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ABSTRACT

This study has considered a continuous attitude-control system for

controlling the direction of the spin axis of a flexible, spinning,

toroidal manned space station. The basic objective was to find loca-

tions within the space station for the control actuators (forces or

moments) and attitude sensors such that the space station is stable and

the excitation of vibration by the control system is at a minimum. When

flexure is considered, these locations are of the utmost importance

since they determine the coupling of the flexural motions with the

rigid-body motion to be controlled.

For small flexural motions, the equations of motion can be linearized

and stability determined from an examination of the system characteristic

roots as the control parameters are varied. Unfortunately, for flexible

systems with control, determination of these roots is very difficult and

therefore computer solutions are generally utilized. As a result, the

fundamental relationships between sensor and actuator locations and

flexural mode response in a vehicle with automatic control have not

heretofore been explicitly treated.

The approach used for this problem was first to indicate the basic

form of the equations of motion of flexible vehicles with linear feedback

control, and their associated characteristic equations. The character w

istic roots were then determined by expanding them about their normalized

flexural modal poles. The resulting expressions yielded general relation-

ships which the locations of the sensors and actuators, designed for

control of the rigid motions of a flexible vehicle, must satisfy in order

for the flexible motions to be stable as well. This approach was applied

to (i) vehicles whose control axes are not coupled, such as conventional

beamlike vehicles, and (2) the more complex case of vehicles whose con-

trol axes are coupled via flexure, which includes unconventional platelike

vehicles such as the toroid studied in this report.

The flexural frequencies and mode shapes of the spinning space station

were determined analytically. Then the rigid-body equations of angular

motion about axes in the plane of the toroid were transformed into a
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single vector equation in the body-fixed frame, and a suitable two-axis

linear feedback control system was chosen.

Applying the general stability relations to the spinning space

station madeit possible to observe the influence of the locations of

the control actuators and sensors on station stability. The results

thus obtained were verified using a computer program. For a control

system using simple rate and position feedback, and employing a pair of

actuators about each of the orthogonal control axes, it was determined

that:

1. There is no location for a single sensor package (e.g., star

tracker and derived rate) that will yield stability of the

flexural modes for control gains appropriate to the rigid-body

mode.

2. The desirable solution is to use a control sensor for each control

axis, and place it with one of its corresponding actuators. For

this solution, the control axes are uncoupled, only the odd modes

of vibration are excited, and the system is stable. Further

reduction in excitation of the flexural modes can be achieved by

employing lead-lag rate networks or filtered rate in place of

pure rate.

3. When the above solution is employed, certain latitude may be

tolerated in the location of sensors and in the mismatch of

control forces with acceptable stability.
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qn(t)

r

n

r

on

nth-mode generalized coordinate

pn/Pi, defined by Eq. (3.3)

pn/Po, defined by Eq. (D.4)

m

r

B

Zkr

the undefleeted vector position of the mass particle

with respect to the vehicle center of mass

vector deflection of a flexible vehicle with respect

to a rigid-body reference frame

Snl,Sn2

i

Laplace operator

conjugate complex roots associated with the

mode; defined by Eqs. (3.25) and (3.26)

th
n

s/Pi, defined by Eq. (3.2)

si/Pi = e + j(l+ 5), normalized system characteristic
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root (in the upper half plane) associated with the i

mode; defined by Eq. (3.6)

time

U

n

w

_n (_)

x,y,z

Qn/Qc, the factor converting the rigid-mode control

Q to the nth-mode generalized forcing function
C

Qn--defined by Eq. (2.9)

defined by Eq. (4.31)
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n -mode eigenvector

body-fixed axes defined by Fig. 7

out-of-plane deflection defined by Fig. 7

A mass moment of inertia of the station about a diameter

B I defined by Eq. (7.3)
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ratio of twist to deflection for the

defined by Eq. (5.1)
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n mode- -

C moment of inertia about the station spin axis

E ,E

x Ynn

EI

defined by Eqs. (4.1) and (4.2)

bending rigidity (Young's modulus multiplied by the

area moment of inertia), used in Eq. (B2.10)

F

F
n

_F.

