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ABSTRACT

Strong subsurface attenuation leads to distortion of ampli-

tudes and phases of seismic waves propagating inside the

earth. Conventional acoustic reverse time migration (RTM)

and least-squares reverse time migration (LSRTM) do not

account for this distortion, which can lead to defocusing

of migration images in highly attenuative geologic environ-

ments. To correct for this distortion, we used a linearized

inversion method, denoted as Qp-LSRTM. During the least-

squares iterations, we used a linearized viscoacoustic mod-

eling operator for forward modeling. The adjoint equations

were derived using the adjoint-state method for back propa-

gating the residual wavefields. The merit of this approach

compared with conventional RTM and LSRTM was that

Qp-LSRTM compensated for the amplitude loss due to at-

tenuation and could produce images with better balanced

amplitudes and more resolution below highly attenuative

layers. Numerical tests on synthetic and field data illustrated

the advantages ofQp-LSRTM over RTM and LSRTM when

the recorded data had strong attenuation effects. Similar to

standard LSRTM, the sensitivity tests for background veloc-

ity and Qp errors revealed that the liability of this method is

the requirement for smooth and accurate migration velocity

and attenuation models.

INTRODUCTION

Fluids trapped in overburden structures cause strong attenuation

of P-waves that can decrease the resolution of migration images.

This can be attributed to the fact that the real earth is anelastic and

therefore distorts the amplitudes and phases of the propagating seis-

mic waves (Aki and Richards, 1980). If the subsurface attenuation is

very strong, ignoring it during migration can lead to blurring of

migration amplitudes below these layers.

Attenuation of P-waves can be quantified by a quality factor Qp

which accounts for the phase shift as a function of the frequency

content of the propagating waves and the distance traveled. Lower

values of Qp imply more energy loss of the wave per cycle or high

attenuation. For example, the values of Qp for unconsolidated gas-

sandstones and shales are typically very low (Qp ≈ 15 − 30), which

necessitates the need to account for Qp during imaging. Another

example is the presence of gas pockets in the North Sea sediments

that distort the migrated amplitudes of the underlying reflectors.

The earliest efforts at compensating for attenuation loss in

seismic data were performed in the data domain using an inverse

Qp-filtering method (Bickel and Natarajan, 1985; Hargreaves

and Calvert, 1991). These data domain methods partially correct

for the attenuation loss because attenuation loss occurs during wave

propagation, and therefore,Qp compensation is required during mi-

gration.

For prestack depth migration, Xin et al. (2008) and Xie et al.

(2009) perform attenuation compensation using ray-tracing meth-

ods. Dai and West (1994), Yu et al. (2002), Wang (2008), and

Valenciano et al. (2011) use one-way wave-equation migration

methods in the frequency domain for attenuation compensation.

The more accurate two-way wave-equation migration or reverse

time migration (RTM) (Baysal et al., 1983; McMechan, 1983;

Whitmore, 1983) does not take into account attenuation because

the lossless acoustic-wave equation is used for wavefield extrapo-

lation. Similarly, for least-squares reverse time migration (LSRTM)

(Plessix and Mulder, 2004; Dai and Schuster, 2010; Dai et al., 2011;

Wong et al., 2011), if the gradient computation at each iteration is

done by RTM of the data residuals, then the reflector image below

the attenuation zone will be degraded in quality.

In the context of RTM, Zhang et al. (2010) use the dispersion

relation for a viscoacoustic medium (Kjartansson, 1979) and derive

a pseudodifferential equation with separate controls over phase and

amplitude to model and migrate viscoacoustic waves. They require
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a regularization process to stabilize the back-propagating wavefield

because the high-frequency amplitudes increase with time and lead

to numerical instability. Suh et al. (2012) extend the work of Zhang

et al. (2010) for a VTI medium in which they ignore the phase ef-

fects due to attenuation and only compensate for the amplitude loss.

Their approach suffers from the same instability problem during

back propagating the receiver wavefield as in Zhang et al. (2010).

They apply a high-cut filter to the receiver wavefield to stabilize the

amplification of high-frequency components. Bai et al. (2013)

derive a new viscoacoustic wave equation without any memory

variable. They account for attenuation by incorporating a pseudo-

differential operator in the time and space domains. Similar to

Zhang et al. (2010) and Suh et al. (2012), they apply a high-cut

filter to stabilize the wavefield propagation. Fletcher et al. (2012)

propose a stable approach in which they apply separate phase and

amplitude filters to the source and receiver wavefields to compen-

sate for amplitude and phase effects. These filters are applied prior

to imaging and are estimated based upon running acoustic and vis-

coacoustic propagators twice to estimate attenuated amplitudes

along wavepaths.

In this paper, we use the standard time-domain viscoacoustic

wave equation for wavefield extrapolation and use the linearized

least-squares inversion method to compensate for the attenuation

loss. For least-squares migration, a linearized viscoacoustic wave-

equation modeling operator based on the perturbation of the bulk

modulus is derived, and then the appropriate adjoint equations and

imaging condition are used for the least-squares iterations. The ad-

vantage of this approach over other existing methods is that we do

not need to modify and regularize the adjoint wave equations during

the receiver-side wavefield extrapolation to compensate for the at-

tenuation loss, and hence, it is always stable. Accounting for Qp in

the modeling and adjoint operations coupled with the least-squares

iterations compensates for the amplitude loss due to attenuation.

