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Abstract. Attestation is the activity of making a claim about proper-
ties of a target by supplying evidence to an appraiser. We identify five
central principles to guide development of attestation systems. We argue
that (i) attestation must be able to deliver temporally fresh evidence;
(ii) comprehensive information about the target should be accessible;
(iii) the target, or its owner, should be able to constrain disclosure of in-
formation about the target; (iv) attestation claims should have explicit
semantics to allow decisions to be derived from several claims; and (v)
the underlying attestation mechanism must be trustworthy. We propose
an architecture for attestation guided by these principles, as well as an
implementation that adheres to this architecture. Virtualized platforms,
which are increasingly well supported on stock hardware, provide a nat-
ural basis for our attestation architecture.

1 Introduction

Much economic activity takes place on heterogeneous networks of computers,
involving interactions among autonomous principals, including individuals, retail
companies, credit card firms, banks, and stock brokerages. Because the amount
of money in these activities is large and increasing, the networks are attractive
targets for criminals.

In many attacks, the adversary inserts software remotely, without physical
access to the devices, and this software compromises secrets. For instance, in
March 2008, an attack was announced against the large American grocery store
chain Hannaford Brothers. Unauthorized code had been inserted on the servers
in each of the company’s 300 stores. This code retained the credit card informa-
tion for each transaction occurring at a store, and periodically transmitted the
information to a third party. As a consequence, over 4,200,000 credit and debit
cards were compromised. At least 2,000 fraudulent transactions have been iden-
tified as results. Even though Hannaford’s systems were designed not to store
customer payment details, and to adhere to compliance standards of the credit
card companies, changes to their application software led to large disclosures [15].

An even larger case led to indictments in August 2008. Over 40 million card
numbers were stolen from US companies such as TJX, a clothing distributor
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and retailer, and other large firms. According to the indictment papers, eleven
criminals collaborated in this group of attacks. Members were located in the US,
Estonia, Ukraine, Belarus, and China. In these attacks, wireless access points
were the initial entry point. Newspapers described the inserted software as snif-
fers. However, the indictments mention that an insecure wireless access point at
a Marshall’s retail store in Florida allowed the defendants to compromise data
stored in servers at TJX, located in Massachusetts [24].

In both of these cases, the inserted software appears to have remained unde-
tected for months.

There are three characteristics of these attacks. First, the attacks are exe-
cuted remotely, apparently without physical access to the computers attacked.
Second, the computers are standard, general purpose systems, rather than spe-
cialized devices such as automated teller machines. Third, the networks involve
transactions among independent organizations, such as a retailer, a distributor,
and the credit card firms. No one organization controls the software configu-
rations on all the relevant systems. The ubiquitous attacks that insert malware
onto individually owned computers, to sniff for bank account and password infor-
mation, share these characteristics. The bank cannot control the configurations
of its customers’ computers. Nevertheless, there would be benefits shared by the
bank and its customers if the bank could ascertain that the customer’s computer
was free of malware, before allowing the customer to enter the account number
and password.

Attestation means providing reliable evidence about the state of software ex-
ecuting on a system. Many computing problems could be solved if attestation
were reduced to practice, particularly attestation that provides evidence of the
behavioral properties similar to those mentioned in the attacks we have men-
tioned. To achieve this goal, attestation must make sense for general-purpose
systems, running varied configurations, and under the control of different indi-
viduals and organizations. The participant’s privacy goals must be respected,
while providing evidence that distributed transactions are not being subverted.

One might think that attestation in this sense would be impossible. What
evidence of a good state can be provided to a remote party, that could not be
synthesized by bad software? We do not—by analogy—ask someone we suspect
of being a scam artist whether he is honest, or at least we do not count it as
evidence when he says that he is. However, a starting point for trust appraisal
now exists, in the form of the Trusted Platform Module (TPM), introduced by
the Trusted Computing Group (TCG) [2]. The TPM provides primitive cryp-
tographic capabilities, and some long-term storage that is secure from remote
attacks, which can be used to provide signed evidence from Platform Configu-
ration Registers that reflect key events of the software controlling the machine.