1

G

force

nth-mode generalized force

force imbalance defined by Eqs. (5.24) and (5.25)

matrix defined by Eq. (4.15)

G ,G
+ -

G ,Gxy,Gyx,Gxx yy

c(s)

defined by Eq. (4.13)

components of C defined by Eqs. (4.6) through (4.9)

defined by Eq. (2.12)

area moment of inertia

K gain matrix defined by Eq. (4.4)
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V

M

_hM.
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M
n

position gain

velocity gain

moment; mass of station

moment imbalance defined by Eqs. (5.26) and (5.27)

rate of change with respect to

.th
the x direction

7 of the moments in

nth-mode generalized mass defined by Eq. (A.31)
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Qn

R

rigid-mode forcing function
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Fn/Mn, n -mode forcing function, defined by Eq. (1.2)

centroidal radius of the rim of the station (defined

in Fig. 7); distance from the force to the center of

mass of the vehicle (see Fig. 2)

U

V
n

X,Y,Z

defined by Eq. (3.33)

nth-mode potential energy

inertial axes defined by Fig. 7

xx xy yx'Jyy

2

n

n

(_5

n

_6

n

57

n

_n

7

7,7'

functions of sensor and control locations--defined

by Eqs. (4.15/ - (4.18)

(a a ) , defined by Eq (6.7)
- - a a

XXn YYn XYn YXn

a [- (-1) (n-l)/2] + a

XXn YYn

defined by Eq. (6.5)

+ [-(-l)(n-l)/214(Z , defined by Eq. (6.6)

2n n

(C_ + _2n) , defined bY Eq. (6-Ii)- (R/2) 5n
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(R/2) 5n

twist about the centroidal line of the cross sections--

defined by Fig. 7

nth-mode slope at the sensor (Fig. 2)

central angle of position along the rim (Fig. 7)

location of x and y sensors, defined by Eqs. (5.16)

through (5.19)
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+

e, ¢,t/

imaginary portion of the departure of

normalized ith-mode pole

real portion of s.
1

equivalent viscous damping

th

n -mode equivalent viscous damping

_. from the
i

_3/(1 + (_63), defined by Eq. (6.18)

Euler angles relating body-fixed axes to inertial

axes, defined by Fig. 7

a rigid-body motion, used in Eq. (2.4)

(¢ + je)e j@, the small vector angle between the

rigid-mode spin axis and the inertial reference

P
torsional stiffness of the cross section about its

centroidal axis, utilized in Eq. (B2.10)

([ Poisson's ratio

To 'TI

co

time constants of rate network defined by Eq. (3.16)

frequency along the imaginary axis in the s plane

COX ,COy 'COZ
components of angular velocity in the rigid-body frame

_Pn

th
precessional velocity of the n in-plane in-

extensible mode, defined by Eq. (B3.8)

g

2

_3

+

spin speed, nominal value of

(I + (_63r2)/(i + _63) , defined by Eq. (6.19)
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Superscripts

derivative with respect to time

T transpose of a vector

Subscripts

b body fixed

c control

co

n,m,i

ns

Be

rigid-mode parameter with control

th th th
integers; n , m , and i modes of vibration
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n sine mode of vibration
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n cosine mode of vibration
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x component along x axis
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D disturbance
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ADDITIONAL NOMENCLATURE FOR APPENDIXES

q/R, defined by Eq. (D.10)

U_V_W

x ,yo,Zo o

xb'Yb,Zb

components of deflection along Xo, Yo z' O

local undeflected axes; x is radial directed
0

inward, Yo is parallel to z. See Fig. 30.

local body-fixed axes, originally along

in the undeflected case

X ' --YO ' Z0 0

A
nmij

a parameter composed of u's and a's
n n

Eq. (D. 24)

defined by

B !

L

a matrix defined by Eq. (D.21)

a matrix defined by Eq. (D.28)

linear vector operator defined by Eq. (A.8)

internal pressure of station

Q/Po' defined by Eq. (D.5)

internal area of station cross section

T
O

T 1

V

POTO '

POT1 '

volume

defined by Eq. (D.15)

defined by Eq. (D.16)

external moment vector, per unit length s, acting

on the station
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small vector angle of the spin axis to the inertial

axes--defined by Eq. (C.3)

components of curvature about xb,Y b
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mass density

po t , defined by Eq. (D.I)

twist about z b

initial twist about Z
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the angular velocity of the rigid body

the small vector rotation of the body axes over the

arc length ds

the small vector angle defined by Eq. (B1.2) which

specifies the rotation of the deflected local body-
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I. INTRODUCTION

This study has investigated a continuous attitude-control system

for controlling the direction of the spin axis of a flexible, spinning,

toroidal manned space station. The specific objective was to find

locations within the manned space station for the control actuators

(forces or moments) and sensors such that the spacecraft is stable and

the excitation of vibration by the control system is at a minimum.