Numerical tests on synthetic and field data show that the amplitudes

below high-attenuative layers are better balanced in the inverted im-

ages from Qp-LSRTM compared with standard RTM and LSRTM,

and the reflectors are focused at the right locations. The disadvant-

age is that this method is expensive (computational cost per iteration

is more than six times that of standard RTM), and the computational

cost becomes proportional to the number of least-squares iterations.

However, similar to standard LSRTM, the cost of Qp-LSRTM can

be significantly reduced by using a multisource-encoded strategy

(Dai and Schuster, 2009; Tang, 2009; Dai et al., 2010; Huang and

Schuster, 2012). Another liability of this method is that besides the

input requirement of a smooth and accurate migration velocity

model, a good estimate of the Qp model is also needed.

This article is organized into five sections. After the introduction,

the second section describes the theory of standard LSRTM, and

then the time-domain implementation of Qp-LSRTM is presented

in the third section. Numerical results on synthetic and field data are

presented in the fourth section. Discussions based on the numerical

simulations are in the fifth section and the conclusions are in the last

section.

THEORY OF ACOUSTIC LEAST-SQUARES

REVERSE TIME MIGRATION

Conventional least-squares migration seeks to reconstruct the

earth’s reflectivity image from the recorded waveform data under

the Born approximation (Lailly, 1984; Tarantola, 1984; Nemeth

et al., 1999; Duquet et al., 2000; Plessix and Mulder, 2004; Wong

et al., 2011; Dai et al., 2012). In this section, we will briefly review

the theory of acoustic LSRTM in the time-domain.

For a given background velocity model v0ðxÞ, the pressure wave-
field p0ðx; tÞ satisfies the acoustic-wave equation with constant

density:

1

v0ðxÞ2
∂2p0ðx; tÞ

∂t2
− ∇2p0ðx; tÞ ¼ fðxs; tÞ; (1)

where fðxs; tÞ represents a band-limited point source function at

x ¼ xs.

For LSRTM, we seek to find the perturbation in the wavefield

δpðx; tÞ related to the perturbation in the velocity δvðxÞ. Under
the Born approximation, the perturbed wavefield can be calculated

as (Stolt and Benson, 1986; Plessix and Mulder, 2004; Dai et al.,

2012)

1

v0ðxÞ2
∂2δpðx; tÞ

∂t2
− ∇2δpðx; tÞ ¼ mðxÞ

v0ðxÞ2
∂2p0ðx; tÞ

∂t2
; (2)

where the reflectivity image mðxÞ is defined as mðxÞ ¼ 2δvðxÞ
v0ðxÞ . To

find the perturbed wavefield numerically, two finite-difference sim-

ulations are required, one for the background wavefield p0ðx; tÞ
given by equation 1 and the other for the perturbed wavefield

δpðx; tÞ given by equation 2. In the context of least-squares migra-

tion, the solution to equation 2 can be represented as the matrix-

vector operation d ¼ Lm, where d is the data, L is a linear model-

ing operator, and m represents the migration image which in this

case is related to the perturbation in velocity.

The receiver-side wavefield rðx; tÞ can be computed by reverse

time propagation proposed by McMechan (1983) and Whitmore

(1983) and is equivalent to the adjoint state solution defined by

Lailly (1984) and Plessix (2006). The back-projected field rðx; tÞ
is the solution to

1

v0ðxÞ2
∂2rðx; tÞ

∂t2
− ∇2rðx; tÞ ¼ dðxg; t; xsÞ; (3)

where dðxg; t; xsÞ represents the recorded receiver data at a geo-

phone location, x ¼ xg for a source at x ¼ xs. The migration image

mðxÞ can be computed by taking a zero-lag crosscorrelation of the

source and receiver wavefields as

mðxÞ ¼
X

t

1

v0ðxÞ2
∂2p0ðx; tÞ

∂t2
rðx; tÞ: (4)

In matrix-vector notation, equation 4 is equivalent to the operation

m ¼ LTd. The reflectivity distribution mðxÞ can be iteratively esti-

mated using any gradient-based method such as the steepest descent

method (Nemeth et al., 1999):

gðiÞ ¼ LT ½LmðiÞ − dobs�;

α ¼ ðgðiÞÞTgðiÞ
ðLgðiÞÞTðLgðiÞÞ

;

mðiþ1Þ ¼ mi þ αgðiÞ; (5)
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where i represents the iteration index for the least-squares inversion

and gðiÞ and α represent the gradient and the step-length, respectively.

The gradient at each iteration is computed by RTM of the data re-

siduals, LmðiÞ − dobs. In LSRTM, the operators, L and LT depend

on the background velocity model v0ðxÞ, which remains fixed at

every iteration.