Existing attestation proposals, including those put forth by the TCG, are gen-
erally aimed at specific use-cases and typically lack flexibility to address a more
general attestation problem. Further, existing definitions of attestation primar-
ily focus on describing the particular properties [19] desirable in those use-cases.
For example, in [7], the author uses the term attestation to specifically mean
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the process of transmitting a sequence of hashes of certain system components
and a digital signature of that sequence; in Microsoft’s “NGSCB” [6] it refers
to identification and authentication of known code via digital signatures; Copi-
lot [13] makes use of direct hashes of kernel memory, and so on. We prefer a
general definition of platform attestation that abstracts from specific desired
properties [3].

In this paper, we describe a flexible attestation architecture, based on a few
guiding principles. Systems built according to this architecture can be composed
to carry out attestation scenarios. We believe that this attestation architecture
provides the mechanisms needed for systems to interrogate each other before
sensitive interactions, so as to ensure that those interactions will be safe.

2 Attestation

Our approach to system attestation departs significantly from the notion put
forth by the TCG, in great part due to increased flexibility. Emphasis is placed
on attestation based upon properties of the target, useful in a variety of scenarios,
rather than solely on attestation based upon identity.

Terminology. An appraiser is a party, generally a computer on a network,
making a decision about some other party or parties. A target is a party about
which an appraiser makes such a decision.

The trust decision made by an appraiser often supports an access request made
on behalf of the target, and is usually a decision about the expected behavior
of that target. To make a decision on this basis, a diligent appraiser needs a
significant amount of information—essentially, the knowledge that the state of
the target is such that it will not transition into an unacceptable state while the
appraiser still continues to trust it. There is some inevitable tension between the
human organizations behind the appraiser and target, as the appraiser’s owner
wishes to have complete and correct information about any given target while
the target’s owner wishes to give up no more than the minimal information
necesssary for the success of its request (and perhaps even less).

Terminology. Attestation is the activity of making a claim to an appraiser
about the properties of a target by supplying evidence which supports that claim.
An attester is a party performing this activity. An appraiser’s decision-making
process based on attested information is appraisal.

In the most commonly addressed class of attestations, each attestation provides
a means for appraisers to infer that the target of the attestation will not engage in
a class of misbehaviors. For example, if the target reports its kernel is unmodified,
the attester has reason to trust reports from the target, and some appraiser
trusts information provided by the attester, then that appraiser can infer that
the target will not engage in misbehaviors that might have occurred had the
target’s kernel been corrupted at the time of its measurement. It is important to
note that not all attestations are about lack of misbehaviors, even though most
of the commonly discussed use cases are in that class.
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This broader point of view makes a rich understanding of the related concepts
of system measurement, attestation protocols, and system separation vital to
successful attestation. Here there is a distinction between the measurement of a
target system (the evidence) and the attestation itself.

Terminology. To measure a target means to collect evidence about it through
direct, local observation.

Attestation about a target system will report measurements or conclusions in-
ferred using measurements and possibly also other attestations. In this paper,
measurement is discussed only as necessary to support our architecture for
attestation.

Terminology. An attestation scenario is a cryptographic protocol involving a
target, an appraiser, and possibly other principals serving as trust proxies. The
Trusted Platform Module residing on the target may also be considered a principal
in an attestation scenario. The purpose of an attestation scenario is to supply
evidence that will be considered authoritative by the appraiser, while respecting
privacy goals of the target (or its owner).

Evidence may be attested to in a number of equivalent but semantically different
forms depending on the attestation scenario. For example, the attestation may
report raw evidence as directly observed, as reduced evidence (e.g. a hash of
the raw evidence), or by substitution with a credential provided by a third
party evaluator of the raw evidence. For example, an SSL certificate authority
consumes many attestations as to the identity and practices of a target, then
produces a certificate attesting to the quality of a target [3].

Also, a given target may wish to provide different information to different
appraisers depending on the current trust relationships it has with those par-
ties. A worthwhile desire in developing an attestation system is to resolve the
mutual tension as well as posssible given the contradictory nature of the parties’
interests. One approach to defusing this tension is for the appraiser to demand
frequent repeated attestations, re-evaluating its trust decisions often. It may be
possible to determine that a party will be sufficiently trustworthy for the 15
minutes after performing a given attestation, but not feasible to determine that
it will be so for a day.

3 Principles for Attestation Architectures

Five principles are crucial for attestation architectures. While an ideal attesta-
tion architecture would satisfy all five, they may not all be satisfiable in some
kinds of systems. Thus, attestation mechanisms may emphasize some features
over others. The five principles motivate the architecture presented in Section 4.

