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When a metal is subjected to extremely rapid compression, a shock wave is launched that generates
dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with
an elastic wave preceding a plastic front. It has been known for more than six decades that the
amplitude of the elastic wave decays the further it travels into the metal: this is known as “the decay
of the elastic precursor”. The amplitude of the elastic precursor is a dynamic yield point because it
marks the transition from elastic to plastic behaviour. In this letter we provide a full explanation of
this attenuation using the first method of dislocation dynamics to treat the time dependence of the
elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of
the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated
in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the
elastic precursor in aluminum, and its dependence on strain rate.

The dynamic behaviour of crystalline solids subjected
to shock compression plays a central role in diverse appli-
cations, including bird strikes in aerospace [1], crashwor-
thiness in the automobile industry [2], and manufactur-
ing processes such as laser shock peening [3], amongst
many others. Upon being shocked within a range of
strain rates and pressures of typically 106 − 1010s−1 and
5 − 50GPa [1], the shock front in crystalline materials
often displays a characteristic two–wave structure near
the loading surface: the plastic wave front leading to the
Hugoniot shocked state is preceded by an elastic precur-
sor wave [1]. The amplitude of the elastic precursor wave
decays as the wave front advances[1, 4]—a phenomenon
known as the ‘decay of the elastic precursor’. The am-
plitude of the elastic wave marks the onset of plasticity,
i.e. it is the dynamic yield point. The subsequent plastic
wave is commonly ascribed to the generation and mo-
tion of dislocations, the agents of plasticity in crystalline
solids[9].
The cause of its attenuation remains unclear after six

decades [4–8]. Clifton and Markenscoff [4] calculated
analytically the amplitude attenuation of a planar elas-
tic shock wave caused by the destructive interference of
elastic wavelets emanating from pre-existing dislocations
set into motion by the passage of a shock wave of in-
finite strain rate; dislocation generation by the shock
was neglected. Consequently, the elastic precursor de-
cay was attributed to the density and initial velocity of
pre-existing dislocations. Armstrong et al.[10] studied
the dislocation relaxation mechanisms during high strain
rate shock loading, concluding that dislocation genera-

tion dominates plastic relaxation under shock loading.
This is because the number of pre-existing dislocations
is about two to three orders of magnitude less than that
generated during the shock[1, 4, 7].
In this letter we show that we can account for the ex-

perimentally observed residual dislocation densities cre-
ated by shock loading by assuming no pre-existing dis-
locations and that dislocations are generated within and
behind the shock front. We go on to offer a complete ex-
planation of the attenuation of the dynamic yield point,
employing our recently developed method of Dynamic
Discrete Dislocation Plasticity (D3P) [11]. Modern com-
puting resources enable the simulation of crystalline met-
als subjected to shock loading using molecular dynamics
(MD) simulations[12–14], but these are unable to dis-
criminate between the effects of dislocations and other
mechanisms in plastic relaxation processes. In contrast
to MD, discrete dislocation dynamics (DDD) methods
[15–18] enable the simulation of much larger systems over
longer timescales.However, conventional DDD methods
are inappropriate for the study of high strain rate shock
compression, because they neglect the time dependence
of the fields of moving dislocations. We showed in [11]
that at high strain rates this leads to violation of causal-
ity because dislocation sources may be activated ahead
of the shock.
We compare our simulations with a series of shock com-

pression experiments performed at room temperature on
an equivalent length and time scale. In these experi-
ments, a range of µm-scale aluminum films were sub-
jected to shock loading using a spectrally shaped laser
pulse (fig.1). The development of the two-wave structure
was probed using a pair of off-axis displacement inter-
ferometers, with time resolution approaching several ps.
By maintaining a constant drive energy and varying the
film thickness, the yield point was observed to decay from
12GPa for 2µm to 4.3GPa after 8µm [19].
Our D3P model simulates a single crystal sample of

FCC aluminum at room temperature depicted in fig.1,
with Young’s modulus E = 63.2GPa, shear modulus
µ = 28.3GPa, density ρ = 2700kg/m3, and Burgers vec-
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FIG. 1. Experimental set-up (a) and D3P simulation (b).
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= 2.85Å. The sample is 10µm wide and