The theory of time-domain Qp-LSRTM in now formulated in the

next section.

LEAST-SQUARES REVERSE TIME MIGRATION

USING THE VISCOACOUSTIC-WAVE EQUATION

For a viscoacoustic medium, the stress-strain relation is given by

(Christensen, 1982; Carcione et al., 1988)

X

m

k¼0

ck
∂kP

∂tk
¼

X

m

k¼0

dk
∂ke

∂tk
; (6)

where P denotes the pressure field, e denotes the trace of the strain

tensor matrix, ∂k∕∂tk represents the kth order time derivative, and ck
and dk are coefficients related to the material properties of the

medium. The pressure field can be expressed explicitly from equa-

tion 6 using the Laplace transform method as (Carcione et al., 1988)

PðtÞ ¼ −MR

Z

t

−∞

ėðτÞ
�

1

−
X

L

l¼1

�

1 −
τϵl

τσl

�

exp

�

−
t − τ

τσl

��

dτ; (7)

where τσl and τϵl denote material relaxation times for the lth mecha-

nism, L is the number of relaxation mechanisms for a standard lin-

ear solid model, andMR is the relaxed modulus of the medium. The

equation of motion in an anelastic medium can be written as

−
1

ρ
∇P ¼ ∂v

∂t
; (8)

where ρ represents the density P represents the pressure wavefield,

and v represents the particle velocity vector. Equations 7 and 8 to-

gether describe the deformation in a viscoacoustic medium.

Equation 7 is expensive to solve by numerical modeling because

of the associated convolution operation. Robertsson et al. (1994)

simplify the convolution term by introducing a memory variable

term rp. Blanch et al. (1995) later show that only one relaxation

mechanism (L ¼ 1) is sufficient for practical purposes. Thus, for

practical numerical modeling applications, the equations of motion

for a 2D viscoacoustic medium can be written as (Christensen,

1982; Carcione et al., 1988; Blanch and Symes, 1995)

∂P

∂t
þ K

τϵ

τσ
ð∇ · vÞ þ rp ¼ fðxs; tÞ;

∂v

∂t
þ 1

ρ
∇P ¼ 0;

∂rp

∂t
þ 1

τσ

�

rp þ K

�

τϵ

τσ
− 1

�

ð∇ · vÞ
�

¼ 0: (9)

Here, v ¼ fvx; vy; vzg represents the particle velocity vector, K rep-

resents the bulk modulus of the medium, and fðxs; tÞ represents a
band-limited point source function at x ¼ xs. The stress and strain

relaxation parameters, τσ and τϵ, are related to the quality factor Qp

and the reference angular frequency ω (usually chosen to be the

central frequency of the source wavelet) as (Robertsson et al., 1994)

τσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
Q2

p

q

− 1
Qp

ω
; τϵ ¼

1

ω2τσ
: (10)

Figure 1a and 1c shows the effect of attenuation on amplitude and

phase of a propagating seismic wave in a homogeneous medium

with a background velocity of 3000 m∕s and for different values

of Qp. A Ricker wavelet with 20-Hz peak frequency is used as

the source wavelet. The source is excited at the center of the model,

and the snapshots are taken at different intervals of time. Figure 2a

and 2b compares the depth slices at different instances of time. It

is evident from these figures that, as the wave starts propagating, the

amplitudes in the three cases are very similar. However, as the

propagation time increases and the wave travels a greater distance,

the wave amplitude in case of Qp ¼ 20 is attenuated the strongest.

The high-frequency components are distorted more compared with

the low frequencies. For moderate attenuation values (Qp ≈ 40), as

shown by the red curves in Figure 2a and 2c, the attenuation effect at

different times is still significant compared to the blue curves that

represent the case in which there is no attenuation.

Similar to standard acoustic LSRTM, we seek to find the per-

turbed wavefield δpðx; tÞ related to the perturbation in the medium

parameters. For algebraic simplicity, we make the following substi-

tutions in equation 9:

τ ¼ τϵ

τσ
− 1; (11)

so that equation 9 becomes

1/Qp = 0.051/Qp = 0.025Without Qp

z
 (

k
m

) 2

4

1/Qp = 0.051/Qp = 0.025Without Qp

z
 (

k
m

) 2

4

1/Qp = 0.05

x (km)
4 8

1/Qp = 0.025

x (km)
4 8

Without Qp

x (km)

z
 (

k
m

)

4 8

2

4

Figure 1. Snapshots showing an expanding wavefront at different
instances of time for a medium with no attenuation (left panels),
moderate attenuation (middle panels), and high attenuation (right
panels).
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∂P

∂t
þ Kðτ þ 1Þð∇ · vÞ þ rp ¼ fðxs; tÞ;

∂v

∂t
þ 1

ρ
∇P ¼ 0;

∂rp

∂t
þ 1

τσ
ðrp þ τKð∇ · vÞÞ ¼ 0: (12)