Principle 1 (Fresh information). Assertions about the target should reflect
the running system, rather than just disk images. While some measurement tools
may provide start-up time information about the target, others will inspect the
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current state of an active target. An attestation architecture should ensure access
to the live state of the target. ��

The architecture cannot predict the uses to which appraisers will put the infor-
mation it delivers. Appraisers may need to make very different decisions, and—to
justify them—need to make different predictions about the future behavior of
the target. This suggests the next principle.

Principle 2 (Comprehensive information). Attestation mechanisms should
be capable of delivering comprehensive information about the target, and its full
internal state should be accessible to local measurement tools. ��

With comprehensive information come worries about the consequences of disclo-
sure. Disclosure may cause loss of privacy for a person using the target platform.
It can also subject the platform to attack, for instance if the attestation discloses
an unpatched vulnerability to an adversary.

Principle 3 (Constrained disclosure). Targets should be able to enforce poli-
cies governing which measurements are sent to each appraiser. ��

Hence, an attestation architecture must allow the appraiser to be identified to the
target. Policies may distinguish kinds of information to be delivered to different
appraisers. The policy may be dynamic, relying on current run-time information
for individual disclosure decisions. For instance, a target may require that the
appraiser provide an attestation of its own state, before the target discloses its
own.

Principle 4 (Semantic explicitness). The semantic content of attestations
should be explicit. ��

The identity of the target should be included, so an appraiser can collect attes-
tations about it. The appraiser should be able to infer consequences from several
attestations, e.g. when different measurements of the target jointly imply a pre-
diction about its behavior. Hence, attestations should have uniform semantics,
and so that they are composable using valid logical inferences.

Principle 5 (Trustworthy mechanism). Attestation mechanisms should pro-
vide evidence of their trustworthiness. In particular, the attestation architecture
in use should be identified to both appraiser and target. ��

There will be a good deal of natural variation in how different systems meet
these principles, and in the choices they make when some principles are only
partially satisfied. In specific situations, it may be sufficient to satisfy these
principles only partly. For instance, limited forms of evidence about the target
may suffice for an appraiser, or evidence that has aged to an extent may be
accepted. When different degrees of adherence to the principles are designed
into a system, then the variation is static. When the system adjusts at runtime
to provide different degrees of evidence in different situations, or when different
peers are the appraiser, then the variation is dynamic.
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4 Proposed Attestation Architecture

There are five main constraints, imposed by the principles of Section 3, that
provide the content for the proposed architecture. In this section, each constraint
is briefly described in the context of how it is motivated by the principles. A
system designed according to this architecture must have the following abilities:

1. To measure diverse aspects of the target of attestation;
2. To separate domains to ensure that the measurement tools can prepare their

results without interference from the (possibly unreliable) target of attesta-
tion;

3. To protect itself, or at least a core trust base that can set up the domain
separation mechanism, ensuring that it cannot be weakened without this
fact being evident from the content of attestations;

4. To delegate attestation so that attestation proxies can collect detailed mea-
surements and convincing evidence, and summarize them to selected peers,
when the target would not permit the full facts to be widely shared;

5. To manage attestation to handle attestation queries by invoking suitable
measurement tools, delivering the results to the appraiser or a proxy as
constrained by policies.

These constraints are discussed in turn.

4.1 Measurement Tools

Providing comprehensive information about a system (satisfying Principle 2)
requires the ability to provide a collection of tools that (jointly) comprehensively
measure the target.

Comprehensive measurement of a system requires more than simply the abil-
ity to read all of the data contained in that system. It also means that some
measurement tools must understand the structure of what they are measuring.
For example, just being able to scan and hash the memory used by an operating
system kernel may not suffice to provide useful measurements of it. Usefulness,
here, is in the eye of the appraiser, and typically involves evidence about the
past or future behavior of the target. The state of a program changes during
execution, and therefore cannot be measured by simple hashing. For this reason,
measuring complex system components requires knowing the structure of the
targets. Some trust decisions require these structure-sensitive measurements.

As a result of this, there cannot be a “one size fits all” measurement capability
for attestation. Different measurement tools must be produced for measuring
components with different structure. Further, the complete set of such tools
that will be desired is not knowable ahead of time without restricting the target
systems from ever adding any new future applications.