1µm thick. Following [20] we assume 3 slip planes at
±54.7◦, 0◦ to the shock front’s normal. The sample is ini-
tially dislocation free, and loaded with an instantaneous
20GPa pressure on its left side. A reflective boundary
condition is applied on the right side, whereas the top
and bottom sides are left traction-free. Due to the load-
ing, a shock front is generated and propagates through
the material, triggering dislocation activity. The simula-
tion finishes when the front reaches the reflective surface.
The strain rate is enforced numerically (see Supplemen-

tary Material).
D3P tracks the time-dependent fields of injected and

non-uniformly moving straight edge dislocations by solv-
ing the Navier-Lamé equation under plane strain condi-
tions. Plane strain is a reasonable approximation here
since a strongly uniaxial compressive shock load is ap-
plied over a relatively large area, orders of magnitude
thinner in the direction of propagation. In D3P, the
resulting elastic fields propagate at the two speeds of
sound[11], which ensures causality is satisfied.
We assume the generation and motion of dislocations

follows the constitutive rules of D3P [11]. The mobility
law of dislocations is adjusted to account for the likely
presence of high speed dislocations [1, 18, 21, 23–28]; data
about the mobility of dislocations is extracted from MD
simulations of aluminum [22] (see Supplementary Mate-

rials).
Two generation mechanisms are allowed: homoge-

neous nucleation and Frank–Read sources. At high
strain rates Frank–Read sources are too slow with re-
spect to the shock front’s rise time to play a significant
role in generating dislocations (see Supplementary Ma-

terial). Thus, faster dislocation generation mechanisms
must be considered. Smith[29], Hornbogen[30], Meyers
and coworkers [31, 32], Shehadeh et al.[37] (using elasto-
statics) and Armstrong et al.[21] have all proposed dis-
location generation processes involving homogeneous nu-
cleation. Recent simulations show that the stress lev-
els required to nucleate dislocations homogeneously are
about the ideal shear lattice resistance (µ/18− µ/(4π)),
easily achievable in shock loading (vid.[33–35]). Recent
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FIG. 2. (a) shows the accumulated relaxation effect of the
dislocation fields at the shock front, for different strain rates.
(b) shows the dislocation microstructures for different strain
rates at t = 75ps, (c), shows the increase in ρdis with the strain
rate. (d) shows the immobile and the annihilated fractions of
dislocations for 1010s−1.

MD simulations[14, 36] also suggest that homogeneous
nucleation is a primary source of dislocation loops, par-
ticularly for strain rates larger than 108-109s−1 [36]. Here
homogeneous nucleation sources are assumed to operate
instantaneously with activation stresses much higher that
those for Frank-Read sources (see Supplementary Mate-

rial).
We report a series of simulations in which the ini-

tial shock’s amplitude was constant at 20GPa. These
simulations concern the study of the elastic precursor
and the early onset of the plastic wave. By varying the
shock’s width, three strain rates were imposed: 1010s−1,
5 · 1010s−1 and 1011s−1. These strain rates are close to
those found by Crowhurst et al. [38] to lead to overdriven
shocks. Fig.2 shows the σxx fields of dislocations, mea-
sured by averaging their elastodynamic stresses along a
line parallel to the front and immediately behind it; its
positive (tensile) magnitude interferes with the front’s
negative (compressive) amplitude. The elastic precursor
decay is obtained by subtracting the corresponding curve
shown in fig.2 from a reference hyper-elastic state. Fig.2
is consistent with experimental observation that the rate
of decay increases with the strain rate [39]. Here the
strain rate’s effect is not entirely comparable to experi-
ment, as in the latter the magnitude of the shock itself
would vary too[40]. Nevertheless, fig.2 shows that an
increase in the strain rate invariably leads to a higher
relaxation of the shock; for the same time interval, a
higher strain rate signifies that a larger area is subjected
to higher stresses, resulting in a higher number of dislo-
cations being generated within the front. As discussed
below, there is a further significant contribution to the
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relaxation from the velocity-dependence of the disloca-
tions’ elastic fields.