Let ρ0, K0, τσ0 , and τ0 be the background medium parameters. Per-

turbing them by an amount δρ, δK, δτσ , and δτ, respectively, gives

the new medium parameters as

ρ ¼ ρ0 þ δρ;

K ¼ K0 þ δK;

τσ ¼ τσ0 þ δτσ;

τ ¼ τ0 þ δτ: (13)

The perturbed wavefields can thus be written as

∂δP

∂t
þ Kδτð∇ · vÞ þ Kðτ þ 1Þð∇ · δvÞ þ δrp

¼ −δKðτ þ 1Þð∇ · vÞ;
∂δv

∂t
þ 1

ρ
∇δP ¼ δρ

ρ2
∇P;

∂δrp

∂t
þ 1

τσ
ðδrp þ τKð∇ · δvÞÞ

¼ −
1

τσ
ðKδτ þ τδKÞð∇ · vÞ þ δτσ

τ2σ
ðrp þ τKð∇ · vÞÞ: (14)

To simplify equation 14, we make the following assumptions:

• The density is constant; i.e., δρ ¼ 0.
• The material relaxation parameters are constant; i.e., δτ ¼ 0

and δτσ ¼ 0.

Equation 14 thus simplifies to

∂δP

∂t
þ Kðτ þ 1Þð∇ · δvÞ þ δrp ¼ −δKðτ þ 1Þð∇ · vÞ;

∂δv

∂t
þ 1

ρ
∇δP ¼ 0;

∂δrp

∂t
þ 1

τσ
ðδrp þ τKð∇ · δvÞÞ ¼ −

τ

τσ
δKð∇ · vÞ: (15)

In the context of Qp-LSRTM, equation 15 is equivalent to the ma-

trix-vector operation d ¼ Lm. Here, d represents the Born-modeled

data with attenuation and is given by the solution of the linearized

equations in equation 15, L is a linear modeling operator, and m is

related to the bulk modulus of the medium.

The adjoint equations for equation 12 can be derived using the

adjoint-state method (shown in Appendix A) and is given by

(Blanch and Symes, 1995)

∂q

∂t
þ ∇ ·

�

1

ρ
u

�

¼ −Δdðxg; t; xsÞ;

∂u

∂t
þ
�

∇Kð1þ τÞqþ ∇

�

1

τσ
Kτs

��

¼ 0;

∂s

∂t
−

s

τσ
− q ¼ 0: (16)

Here, ðq; u; sÞ are the adjoint-state variables of the state variables

ðP; v; rpÞ and Δdðxg; t; xsÞ represents the residual pressure seismo-

gram. For Qp-LSRTM, Δdðxg; t; xsÞ represents the data residual

between the predicted and the observed pressure data at every

iteration.

The perturbation in the image δm is related to the perturbation in

the bulk modulus δK, which in turn can be obtained by zero-lag
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Figure 2. Depth slices from Figure 1 showing the effect of attenu-
ation on the amplitude and phase of a propagating wave.
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crosscorrelation of the adjoint fields from equation 16 with the

background wavefields from equation 12 as

δm ≈ δK ¼
Z

T

0

ð1þ τÞ ð∇ · vÞqþ τ

τσ
ð∇ · vÞsdt: (17)

The solution to equation 17 is equivalent to the g ¼ LT
Δd step in

Qp-LSRTM. A detailed derivation of the adjoint equations and the

gradient is shown in Appendix A.

The next subsection describes the algorithm for numerical imple-

mentation of Qp-LSRTM.

Qp-least-squares reverse time migration algorithm

The following steps are carried out for numerically implementing

Qp-LSRTM by a preconditioned conjugate gradient method, in

which a diagonal preconditioning matrix C is assumed. In this

work, source-side illumination (Plessix and Mulder, 2004) is used

as the diagonal preconditioner:

• Form the misfit function ϵ as

ϵ ¼ 1

2
kLmðiþ1Þ − dobsk2; (18)

where L represents a linear modeling operator and Lmðiþ1Þ is
the predicted data given by the solution to equation 15; dobs

represents the recorded pressure seismogram, m represents

the reflectivity image, and i represents the iteration index.
• Compute the gradient given by

gðiþ1Þ ¼ LT ½Lmðiþ1Þ − dobs� ¼ LT
Δdðiþ1Þ; (19)

where Δd represents the data residual for the predicted and

observed data, which is back-propagated by using the adjoint

equations in equation 16. The adjoint wavefields are cross-

correlated with the background fields, given in equation 9, to

give the perturbation in bulk reflectivity in equation 17 at

each iteration. This perturbation can then be suitably scaled

to give the perturbation in the reflectivity image δm as

K ¼ ρv2 ⇒ δK ¼ 2ρvδvð∵δρ ¼ 0Þ

∴ δm ¼ δv

v
¼ δK

2ρv2
: (20)

• Update the gradient using the conjugate gradient formula as

dkðiþ1Þ ¼ Cgðiþ1Þ þ βdkðiÞ; (21)

where β is given by

β ¼ ðgðiþ1ÞÞTCgðiþ1Þ

ðgðiÞÞTCgðiÞ
: (22)

• Compute the step length α as

α ¼ ðdkðiþ1ÞÞTgðiþ1Þ

ðLdkðiþ1ÞÞTðLdkðiþ1ÞÞ
: (23)

• Iteratively update the reflectivity image as

mðiþ2Þ ¼ mðiþ1Þ þ αdkðiþ1Þ; (24)

until the length of the residual vector falls below a specified

threshold.