If the manned space station were rigid, the locations of the sensors

and actuators would be unimportant. When flexure is considered, however,

these locations are of the utmost importance because they determine the

coupling of the flexural motions to the rigid-body motion to be con-

trolled. This coupling can lead to instability, an effect which has

been observed on missiles, boosters, and other space vehicles.

The conventional approach to this flexible vehicle problem is to

select a control law for the rigid-body mode, choose a convenient loca-

tion for the actuators and sensors, and then analyze the system to deter-

mine if it is stable and has a satisfactory response to expected inputs.

This analysis is often difficult and it is common to employ computers in

its solution.

If the calculated stability or response is unsatisfactory, new

locations for the sensors (or for the actuators) may be tried, the use

of multiple sensors may be explored, or the control law may be modified

to include fixed or variable compensation. The compensation may consist

of circuits to modify the phase or magnitude of the system transfer func-

tion at unsatisfactory roots associated with particular flexible modes,

or it may consist of filters to reduce the effect of the control feedback

at the frequencies of the unwanted flexural modes.

Variable compensation is usually adaptive in nature, adjusting the

frequencies of the compensatory circuits to match undesirable frequencies

actually observed during operation, or changing gains to modify the

observed response so that it will approximate more nearly the desired

response. An excellent discussion of compensation techniques, particu-

larly adaptive ones, for alleviating control problems that result from

flexure is presented in Ref. I.
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A somewhat different approach was employed recently by Schaefer

!Ref. 2]. Instead of starting with a control law for the rigid-body

mode, he used sufficient sensors to be able to determine all the "states"

of the system, including those of the important flexural modes. Then,

by means of a computer, a control was determined that would drive all the

states from the initial observed state to the desired final state in an

optimum or near-optimum fashion.

The approach used in this study is, first, to identify the basic

nature of flexible-vehicle control problems and indicate how these prob-

lems can be treated analytically--to an acceptable degree of approximation--

for the case of a system designed for the control of the rigid mode. This

step results in general relationships that the locations of the sensors

and actuators (designed for control of the rigid motion) must satisfy if

the flexible motions as well as the rigid-body motions are to be stable.

These relationships are then applied to the spinning space station to

determine locations of the actuators and sensors such that the system is

stable and the flexible modes are minimally excited.

A. HISTORICAL BACKGROUND

The stability problem associated with the attitude control of a

flexible, spinning, toroidal manned space station is an example of a

wider class of problems: the stability and control of flexible vehicles.

Unfortunately, no comprehensive history of the overall flexible-vehicle

problem has been found in the literature and for this reason an attempt

has been made here to fill this need.

I. Stability and Control of Flexible Vehicles

In order to appreciate fully the history of flexible-vehicle

stability analysis, it was considered desirable to classify the basic

ways that flexibility can affect vehicle stability. The resulting six

classifications, and a brief discussion on pertinent references, are

presented in Section 1.b. The equations of flexible vehicles, which

are derived in Appendix A, are summarized below.

- 2



a. Equations of Flexible Vehicles

In Appendix A it is shownthat for small vehicle deflections

the equations of rigid-body motion appear uncoupled from the flexural

motions except when angular deflection produces a significant change in

the direction of an applied force. It is shown further that when the

deflection Zi?(?,t) is expanded in N of its modal components

N

_(_,t) = I qn(t

n=l

Wn(r) (i.I)

and if, in addition, the vehicle is not splnning, or if it is spinning

and the deflection is along the direction of the spin vector or is due

to pure torsion about the spin axis, then the equations for the modal

generalized coordinates appear as

2 Fn(t) _ Q (t) (n = i to N)
qn + 2_nPnqn + Pnqn - M n

n

(1.2)

where

= the undeflected vector position of the mass particle with

respect to the vehicle center of mass

_n = nth-m°de equivalent viscous damping ratio approximating

structural damping

th

Pn = natural frequency of the n mode

F = nth-mode generalized force
n

M = nth-mode generalized mass
n

From the above it is evident that the rigid-body motions ana

the modal flexural motions are uncoupled from one another except through

the forces (or moments).

3 -



b. Dynamic Coupling

Dynamic coupling takes two basic forms: (i) the elements

(or equations) appear in tandem such that the motion of the first element

excites the second but the motion of the second element has a negligible

effect on the first, or (2) the motion of the individual elements

interact with each other (i.e., feedback is present) and instability is

possible.