Fig.2 also shows the evolution of the dislocation density
(ρdis) for the three strain rates, calculated as the number
of dislocations in the system at time t divided by the area
swept by the front up to t. In fig.2 ρdis tends to saturate
after an initial burst. The decay from this initial burst
is a geometric effect: the number of dislocations tends
to increase in proportion to the height of the sample,
but the area behind the front increases in proportion to
both the sample height and cl · t. Following this burst,
dislocation dipoles are generated at a reduced steady rate
which leads to the saturated ρdis seen in fig.2.

The computed ρdis ≈ 6 · 1015m−2 is of the same or-
der of magnitude as that measured experimentally [1],
and comparable to that predicted by analytical mod-
els such as that by Meyers et al.[32], which predicts a
ρdis = 2.5·1015m−2 for aluminum shocked at 20GPa. The
dislocation structures at the front (see fig. 4), resemble
those expected from the classical Smith-Hornbogen in-
terface [21, 29, 30], with positive ‘shielding’ dislocations
trailing just behind the front and negative ‘anti-shielding’
dislocations moving rapidly away from it. However, the
nucleation process here is much more gradual, as it ac-
counts for the strain rate of the shock front, and takes
place not only at the front but behind it.

At these strain rates, Frank–Read sources have no ef-
fect on the elastic precursor decay. With ≈ 40ps activa-
tion times, they can generate only two or three dipoles
throughout the simulation, and they are activated long
after the front has passed; thus, the elastic fields of the
newly generated dislocations cannot influence the front.
We find the number of dislocations nucleated homoge-
neously is two orders of magnitude larger than those
generated by Frank–Read sources. These results indicate
that the relative contribution of each of these mechanisms
of dislocation generation depends on the strain rate.

Fig.2 shows the evolution of the immobile fraction of
dislocations, defined as those that move at speeds less
than 100m/s. After 120ps this fraction increases to
40− 45%. Thus, a significant fraction of the dislocations
are effectively halted due to the sudden increase in ρdis
in the wake of the front. Fig.2 also shows the number of
annihilated dislocations. Most annihilations correspond
to dipoles that are nucleated homogeneously with sepa-
rations between the dislocations too small to overcome
their mutual attraction. As the front proceeds it is seen
that an increasing fraction of dislocations survives.

Fig.3 shows a comparison of the experimental data for
aluminum at 1010s−1, and our simulated results up to
350ps at the same strain rate. To simulate the longer
times the longitudinal sample size had to be increased
from 1µm to 3.5µm while keeping the lateral dimen-
sion 10µm; the aspect ratio is enough to ensure that
release waves do not reach the mid sections. The sim-
ulations were not extended further owisng to computa-
tional limitations associated with longer timescales. The
decay with time of the elastic precursor can be fitted to
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FIG. 3. Experimental vs simulated decay rate. The solid blue
line is an exponential fit to our simulations; its extrapolation
beyond 350ps is shown as a broken line. The broken lines on
either side of this fit represent the standard deviation of the
simulation’s mean from the fit.

f(t) = Ae−m·t. The logarithmic decay rate is defined as

m = −
1

f
df
dt
. With a strain rate of 1010s−1 we obtain in

our simulations m = 0.0012± 0.0002. The experimental
data for aluminum obtained by Whitley et al. [19] for a
strain rate of 1010s−1 yields a logarithmic decay rate of
m = 0.001259.
When a dipole is generated within the shock front,

one dislocation of each dipole has a velocity component
anti-parallel to shock front’s velocity, and its stress wave
is ‘anti-shielding’ [42] because it constructively interferes
with the shock front’s compressive amplitude. The other
dislocation, with a velocity component parallel to the
front’s velocity, is a ‘shielding’ dislocation, as it destruc-
tively interferes with (decreases) the front’s compressive
amplitude. The cumulative effect of the shielding dis-
locations is greater than the effect of the anti-shielding
dislocations, because the former are within the front for
much longer. Thus, as first suggested by Clifton and
Markenscoff [4], the cause of the elastic precursor decay
is the cumulative and destructive interference of elastic
waves emanating from shielding dislocations at the shock
front. In this work dislocations are nucleated within the
front, whilst in [4] they were pre-existing.
The destructive interference is greater at larger strain