NUMERICAL RESULTS

The effectiveness of Qp-LSRTM is now demonstrated with syn-

thetic and field data records from a crosswell experiment in Friends-

wood, Texas. The synthetic examples are for two models with

strong attenuation: (1) a layered model with a shallow velocity

and Qp anomaly, and 2) the Marmousi model.

In the synthetic examples, the observed data are generated by an

O(2,8) time-space-domain staggered-grid solution of the viscoa-

coustic-wave equation in equation 9. A Ricker wavelet with a peak

frequency of 20 Hz is chosen as the source wavelet. The data are then

migrated by using RTM, LSRTM,Qp-RTM, andQp-LSRTM. Here,

RTM and Qp-RTM refer to the first iteration of LSRTM and Qp-

LSRTM, respectively. Source-side illumination is used as the precon-

ditioning factor during the least-squares iterations for LSRTM and

Qp-LSRTM. The standard RTM and Qp-RTM images are also illu-

mination compensated.

Layered velocity model

We first demonstrate the effect of strong subsurface attenuation

on migrated images using a simple example of a flat layered model.

Figure 3 shows a layered velocity model with a shallow Qp anom-

aly. The Qp value in the anomaly is 20, implying very strong at-

tenuation for a wave propagating through this layer. To generate

the synthetic data, equation 9 is solved for 100 shots evenly spaced

at 40 m on the surface. Here, 200 receivers are evenly distributed at

20 m on the surface.

Figure 4a and 4b compares the RTM and LSRTM images when

the data having strong attenuation are migrated under the acoustic

approximation. The LSRTM image has fewer artifacts and better

z
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Figure 3. A layered model: (a) true velocity model (b) true Qp

model (c) migration velocity model (d) Qp model used for Qp-
RTM and Qp-LSRTM.
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balanced amplitudes in the shallow layers compared with the RTM

image. However, the deeper layers below the anomaly (shown by

the black arrows in Figure 4) have very weak amplitudes in the

RTM and the LSRTM images. There is also a slight mispositioning

in their locations. This is because strong attenuation affects the am-

plitudes and the phases of the propagating waves.

The Qp-RTM and Qp-LSRTM images after 20 iterations are

shown in Figure 4c and 4d, respectively. The shallow Qp-LSRTM

image is similar to that for standard LSRTM in terms of artifact

mitigation and better balancing of reflector amplitudes. However,

improvements withQp-LSRTM are evident at the base of the anom-

aly and the reflectors directly beneath it (shown by the black arrows

in Figure 4 and in the magnified views in Figure 5). The reflectors

are imaged at the correct locations, and the migration amplitudes of

these layers are more accurate than those obtained by standard

LSRTM. As shown in Figure 5, Qp-LSRTM has corrected for the

amplitude loss and the phase distortion in the deeper layers due to

the overlying Qp anomaly.

Marmousi model

TheQp-LSRTMmethod is now tested on the more complexMar-

mousi model. Figure 6a and 6b shows the true velocity and Qp

models, respectively, used for generating the observed data. The

migration velocity and Qp models are shown in Figure 6c and 6d,

respectively, and the Qp model is chosen such that the attenuation

layers are overlying the targeted deeper anticlines. The observed

synthetic data are generated with a fixed spread geometry in which

200 shots are excited with a 40-m shot interval at a depth of 10 m.

Each shot is recorded with 400 receivers and a 20-m receiver inter-

val with a recording time of approximately 8 s.

Conventional acoustic RTM and LSRTM images are displayed in

Figure 7a and 7b, respectively. Similar to the previous example, the

LSRTM image shows better resolution and fewer artifacts in the
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Figure 4. Comparison among images from (a) acoustic RTM,
(b) acoustic LSRTM, (c) Qp-RTM, and (d) Qp-LSRTM. The black
arrows point to the reflectors below the strong attenuation layer
where improvements from Qp-LSRTM can be seen.
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Figure 5. Magnified views of Figure 4 in which all the images have
been normalized such that the short reflector at the top of the Qp

anomaly have the same magnitude.
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Figure 6. The modified Marmousi models: (a) true velocity model,
(b) true Qp model, (c) migration velocity model, and (d) Qp model
used for Qp-RTM and Qp-LSRTM.

Acoustic RTM

z
 (

k
m

) 1

2

3

Acoustic LSRTM

Qp−RTM

x (km)

z
 (

k
m

)

2 4 6 8

1

2

3

Qp−LSRTM

x (km)
2 4 6 8

a) b)

c) d)

Figure 7. Comparison among images from (a) acoustic RTM,
(b) acoustic LSRTM, (c) Qp-RTM, and (d) Qp-LSRTM. The black
and blue boxes point to the areas for the magnified views.