There are several basic ways in which the modal equations,

Eqs. (1.2), may become "feedback coupled" and instability may occur. A

somewhat arbitrary classification of these possible couplings is given

below--based on the principal physical phenomena involved.

i. Type i, Change in Applied Forces Due to Modal Deflection. Deflec-

tion of a mode may cause the applied forces to change their direc-

tion (and/or their magnitude), which in turn changes the generalized

forces of the other modes.

2. Type 2, Deflection Picked Up by the Control Sensor. A control sys-

tem using one or more feedback sensors is employed to control the

rigid-body mode. However, these sensors also sense deflection,

which causes the control system to modify the forces acting upon

the rigid-body and flexural modes. In active control systems of

flexural vehicles (e.g., automatic control systems for missiles,

aircraft, trains, satellites, space boosters, etc.), this is the

principal type of coupling and for that reason it has been singled

out as the coupling of primary concern in this study.

3. Type 3 t Only Rigid Mode Picked Up by the Control Sensor. A control

system is employed to control a rigid-body motion or the motion of

one of several flexurally connected rigid bodies in series. The

feedback sensor is so placed that only the desired rigid-body motion

is sensed. Although the other modes are excited by the control

forces, lack of feedback through the control system usually makes

this a "tandem" situation, for which flexibility seldom induces

instability.

4. Type 4, Modal Coupling Due to Damping. If the modal damping (e.g.,

damping due to aerodynamic forces) is not everywhere proportional

to the mode shape, then the modal orthogonality conditions do not

apply and the modes therefore have velocity coupling. This coupling,

without other types of feedback, does not generally lead to insta-

bility.

5. Type 5, Coupling with Massive Elements. If there are massive ele-

ments (such as hinged engines or sloshing fuel) connected to the

vehicle but free to move relative to it, then it is possible that

the combined system of massive elements plus vehicle bending modes

will be unstable.
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6. Type 6, Instability of a Single Mode Through Force Coupling. In

addition to the coupling between modes that may lead to instability,

a single mode of deflection may become unstable by so affecting the

magnitude and/or phase of the applied forces that either oscillatory

or nonoscillatory divergence occurs, such as in aerodynamic flutter

or angle-of-attack divergence of an airplane wing.

The effect of flexibility on the stability and control of

vehicles first became important in connection with the study of aircraft.

Instabilities of types i, 3, 4, 5, and 6 underwent a considerable amount

of investigation leading to the development of a field of study called

"aeroelasticity." References 3 and 4 cover this field in detail.

With the advent of aircraft autopilots, instabilities of

type 2 also became a consideration [Ref. 5]; however, the interaction of

flexibility and the automatic control of vehicles did not achieve major

importance until the advent of very flexible missiles, such as the Atlas,

which led to the detailed study of the problem as indicated in Refs. 6

through ii.

The need to consider all types of possible instabilities in

missiles led to very complex sets of equations requiring the use of

computer solutions. However, Refs. 12, 13, and 14 explain how the root

locus method may be employed to obtain solutions to simplified equations,

providing greater insight into the problem than the computer solution

does. Recently, Wang [Ref. 15] has been able to find sufficient condi-

tions for stability of a simplified flexible vehicle using Lyapunov's

Direct Method, although he remarks on the difficulty of finding a suit-

able Lyapunov function in the more general case.

The continuing problem of the type 2 instability in missiles

and space boosters has resulted recently in the exploration of adaptive

control techniques for its suppression, as indicated in Refs. I and 16

through 20.

With the recent consideration of spinning manned spacecraft

of large dimensions, the effect of flexibility on the stability and con-

trol of these vehicles has also been given special attention, particularly

because of the large size and low allowable structural weight character-

istic of such vehicles. Reference 21 presents a study of the effects of

- 5



flexibility of the cable on the stability and controllability of a

spinning space station consisting of a mannedcapsule counterbalanced

by the last rocket stage on the end of a cable. This is basically a

type 3 stability problem. Tai and Loh [Ref. 22] analyzed a similar con-

figuration for its response to gravity gradient excitation. These

investigators also analyzed the free vibration of an elastic space sta-

tion of a Y-configuration [Ref. 23]. In Ref. 24, Hopper examines the

response of large flexible rotating space stations during docking

maneuvers.