Our architecture must support a collection of specialized measurement tools,
and in order to be able to provide evidence for arbitrary future attestations it
must also support adding new tools to that collection over time.
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In addition to measurement capacity being comprehensive, freshness is also
a goal. (Principle 1) This means that our measurements cannot always be per-
formed a priori – one must be able to measure various parts of a system on
demand. These demands are made from the point of view of an appraiser. A
remote party must be able to trigger measurement; it is insufficient to only have
runtime measurement occur via periodic automatic remeasurement triggered by
the measurement system or tools.

4.2 Domain Separation

For a measurement tool to provide information about a target of attestation, the
measurement tool must be able to deliver accurate results even when the target
is corrupted. This is an important consequence of Principle 5.

There are two parts to this. First, it must have access to the target’s state
so as to be able to distinguish whether that target is corrupted or uncorrupted.
This state includes the target’s executable code but also modifiable data struc-
tures that determine whether its future behavior will be acceptable. Second, the
measurement tool’s state must be inaccessible to the target, so that even if the
target is corrupted, it cannot interfere with the results of the measurement.

There are different ways that this separation can be achieved. One is to virtu-
alize the target, so that the measurement tool runs in a separate virtual machine
(VM) from the target [12]. The virtual machine monitor must then be able to
control cross-VM visibility so that the measurement tool has read access to the
target. It must also ensure that the target does not have any control over the
measurement tool. There may be a message-passing channel established between
them, but the hypervisor/VMM must be able to ensure transparent visibility of
the measurement tool into the target and protection of those tools from the
target.

Alternatives are possible. For instance, CoPilot (Section 7) uses a form of
hardware separation in which the measurement tool runs on a coprocessor and
the visibility constraints are expressed via hardware instead of being based on
the configuration of a hypervisor.

Given the improved virtualization facilities that new processors from Intel
and AMD provide, the VM approach seems like a natural approach that makes
minimal requirements beyond standard commodity hardware.

4.3 Self-protecting Trust Base

We have established that domain separation is necessary in order to have trust in
attestations and specifically in the integrity of our measurement tools. This raises
a question: how to produce assurance for the integrity of the domain separation
itself?

The core of our system’s trust must come from components which are simple
enough or sufficiently evaluated that one can be convinced that they do not
require remeasurement after they have been running. Part of this core must
obviously include the hardware used as our Trusted Computing Base. Any other
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component must either be measurable from a place that it cannot control or
must be sufficiently measured via a static startup measurement taken before it
begins operating.

Note that what is needed here is more than just a trusted static subset of our
system. The difficulty here is that our trust base must be sufficiently simple and
static to not require remeasurement, but also sufficiently rich to bootstrap our
measurements and attestations. Anything performing measurement and attes-
tation on the platform will in turn require measurement and attestation about
itself in order to convince an appraiser of its trustworthiness. It must be ensured
that this chain “bottoms out” at something sufficient to perform certain essential
measurements and attestations to support the chain above it while being simple
enough that static startup-time measurements are sufficient to determine trust.

It is not trivial to determine the content of this static trust base. One of the
difficulties arises around the element of domain separation. It is preferable for
the domain separation mechanism to be simple and secure enough to belong in
this element, but no hypervisor exists today that satisfies those properties and
is also rich enough to provide the services desired. This difficulty is addressed
in Section 6. One possible alternative is that a hardware component provides
runtime measurements of the domain separation mechanism.

4.4 Attestation Delegation

In practice, the appraiser will need to delegate many aspects of determining
the quality of the target to specialists called attestation proxies. There are two
essential reasons for this.

First, Principle 2 contains an intrinsic conflict with Principle 3. The former
states that comprehensive insight into the state of the target must be available.
The latter says that the target should be able to choose and enforce a policy on
the disclosure of information about its state.

A natural way to reconcile these two principles is to allow appraiser and target
to agree on an attestation proxy that is partially trusted by each [3]. The target
trusts the proxy to disclose only information about its state which is of limited
sensitivity. The appraiser trusts the proxy to make statements only when they
are warranted by appropriately fresh and comprehensive information about the
target.

The second reason why attestation proxies are important is that they can
function as specialists. Enormous expertise is needed to interpret detailed mea-
surements, such as those needed to predict behavioral properties about an oper-
ating system. An appraiser may get more reliable information and more usable
information from an attestation proxy than it would be able to extract on its
own from the comprehensive data. The maintainers of an attestation proxy can
ensure that it has up-to-date information about the strengths and weaknesses of
specific system versions or configurations.