S256 Dutta and Schuster

D
o
w

n
lo

ad
ed

 0
3
/2

2
/1

5
 t

o
 1

0
9
.1

7
1
.1

3
7
.2

1
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



shallow layers compared with the standard RTM image. However,

in the deeper layers, the amplitudes of the images from these two

imaging methods are very weak. The reflectors and the anticlines

cannot be properly delineated in spite of using a very accurate

velocity model for migration. This distortion can be attributed to

the strong attenuation above these layers.

TheQp-RTM image, shown in Figure 7c, shows no improvements

in the deeper layers compared to the standard RTM image in

Figure 7a. However, significant improvements can be seen in theQp-

LSRTM image shown in Figure 7d. In the shallow layers, the acoustic

LSRTM and Qp-LSRTM images are very similar in terms of the im-

age quality. However, the amplitudes of the deeper reflectors and the

anticlines are significantly better balanced in the Qp-LSRTM image

than in the standard RTM and LSRTM images. The magnified views

of the black and blue boxes in Figure 7b and 7d are shown in Figure 8.

The black arrows point to the areas in which noticeable improve-

ments in the image quality can be seen with Qp-LSRTM.

The residual as a function of iteration number for acoustic and

Qp-LSRTM is plotted in Figure 9. The convergence rate for Qp-

LSRTM is better than that for acoustic LSRTM because the correct

physics of attenuation is accounted for in the forward and adjoint

operators.

Sensitivity of Qp-least-squares reverse time migration
to errors in the velocity model

The sensitivity of Qp-LSRTM to errors in the migration velocity

model is now tested. For these numerical simulations, we assume

that an accurate estimate of Qp is available. The errors are intro-

duced into the migration velocity model by applying a triangle

smoothing filter with increasing window lengths to the true velocity

model in Figure 6a. TheQp-LSRTM images for the different veloc-

ity models are shown in Figure 10b. It becomes evident from these

figures that the blurring in the Qp-LSRTM image increases with

depth for velocity errors exceeding approximately 8%. The conver-

gence curves, shown in Figure 11, show that the convergence ofQp-

LSRTM decreases with increasing errors in the velocity model.

Sensitivity of Qp-least-squares reverse time migration
to errors in the Qp model

To quantify the sensitivity of Qp-LSRTM to errors in the Qp mi-

gration model, the Qp-LSRTM images for different attenuation
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Figure 8. Magnified views of the black (left) and blue (right) boxes
in Figure 7b and 7d. (a and d) True reflectivity models used only for
comparison, (b and e) acoustic LSRTM images, and (c and f) Qp-
LSRTM images.
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models are shown in Figure 12b. It is evident from these figures that

Qp-LSRTM shows improvement over standard LSRTM when the

error in the migration Qp model is approximately 50%. For attenu-

ation errors exceeding 50%, the amplitude loss is not compensated

for by Qp-LSRTM, and the inverted images are very similar to the

acoustic LSRTM image shown in Figure 7b. The convergence

curves for the different cases, shown in Figure 13, suggest that Qp-

LSRTM converges quickly even when there are significant errors in

the migration Qp model. This is contrary to the convergence curves

shown in Figure 11 in which the convergence of Qp-LSRTM

becomes slower with increasing errors in the migration velocity

model. These curves suggest that the convergence rate of Qp-

LSRTM is more sensitive to errors in the velocity model than to

errors in the Qp model. However, with increasing errors in the mi-

gration Qp model, the amplitude loss due to attenuation is not cor-

rected for by Qp-LSRTM. Thus, a fairly accurate estimation of the

Qp distribution is required to see noticeable improvements in the

image quality with Qp-LSRTM.

Friendswood crosswell field data

As a final example, Qp-LSRTM is applied to the Friendswood

crosswell data (Chen et al., 1990). Two 305-m-deep cased wells

separated by 183 m were used as the source and receiver wells.

Downhole explosive sources of 10-g charges were fired at intervals

of 3 m from 305 to 9 m in the source well and the receiver well had

96 receivers placed at depths ranging from 293 to 3 m. The data

were recorded with a sampling interval of 0.25 ms for a total record-

ing time of 0.375 s. The following processing steps were first ap-

plied to the data:

• The recorded data are corrected from 3D to 2D format by

scaling the amplitudes by
ffiffi

t
p

to approximate geometrical

spreading. A phase correction is applied by multiplying the

spectrum of the observed seismogram with the filter
ffiffiffiffiffiffiffiffi

i∕ω
p

(Zhou et al., 1995).
• A directional nine-point median filter is used to eliminate the

tube waves that are seen as linear events in the common shot

gather (CSG) shown in Figure 14a. To implement this filter, a

linear moveout correction is applied to the CSG to flatten the

tube wave arrivals so that they arrive at the same time. For

every time sample, a nine-trace median filter is applied to the

traces so that the output traces have highly amplified tube

waves and diminished reflection events around the onset

of the tube waves. These predicted tube waves are then sub-

tracted from the original data.
• A band-pass filter of 80–600 Hz is applied to the data to re-

move any extreme noise from the data. The final processed

CSG after applying all these processing steps is shown in

Figure 14b.
• Because the bandwidth of 80–600 Hz is too broad for wave-

form tomography and Qp-LSRTM, the data are Wiener-
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filtered to transform the original wavelet to a Ricker wavelet

with a 200-Hz peak frequency. This bandwidth is chosen

based on the frequency content of the data in which most of

the signal is concentrated between 150 and 250 Hz.
• The first-arrival traveltimes are then picked from all the