The type 1 stability problem associated with the interaction

of adjacent in-plane flexural modesduring "spin up" has been considered

by Freuh and Miller [Ref. 25] for a variety of manned-space-station con-

figurations, including a torous configuration. Having solved for the

flexural modeson a computer, they develop approximate analytical results

for the amountof structural damping necessary for stability and indicate

that this type of instability is negligible for a structural damping ratio

greater than 0.01. Freuh and Miller also verified their results experi-

mentally for a cross-shaped configuration, as reported in Ref. 26.

It is pointed out that none of the above references on spin-

ning space stations deals with the problem which is of concern here--the

active control of attitude where placement of the sensors and control

forces is the basic consideration in determining the stability of the

flexible modes.

The fundamental considerations between sensor placement and

flexural modal response in a vehicle with automatic control were, in

general, masked in the past by the complexity of the general flexible

missile and aircraft control problem. References 27 and 28 partially

recognized these considerations but offered no closed-form analytical

solutions so that the effect on stability could not be clearly discerned.

These relationships are explored in Chapter III, in which approximate

closed-form analytic solutions are developed to determine the system's

characteristic roots, to furnish stability criteria, and to provide an

indication of the real-time response.
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For the problem under consideration, in addition to the

coupling that takes place through the control system between the rigid

mode to be controlled and the flexible modes, it is also found that the

vehicle axes around which it is desired to exercise control are coupled

through the control system by flexibility. Reference 29 stresses the

difficulty of trying to analyze control systems with multiple inputs by

conventional control analysis techniques, therefore the solutions devel-

oped in Chapter III for control about a single vehicle axis are extended

in Chapter IV to include control about multiple axes. The validity of

these approximate formulas was checked by computer solutions.

2. The Toroidal Space Station

The wheel-shaped configuration for a spinning manned space station

was popularized by Von Braun [Ref. 30], over 13 years ago. In 1962

Berglund and Weber examined this configuration in more detail [Ref. 31].

The equations of motion for any of this general class of wheel-shaped

configurations, with or without spokes and a hub, can be obtained by the

matrix methods of Ref. 32, and the mode shapes and real-time response

can be obtained using a digital computer. In order to indicate the basic

nature of such vehicle systems, a uniform toroid, or ring, was chosen so

that analytical solutions could be obtained. Unfortunately, as pointed

out by Lang [Ref. 33], "forced-motion solutions for vibrating rings have

been given very little consideration." Therefore it was necessary to

return to Love [Ref. 34], a basic reference, and extend his derivation

in a somewhat modified form to fit the problem. Further complication

was introduced by the spin of the ring. Again, no reference could be

found on analytic solutions for spinning rings, though some work has

been done on spinning membranes with holes [Ref. 35], spinning disks

[Refs. 36, 37], and rotating thin-walled circular cylinders [Ref. 38].

However, it was possible to modify our equations of motion and their

solutions to include spin.

3. Control Systems for Spinning Vehicles

Considerable work has been done in the last few years on synthe-

sizing control systems for spinning vehicles, as is indicated by Refs. 45-58.
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The control system suggested by Lange [Ref. 39] was found to be

well suited to the problem at hand, and therefore was adapted for the

spinning, toroidal manned space station.

B. ORGANIZATION OF MATERIAL

The general form of the linearized equations of motion of flexible

vehicles* is given in Chapter II. For equations of this type a reasonable

initial choice of control is proportional position and rate feedback.

Based on this choice of control, the system transfer function and charac-

teristic equation are developed in terms of the flexural coupling param-

eters u and a for the force and sensor locations. The difficulties
n n

of using the conventional analytic methods for determining the system

stability and characteristic roots are discussed.

An approximate approach to finding the system characteristic roots,

which is much simpler, is developed in Chapter III for vehicles with

uncoupled control axes. It is based on the expansion of the character-

istic roots about the normalized modal poles. Using these roots, an

indication of the real-time response and frequency response of the sys-

tem is also derived. Extensions of this approach to more complex con-

trol systems are indicated. A physical interpretation of the results

is given and the effect of the sensor and force locations on system

stability is illustrated for a simple beamlike vehicle.

In Chapter IV the system transfer function and characteristic equation

are derived for flexible vehicles having coupled control axes (e.g.,

platelike vehicles). A transformation of the controlled variables is

indicated which results in factoring of the system characteristic equa-

tion. The solution of such factored characteristic equations by the root

locus or Nyquist method is discussed. Because of the difficulties of

finding the system roots by conventional methods, the root expansion

approach of Chapter III is extended to obtain system roots and stability

criteria for vehicles having coupled control axes.