Naturally, these delegations require protocols that allow the principals to en-
sure they are communicating with appropriate proxies. These protocols must
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supply the principals with messages that unambiguously answer the principals’
questions. The design of such attestation protocols may follow the methods of
the strand space theory [9], and may use the strand space/trust management
connection from [11,10].

These delegations, combined with attestations satisfying Principle 4, enable
a powerful new capability. An appraiser may compose separate layered or or-
thogonal attestations, involving different proxies, in order to make a judgment.
Another approach, “Layering Negotiations [14],” has been proposed for flexible
and composable attestation. We have used many of the same tools as this work,
such as Xen and SELinux. The layered negotiations have a fixed two-level struc-
ture and are intended to enable distributed coalitions. Our approach is intended
to enable general, arbitrarily flexible composability regardless of application us-
age model.

4.5 Attestation Management

A goal of our architecture is flexibility. It is essential that our system be able
to respond meaningfully to different requests from different appraisers without
having pre-arranged what every possible combination of attestations might be.

One way to support this notion is with an architectural element referred to
as the Attestation Manager. A component realizing this idea contains a registry
of all of the measurement and attestation tools currently on the platform, and
a description of the semantic content produced by each. As a consequence of
Principle 4, this component can select at runtime the appropriate services needed
to answer any query which could be answered by some subset of the measurement
and attestation capabilities currently on the system.

As an Attestation Manager will clearly be involved in nearly every remote
attestation, it is also a natural place to enforce some of the constrained disclosure
called for by Principle 3. It can restrict the services it selects based on the
identity of the party the information would be released to, according to locally-
stored access policies. In order to defend this capability from both the untrusted
target of attestations and also from potentially-vulnerable measurement tools,
the Attestation Manager must be protected via domain separation.

Our attestations will have to use cryptography in order to protect commu-
nications from adversaries. This same protection, taken together with domain
separation, means that the target can be safely used as an intermediary for com-
munication with appraisers or proxies. This leads to the very beneficial result
that an Attestation Manager can be a purely local service; it does not need to
be directly accessible by any remote parties.

4.6 The Elements of the Architecture

One might envision the elements of our architecture fitting together conceptually
like so:



10 G. Coker et al.

Fig. 1. Attestation Architecture

5 Composable Attestation Platform

An implementation of our attestation architecture has been developed and is
illustrated in Figure 2. The hypervisor, together with the CPU, serves as the
self-protecting trust base; however, the representation here is abstract, as the
implementation is not tied to features specific to any one virtual machine monitor
or microprocessor. The Supervisor guest (S guest) contains the platform support
package, while the User guest (U guest) runs the user’s “normal” operating
system. The TPM hardware resource has been virtualized (“vTPM”) to provide
TPM capabilities for both the S and U environments. Both environments possess
measurement and attestation services (“M&A”).

The construction and operation of the hypervisor and each guest coincides
with the collection of evidence reportable in attestations of the platform. The
reason for multiple separate M&A capabilities is that evidence reported from a
single party may not be sufficient.

To manage a diversity of measurement and attestation requirements, a vir-
tual machine is dedicated to measurement and attestation (M&A) of a guest.
The hypervisor is integral to the trust base for the system, controlling sharing
and providing domain separation. Additional domain separation and controlled
sharing requirements are met by instrumenting the M&A on SELinux [16]. The
separation of the M&A and guest environments is transparent to the target and
the attestation. Upon receiving attestation requests, the guest directs the in-
coming request to its M&A and proxy responses from that M&A back out to
appraisers. To deeply assess the platform, one may need to connect attestations
together across the S and U environments. This need can only be satisfied with
semantically explicit attestations as described by Principle 4.
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An M&A consists of three components: attestation manager (AM), attestation
protocols (APs), and attestation service providers (ASPs) The AM manages the
attestation session, listening for incoming attestation requests and using a “se-
lector” subcomponent for initiating APs. An AP is a running instance of an at-
testation protocol initiated by the Selector in response to an attestation request.
The ASPs are subcomponents of the attestation protocol. Each ASP performs a
well-defined service in the attestation protocol and as defined serve a critical role
in satisfying Principles 1- 5 for the platform. Some example ASPs are integrity
measurement systems, wrappers for calls to a TPM/vTPM, or invocation of other
services. As a result of separating these key services into ASPs which may be used
by different APs, and abstracting over APs using the AM, we gain an extensible
system with the ability to add new services and protocols without the need to
redesign or re-evaluate the entire system for each addition.