CSGs and inverted to get a starting velocity model for early

arrival waveform inversion. The early arrival waveform

tomogram, shown in Figure 15a, is used as the migration

velocity model. The attenuation tomography method of

Quan and Harris (1997) is used to get a reference Qp model

for Qp-RTM and Qp-LSRTM. The estimated Qp tomogram

is shown in Figure 15b.

The images from acoustic LSRTM and Qp-LSRTM after 30 itera-

tions are shown in Figure 16b and 16d, respectively. The decrease in

residual was approximately 25%–30% for both inversions. In the

shallow part of the image between 25 and 120 m, the amplitudes

of the reflectors have improved in the Qp-LSRTM image compared

with the acoustic LSRTM image. In the deeper part between 170

and 200 m, the layers have been better delineated in theQp-LSRTM

image. The lateral continuity of the imaged reflectors has also im-

proved in this area. Magnified views of the black boxes in Figure 16,

shown in Figure 17, further emphasize the improvement in the

image quality from Qp-LSRTM.

DISCUSSIONS

The estimation ofQp is often ambiguous and inaccurate. Though

several methods for estimating Qp from surface seismic data have

been proposed in the past by Brzostowski and McMechan (1992),

Hicks and Pratt (2001), Cavalca and Fletcher (2008), Bai et al.

(2012), and Valenciano and Chemingui (2013), getting a reliable

background Qp model for least-squares migration or full-waveform
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Figure 14. (a) A raw CSG from the Friendswood crosswell data.
(b) The same CSG after applying all the data-processing steps.
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Figure 15. (a) Velocity tomogram estimated for the crosswell data
using early arrival waveform inversion. (b) The Qp-tomogram esti-
mated using attenuation tomography.
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be seen.
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inversion is still difficult compared with estimating the background

velocity model. Our sensitivity tests for the background velocity

and Qp have shown that the quality of the inverted image from

Qp-LSRTM is sensitive to both of them. For our field data tests,

we used the Qp tomogram, shown in Figure 15b, as a reference and

varied the backgroundQp until reasonable improvements in the im-

age quality could be seen from Qp-LSRTM. If the background Qp

is increased too much, the results became similar to the acoustic

case. If the background Qp is made smaller, the high-frequency

content in the Qp-LSRTM image got damped down because the

least-squares inversion compensated for the wrong Qp model by

damping down the high wavenumbers in the image. The results

shown in Figure 16 are obtained by scaling the Qp tomogram in

Figure 15 by 50%.

Throughout our numerical tests, we assumed a single relaxation

mechanism, which is valid if the bandwidth of the data is narrow.

For a wide bandwidth of the data, as in the case of the Friends-

wood crosswell data, a single relaxation mechanism may not be

sufficient to accurately model the effect of Qp. However, using

more than one relaxation mechanism will significantly increase

the computational cost of Qp-LSRTM. For typical exploration

problems for RTM in which the bandwidth of the data used is

approximately 5–30 Hz, use of a single relaxation mechanism

should suffice (Blanch et al., 1995). Also, in our numerical simu-

lations, we have assumed that the recorded data are free from S-

waves. Similar to standard LSRTM, if there are shear waves present

in the data, Qp-LSRTM will produce images with strong S-wave

artifacts.

A disadvantage of Qp-LSRTM is that the computational cost per

iteration is more than six times that of standard RTM. The cost in-

creases linearly with the number of least-squares iterations. As in

the case of standard least-squares migration, Qp-LSRTM can be

made more efficient using multisource-encoded migration (Dai and

Schuster, 2009; Tang, 2009; Dai et al., 2010; Huang and Schuster,

2012) where several shot gathers are randomly shifted in time to

form a phase-encoded supergather.

CONCLUSIONS

A time-domain LSRTM method is presented that uses the

viscoacoustic-wave equation to compensate for the distortion in am-

plitudes and phases of seismic waves propagating in highly attenu-

ative layers. Numerical results on synthetic and field data validate

that if the recorded data have strong attenuation, then conventional

acoustic RTM and LSRTM cannot correct for the attenuation loss.