rates. Fig.4(a) shows a snapshot of the dislocation struc-
ture at the front at t = 60ps, together with their σxx

fields, with ǫ̇ = 1010s−1. The dislocations in fig.4(a) are
seen to organise themselves in structures reminiscent of
a Smith-Hornbogen interface [21, 29, 30]; this results in
a net plastic relaxation of the compressive elastic shock
front. Fig.4(b), idealises the dislocation structure to a
Smith–Hornbogen interface, with shielding dislocations
moving frontwards, and anti-shielding dislocations mov-
ing away from the front (shown respectively in red an
blue in fig.4(b)). Fig.4(c) shows the σxx fields of a single
Smith–Hornbogen interface for two different dislocation
speeds, 2000m/s and 3000m/s, assuming all dislocations
move with the same speed. Because the shock front prop-
agates with cl, only the longitudinal wave component of



4

0.1 0.14 0.18 0.22 0.26 0.3

-0.4

-0.2

0.2

0.4

0

4.7
4.8
4.9

5
5.1
5.2
5.3

x(µm)

y
(µ

m
)

v=2000m/s v=3000m/s

x(µm)

σ
xx

(GPa)

2

1

0

-1

-2

1

0

-1

-2

2

σ
xx

/ bc
t
2

2�
σ

xx
/ bc

t
2

2�

Shock front

+b-b

v

v

v

v

v

v

v

v

0

0.2

0.4

-0.2

-0.4

y
(µ

m
)

0-0.5 0.5 1-1
x(µm)

0-0.5 0.5 1-1

Direction of propagation 
of the shock front

Longitudinal component 
of σ

xx 
at the front

(a) Simulation (b)

(c)
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cation configuration seen in (b).

each dislocation’s field can keep up with the front and
contribute to the plastic relaxation of the shock wave.

An analysis of the longitudinal component of the σxx

field in fig.4(c) shows that its magnitude almost dou-
bles when the dislocations’ speed increases from vdis =
2000m/s to vdis = 3000m/s. This arises from the con-
traction of the dislocation fields in the direction of mo-
tion as vdis increases. The contraction exists only ahead
of the dislocation, in the direction of motion; behind
the dislocation the magnitude of its fields tends to de-
crease. Consider the shielding dislocations: with increas-
ing speed, the magnitude of the longitudinal component

of σxx increases ahead of the dislocations, contributing
to a greater relaxation of the shock front; this effect per-
sists longer because the dislocations are moving faster
towards the shock front. For anti-shielding dislocations,
since they move away from the front, increasing their
speed results in a relative decrease in the magnitude of
the longitudinal component of σxx influencing the front.
Because they move faster away from the front, they in-
fluence the shock front for less time. As a result, the
amplitude of the shock wave is reduced much more by
the shielding dislocations than it is increased by the anti-
shielding dislocations, and this effect is magnified by in-
creasing the strain rate.
We conclude that the dynamic yield stress is deter-

mined by an interference phenomenon between the elastic
precursor wave and the elastic waves of shielding disloca-
tions generated at the front. The increasing attenuation
of the dynamic yield point with increasing strain rate
(vid.fig.2), is a direct result of the elastodynamic fields
of moving dislocations. This insight has been achieved by
simulating the elastodynamic fields of dislocations nucle-
ated and propagating as a result of the shock, a unique
feature of D3P. Using D3P we have also explained the
increasing attenuation of the dynamic yield stress with
increasing strain rate within the shock.
Our results highlight the importance of dislocation

generation mechanisms in relaxation processes at very
high strain rates. Although at the strain rates probed
here Frank–Read sources are generally too slow to be
activated before the front is relaxed by homogeneously
nucleated dislocations, it seems possible they may be
involved in relaxation at much lower strain rates via
the same mechanism. We believe that D3P simulations
will provide further insights into plasticity at high strain
rates, such as one finds in adiabatic shear, deformation
twinning and martensitic transformations, and dynamic
fracture.
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