The Selector is the mechanism for enforcing the policy of the client by instan-
tiating APs and ASPs that conform to the policy for a given scenario thereby
satisfying Principle 3. The implementation uses a method referred to as “Call
by Contract” [17] for the Selector.

S Guest

M&A

vTPM

M&A

vTPM

U Guest

hypervisor

TPM/CPU

Fig. 2. Composable Attestation Platform

Attestations may be chained across the platform by the use of ASPs that
make attestation requests to the other M&A environments and relay or use the
attestation responses. Figure 3 shows a possible set of components that might
be used in an attestation, including an ASP in the User M&A which makes an
attestation request to the Supervisor M&A, enabling attestations which satisfy
Principle 5.

The attestation research to date has focused exclusively on the attestation of
the User OS kernel and the core platform (the Supervisor guest and hypervisor
components). The attestation of these components forms the trust base for the
attestation of higher level components, i.e. User guest applications. To support
attestation of User guest applications, one could instrument an M&A in user-
space that is similar in form and function to the M&A described above. The
user-space M&A may be chained to the User and Supervisor M&A’s to enable
complete platform attestations. Furthermore, the implementation is guest OS
agile, as the only guest specific components exist entirely within the individual
ASPs and the future user-space M&A.
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Attestation Request/Response

ASP1 ASP2 ASP3

SelectorAM

ASP1 ASP2 ASP3

AP

SelectorAM

AP

Fig. 3. Composable Measurement and Attestation (M&A) Architecture

Mutual attestation is an important area to consider, and our architecture
provides a natural place for this. APs within an M&A may demand attestations
as well as providing them, and may use ASPs for verification of the properties
asserted by such attestations.

6 Open Problems

Even with our architectural constraints and system design, some aspects of the
attestation problem remain difficult to solve. The most difficult principles to sat-
isfy with today’s technology are the Trustworthy Mechanism and gathering
Comprehensive Information.

The Trusted Platform Module and related technology from Intel (TxT) [5] and
AMD (SVM) [4] are useful means for bootstrapping certain aspects of a self-pro-
tecting trust base, but a richer trust base is needed than can be provided by this
sort of hardware alone. The emergent hardware technologies only start the prob-
lem from a known origin, the core root of trust for measurement, but ultimately
the integrity of the trust base depends on the assurance of the “hypervisor” imple-
mentation. Specifically required is a means to establish domain separation in order
to support a trustworthy mechanism for attestation. Our current implementation
uses an off-the-shelf virtualization system – but none of those available today of-
fer the desired balance between flexibility and security. Solutions to this problem
might be found either by extending traditional separation kernels or possibly by
producing a small, assurance-focused virtual machine hypervisor.

The major problem in gathering comprehensive information is that in order
to establish trust in application-level software one first needs to establish trust
in the operating system that the software depends on. Today’s mainstream oper-
ating systems were not designed with assurance or measurement in mind. They
are large and complex, containing many dynamic features that make them very
difficult to analyze even in the absence of a hostile party. It seems unlikely that
this situation will improve until there is either a major shift in the structure
of mainstream operating systems or the adoption of a new operating system
designed from the beginning with measurement and assurance as a design goal.
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7 Existing Approaches to Attestation

There are several early steps toward system attestation in the research commu-
nity and commercial market today. It is clearly a major component and focus of
work being done within the Trusted Computing Group [25] [26] [8], Microsoft [6],
and multiple independent researchers [13] [21]. Many of these solutions may act
as useful components in a general attestation architecture as described in this
paper. Still, none of them fully address this broader notion of attestation or the
needs of a flexible architecture.

Trusted Network Connect. Trusted Network Connect (TNC) is a specifica-
tion from the Trusted Computing Group [26] intended to enable the enforcement
of security policy for endpoints connecting to a corporate network.

While Trusted Network Connect is an architecture for attestation, it is of much
narrower scope than our approach. Its purpose is to provide trust in endpoints
connecting to a network [26], and for this reason it is generally seen as supporting
activity at network layers 2 or 3. For this reason, the TNC architecture makes
some assumptions about the relationships between parties that make it of limited
value for application-level attestations. Once a party has network access, it moves
outside the scope of TNC.