However, if the linearized viscoacoustic-wave equation and its ad-

joint equations are used for LSRTM, the attenuation loss can be

compensated during the iterations. Results with synthetic and field

data for strongly attenuative media show that LSRTMwithQp com-

pensation produces images with better balanced amplitudes and

accurately positioned reflectors compared with acoustic RTM

and LSRTM. Similar to standard LSRTM, Qp-LSRTM is also sen-

sitive to errors in the migration velocity model. Another input re-

quirement for this method is an accurate estimate of the smoothly

varying Qp distribution in the subsurface. Accurate estimation of

Qp coupled with the linearized Qp-LSRTM method proposed in

this paper has the potential for accurate imaging in highly attenu-

ative geologic environments such as gas-sandstones and shales.
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APPENDIX A

ADJOINT EQUATIONS AND GRADIENTS FOR QP-

LEAST-SQUARES REVERSE TIME MIGRATION

In matrix-vector notation, equation 12 can be rewritten as

2

6

4

∂
∂t

Kð1þ 1Þ∇ · 1
1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇ · ∂

∂t
þ 1

τσ

3

7

5

2

6

4

P

v

rp

3

7

5
¼

2

4

f

0

0

3

5; (A-1)

or in a more compact form as

Sw ¼ F: (A-2)

where

S¼

2

6

4

∂
∂t

Kð1þ1Þ∇ · 1
1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇ · ∂

∂t
þ 1

τσ

3

7

5
; w¼

2

4

P

v

rp

3

5; and F¼

2

4

f

0

0

3

5.

(A-3)

Here, w represents the state variables and S represents the forward

modeling operator. The adjoint operator S� of S in this particular

case is given by

S� ¼

2

6

4

− ∂
∂t

−∇ · 1
ρ

0

−∇Kð1þ 1Þ − ∂
∂t

−∇ τ
τσ
K

1 0 − ∂
∂t
þ 1

τσ

3

7

5
: (A-4)

The least-squares misfit functional JðmÞ for a model parameterm

can be written as

JðmÞ ¼ 1

2
kwðmÞ − dk2 ¼ 1

2
hwðmÞ − d;wðmÞ − di;

(A-5)

wherewðmÞ and d represent the modeled and recorded data vectors,

respectively. For a viscoacoustic medium, the model parameter m

can be K, ρ, or τ. The gradient of J is given by
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∂JðmÞ
∂m

¼
�

∂wðmÞ
∂m

;wðmÞ − d

�

. (A-6)

Now considering a system of equations:

SðmÞwðmÞ ¼ F;

⇒
∂SðmÞ
∂m

wðmÞ þ SðmÞ ∂wðmÞ
∂m

¼ 0;

⇒
∂wðmÞ
∂m

¼ −S−1ðmÞ ∂SðmÞ
∂m

wðmÞ. (A-7)

Inserting equation A-7 into equation A-6, we get

∂JðmÞ
∂m

¼ −

�

S−1ðmÞ ∂SðmÞ
∂m

wðmÞ;wðmÞ − d

�

¼ −

�

∂SðmÞ
∂m

wðmÞ; ðSðmÞ−1Þ�ðwðmÞ − dÞ
�

¼ −

�

∂SðmÞ
∂m

wðmÞ; ðSðmÞ−1Þ�Δd
�

¼ −

�

∂SðmÞ
∂m

wðmÞ;w�ðmÞ
�

; (A-8)

where * denotes the adjoint, Δd denotes the residual data vector,

and w� denotes the adjoint or the residual wavefield, which is ob-

tained by solving the adjoint equations as

S�ðmÞw�ðmÞ ¼ Δd: (A-9)

w� is also known as the adjoint state variable of w. Let w� be de-

noted as

w� ¼ ½qu s�T (A-10)

where q is the adjoint state variable of the pressure wavefield P, u is

the adjoint of the particle velocity vector v, and s is the adjoint of the

memory variable rp. Assuming that we only record pressure seismo-

grams, the residual vector Δd will have only one component, i.e.,

Δd ¼ ½Δd 0 0 �T : (A-11)

Using equations A-4, A-9, A-10, and A-11, we get the adjoint-state

equations for a viscoacoustic medium as

2

6

6

6

4

− ∂
∂t

−∇ · 1
ρ

0

−∇Kð1þ 1Þ − ∂
∂t

−∇ τ
τσ
K

1 0 − ∂
∂t
þ 1

τσ

3

7

7

7

5

2

6

4

q

u

s

3

7

5
¼

2

6

4

Δd

0

0

3

7

5
;

∂q

∂t
þ ∇ ·

�

1

ρ
u

�

¼ −Δdðxg; t; xsÞ;

∂u

∂t
þ
�

∇Kð1þ τÞqþ ∇

�

1

τσ
Kτs

��

¼ 0;

∂s

∂t
−

s

τσ
− q ¼ 0: (A-12)

For m ¼ K, the gradient in equation A-8 can be written as

∂J

∂K
¼ −

�

∂S

∂K
w;w�

�

¼ −

*

2

6

6

4

0 ð1þ τÞ∇ · 0

0 0 0

0 τ
τσ
∇ · 0

3

7

7

5

2

6

6

4

P

v

rp

3

7

7

5

;

2

6

4

q

u

s

3

7

5

+

¼ −

Z

T

0

ð1þ τÞð∇ · vÞqþ τ

τσ
ð∇ · vÞsdt: (A-13)
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