish a fair testing environment
and to adhere to the theme of end-to-end multitask learning,
all models were trained for a total of 200 epochs using a
batch size of 2. We trained all models using a standard Adam
optimizer [22] with an initial learning rate of 10−4 and a step
scheduler that reduces the learning rate by a factor of 0.5
halfway through the training. Additionally, ATI-Net and all
multitask models used the DWA [3] task balancing scheme
with a temperature value, T = 2. As seen in [3], DWA
determines the weights seen in equation (1) in accordance to

equation (8), where λi(t) corresponds to the weight of task i
at iteration index t. wi is the relative descending rate [3].

λi(t) =
Kexp(wi(t− 1)/T )∑
k exp(wk(t− 1)/T )

(8)

wi(t− 1) =
Li(t− 1)

Li(t− 2)
(9)

For the first two iteration indices, wi(1) = wi(2) = 1. Finally,
K is equal to the number of tasks, which is 3 in our case.

All our code was implemented using PyTorch and can
be found at the following repository: https://github.com/
Armanfard-Lab/ATI-Net

V. RESULTS

Table I summarizes the average validation set results over
the last 10 epochs of training for ATI-Net and all baseline
models. It also specifies the number of parameters for each
model relative to MTAN. MTAN was chosen as the reference
point to illustrate how our proposed task interaction system
leads to a small change in model parameters. We can see that
our proposed ATI-Net outperforms every multitask baseline
in every performance metric across each of the tasks. It is
also worth noting that our lightweight distillation configuration
only introduces approximately 3% more model parameters
compared to MTAN, while obtaining more than 1% improve-
ment on almost all performance metrics. We can also see
that ATI-Net greatly outperforms the single task baselines
for semantic segmentation and depth regression. Although,
the single task baseline for surface normals estimation out-
performs all MTL models, ATI-Net is the closest performing
MTL model. The great performance of the single task baseline
for surface normals can simply be attributed to the fact it has
more model parameters dedicated to a specific task compared
to the MTL models. The relative parameter rating for the One
Task model is simply the sum of all three individual networks.
Consequently, the surface normals model has more than half
the number of parameters compared to ATI-Net just to perform
a single task.

Figure 3 contains qualitative results of the predictions gen-
erated from ATI-Net for each of the tasks. The RGB images
in the first row give a glimpse at the complexity of this indoor

https://github.com/Armanfard-Lab/ATI-Net
https://github.com/Armanfard-Lab/ATI-Net


Fig. 3. Qualitative results obtained using ATI-Net for each task on 6 samples from the NYUv2 dataset. The task labels with the subscript “gt” and “pred”
correspond to ground truth and predictions from ATI-Net respectively. We can see that despite the missing values in the ground truth data for depth regression
and surface normals estimation, the predictions demonstrate the ability to generalize well.

scene dataset. Despite its complexity, we can see that ATI-
Net generates predictions that resemble the ground truth maps
with relatively good clarity and granularity between objects.
Even for instances where there are many missing values in
the ground truth data, like in the first column, we can see that
ATI-Net manages to leverage the domain specific knowledge
across tasks to generalize realistic results in the regions with
missing data.

VI. CONCLUSION

In this study, we proposed ATI-Net, which is an architecture
that unites two distinct multi-task learning concepts in a novel
way. Specifically, ATI-Net applies task prediction distillation
in an attention based multitask learning system. Rather than
distilling features at the prediction layer to generate final out-
puts like other methods, we distill features at an intermediate
stage of the network as means to provide better features for
the attention masks to extract from the shared backbone. This
enhancement to the traditional multitask attention network
has led to improvements across all performance metrics for
semantic segmentation, depth regression, and surface normals

estimation on the challenging NYUv2 dataset. Distilling at
an intermediate stage in the network also allows us to distill
knowledge between low dimensional features. Consequently,
we introduce very few extra model parameters; unlike other
methods that employ expensive distillation algorithms.
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