In our framework, TNC is best seen not in comparison to our entire archi-
tecture but as a special kind of attestation manager. Much of the purpose of
the TNC Client (TNCC) is to select the appropriate Integrity Measurement
Collectors (IMCs) based on requests from Integrity Measurement Verifiers.

Useful domain separation is not possible in TNC. At load time, each IMC
registers what kinds of messages it wishes to receive from the client. If it registers
0xffffffff then it will receive all messages delivered to all IMCs [27]. Further, it
is explicit in the specification that IMCs are loaded into the same memory space
as the TNCC, and that a rogue IMC can read and write memory in the TNCC or
in other IMCs, misusing credentials, privileges, and message data arbitrarily [27].
Thus, even if the overall TNC process is separated somehow from the target, it
is clear that no separation is possible between measurement tools and either
the attestation management function or other measurement tools in a system
compliant with TNC.

The notion of attestation delegation exists in TNC, but in a very constrained
way. The relationships between Policy Enforcement Points and Policy Decision
Points is made explicit, making arbitrary delegation difficult at best.

TNC can provide identification of the appraiser to the target, though it is
constrained to one very specific identification. Before the integrity measurements
are taken, “mutual platform credential authentication” [26] can occur. In the
TCG context, this means that the two parties can each verify that the other has
a valid unrevoked TPM AIK. However, truly mutual authentication is impossible
in TNC due to its nature as a network access protocol. Given that the “server”
implicitly already has access, no attestations from the server to the client other
than this initial credential exchange is possible. If the client only requires a basic
identification then this may be sufficient, but if clients wish to negotiate with
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servers and proceed differently depending on attested properties, then TNC is
unsuitable.

It should be noted that TNC is not a networking or messaging protocol, but
rather is intended to be tunneled in existing protocols for managing network
access, such as EAP [1].

Due to the asymmetric nature of TNC and the protocols it expects to live
within, implementation of complex attestation protocols or nested attestations
is unlikely to occur in a way that interoperates with TNC.

Pioneer and BIND. Pioneer and BIND are attestation primitives developed
at CMU with very specific design constraints.

BIND [22] is a runtime code attestation service for use in securing distributed
systems. It centers around a specific measurement capability which binds a proof
of process integrity to data produced by that process. For embedded systems
which without flexible attestation needs, BIND may be useful.

Pioneer [21] is an attempt to provide a “first-step toward externally-verifiable
code execution on legacy computing systems.” Here, legacy means systems with
no hardware trust base – Pioneer attempts to solve the attestation problem en-
tirely in software. This faces serious challenges in the presence of a malicious OS,
and at least one method is known for an OS to fool Pioneer. Also, the success
of Pioneer on any given system requires an immense degree of knowledge about
(and control of) the underlying hardware. A trusted third party must know the
exact model and clock speed of the CPU as well as the memory latency. The sys-
tem must not be overclocked, must not support symmetric multi-threading, and
must not generate system management interrupts during execution of Pioneer.
This level of dependency suggests that an attacker with sufficient understanding
of the hardware might subvert attestation. In specific, at least one such attack
is known in the case of systems with 64-bit extensions. The specific weaknesses
referred to are acknowledged by the authors as implementation issues [20].

Another requirement for Pioneer is that the checksum code is the most time-
optimal possible code that performs its checksum. No proofs of such optimality
exist for any Pioneer-sufficient checksum functions. It remains to be seen if Pi-
oneer can succeed, as newly emerging hardware optimizations will continue to
provide attack vectors and make it very difficult to be certain that a given piece
of code is time-optimal on all architectures that a user may care about.

Copilot. CoPilot [13] is a system for detecting root kits in a Linux kernel.
It periodically computes hashes over key parts of memory that impact kernel
execution, compares against a known value, and reports to an external system
that enables manual decisions to be made regarding detected changes. CoPilot
runs on a PCI add-in card, accessing system memory using DMA. It uses a
dedicated port to communicate with the appraiser.

CoPilot does well with respect to some of our principles. It is protected due
to existing on separate hardware and via a direct connection to the appraiser.
It produces fresh information about a running system.

CoPilot is an advance in attestation technology, but it has limitations. It does
not provide a truly comprehensive measurement of the target system because the
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measurements it produces do not include important information residing in the
kernel’s dynamic data segment. In addition, since CoPilot does not have direct
access to the CPU’s registers, it only is able to perform measurements at known
memory locations and cannot associate any of its measurements with what is
actually running on the processor. Also, the timing of measurement cannot be
coordinated with actions on the target. This means that appraisal is difficult
as any given measurement might be taken during a moment of inconsistency.
Achieving any kind of constrained disclosure is not possible, as there is exactly
one appraiser (connected by a cable) and there is no opportunity for the target
to participate in the attestation process.

CoPilot is a very specialized kind of attestation system, but it strangely does
not take advantage of this. The discussion in Section 4.4 mentioned that spe-
cialists can be valuable because of their ability to make use of knowledge of the
structure of the object being measured. CoPilot, even though it is only used to
measure Linux kernels, does not perform structural analysis of data – it only re-
ports hashes of kernel memory. As a result, changes are detected but the meaning
of those changes is not feasible to determine. The way that CoPilot’s special-
ized nature is implemented (via dedicated hardware) also means that supporting
nested attestation is impossible.

The fact that CoPilot runs on add-in hardware may increase trust in the
attestation mechanism and avoid impact on target execution, but at the cost of
requiring extra hardware for every target system.

Nexus. Nexus [23] is an effort at Cornell to develop an operating system with
particular attention to “active attestation.” It enables separation via secure
memory regions and moves device drivers into userspace. It introduces “label-
ing functions,” a mechanism for providing dynamic runtime data to appraisers.
Measurement tools may be sent to the target system by the appraiser and do
not need to be pre-integrated with the base system.

As it involves an entirely new microkernel-based operating system, there are
clearly adoption hurdles in the path of Nexus. It is perhaps most useful to think of
Nexus not in the role of a guest operating system in our framework, but rather
as something one might use for separation purposes instead of a traditional
hypervisor. This relationship seems even more relevant in light of the fact that
the Nexus project intends to be able to run Linux on top of a Nexus process.

Nexus is not yet released, but one can imagine it playing a part in a variant
of our architecture. The ideas of fresh information, comprehensive information,
constrained disclosure, and a trustworthy mechanism would clearly resonate with
the developers of Nexus. While it does not account for some of the elements in
our architecture, it also does not appear to be contradictory with them. As this
work emerges into public view it will be worth watching in order to determine
how it might be used to satisfy attestation needs.

Property Based Attestation. Our concept of delegated attestation and ap-
praisal is a more general variant of the idea known as Property-based Attesta-
tion. Jonathan Poritz [18] and Sadeghi and Stüble [19] have each pointed out
that the end consumer of an attestation ought to care about security proper-
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ties of the attester, as opposed to the specific mechanisms employed to achieve
those properties. As should be clear from this paper, we strongly agree with this
fundamental idea.

Poritz suggests that a solution might include virtualization and trusted third
parties, but does not propose a concrete approach. Sadeghi and Stüble go farther,
suggesting multiple approaches. Their abstract model of the TCG specifications
takes an unusual view of the TPM Seal [25] functionality, which may impact
the viability of the proposed solution. Some of their other suggestions for PBA
are attractive but require significant changes to the TPM or the TCG software
stack.

These authors and several others go on to propose a protocol for performing
such property-based attestations [3]. This protocol could be implemented as an
AP/ASP combination in our system, as long as some specialist appraiser for it
was also implemented.

We go farther than the capabilities shown in work thus far, showing that there
can be multiple layers of delegated attestation, that there can be arbitrarily many
layers of the platform being appraised, and that the proper appraisers for each
of these may be different. The data stored in a hardware TPM is not the only
data for which one would wish to delegate the appraisal. Data in virtual TPMs,
and even data stored at higher levels in the operating system of a host may be
appropriate to delegate to specialists and describe via abstract, property-based
attestations.

8 Conclusion

Attestation is an area which will see many technological innovations and develop-
ments in the near future. In particular, since the major vendors are introducing
improved support for virtualized systems, architectures such as ours should be
increasingly easy to implement in a trustworthy way. The semantic explicitness
and freshness of the attestations that we propose should allow a common vocabu-
lary across many architectures. Constrained disclosure should encourage systems
owners to allow their systems to participate in attestations. Comprehensive infor-
mation should encourage appraisers to place credence in well-supported claims,
particularly given underlying trustworthy attestation mechanisms. We have at-
tempted to clarify the way that existing work can be used to contribute to our
goals.
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