In Chapter V a mathematical model of a spinning manned space station

is formulated, the equations of motion are developed, and the ranges of

values of the modal frequencies are derived. A conventional rate- and

These equations are for vehicles of arbitrary shapes, including beamlike

as well as toroidal.
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position-feedback control system is postulated employing a star tracker

as a sensor. This results in a two-axis control system of the type dis-

cussed in Chapter IV, the axes being coupled due to flexure. The flexural

coupling parameters a and u are given as a function of the sensorn n
and control-force locations.

The stability of the station, for balanced pairs of control forces

and various sensor locations, is investigated in Chapter VI for the first

excited flexible mode (n = 3), using the analytical techniques derived

earlier. In Chapter VII the stability of the higher modes and the effects

of unbalanced control forces or momentsare considered. The results thus

obtained were verified using a computer program.

Chapter VIII presents a summaryof the work done, and general con-

clusions, for any flexible vehicle employing a linear control system. It

also gives recommendedlocations for the forces and sensors for the spin-

ning space station.

A detailed derivation yielding the basic form of the equations of

motion of flexible vehicles is included in Appendix A. The equations of

motion of the spinning space station are developed in Appendix B. Appen-

dix C presents the synthesis of a linear control system for the spinning

space station and the effects of flexibility on the output of the feed-

back sensor. Appendix D summarizesthe system equations, and puts them

in a form suitable for digital computer evaluation.

C. CONTRIBUTIONSOF THIS RESEARCH

The principal contributions of the present investigation are sum-

marized as follows:

i. Development of the basic form of the equations of motion of flexible
vehicles, from which the equations of forced motion of spinning
pressurized toroids and the determination of their natural fre-
quencies can be deduced.

2. Formulation of a general methodof approach, and derivation of
simple formulas, for quickly estimating the stability, roots, and
real-time response of flexible vehicles employing multiaxis linear
control systems.

3. A general solution to the problem of where to place the sensors,
control forces, and momentsfor stability of a flexible, spinning,
toroidal mannedspace station.
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4. The physical interpretation of the effect of flexibility on a

control system, which can be used as a guide to the design or study

of the control of flexible vehicles.

5. Discovery that the Coriolis forces induce precession, relative to

the spinning toroid, of the natural in-plane inextensible vibrations.
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II. EQUATIONS OF MOTION OF CONTROLLED FLEXIBLE VEHICLES

The basic form of the equations of motion of uncontrolled flexible

vehicles of arbitrary shape is presented in detail in Appendix A and

summarized in Section A below.

In Section B we derive the system transfer function and character-

istic equation for a linear control system, in terms of the force- and

sensor-location coupling parameters u and a , and discuss their
n n

study by conventional techniques.

A. EQUATIONS OF MOTION WITHOUT CONTROL

Because they impose no external forces, natural vibrations of a

vehicle do not change the following:

I. The position of the system mass center.

2. The linear momentum of the system.

3. The angular momentum of the system.

Thus if the vehicle deflection Z_ at location _ is expanded in terms

of N normal modes as

N

_(r,t) = _ qn(t) Wn(_)

n--1

(2.1)

we find that, for a flexible vehicle, we can express the equations of

rigid-body motion as uncoupled from the equations of vibration. For

nonspinning vehicles, or for spinning vehicles whose deflection is in

the direction of the spin vector or is purely torsional deflec-

tion about the spin axis, the equations of vibration (making use of the

orthogonality conditions of the normal modes) appear in linearized form

as

F
2 n_

qn + 2_nPn(tn + Pnqn - M - qn (2.2)

n
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2 th
where Pn is the square of the n natural frequency of vibration

V2 n

Pn - 2q2Mn
(2.3)

th
and V is the potential energy associated with the n mode.

n

B. EQUATIONS OF MOTION WITH CONTROL

The equation of motion of a rigid-body motion u often appears as

2

+ 2_oPo_ + Po _ = Qc + QD
(2.4)

where

Po = rigid-mode natural frequency

Go = rigid-mode damping ratio without control

QD = disturbance forcing function

To control this rigid-body motion, a control function of the following

form is usually chosen:

Qc = -Kv d_ (_ - _ref ) " Kp(_ - _ref)
(2.5)

Substituting Eq. (2.5) into Eq. (2.4) yields

_[ + 2_coPco_ + Pco _ = QD = v d't + Kp _ref
(2.6)

where

0oo: 0 (2.7)

and for _o negligible compared to the damping furnished by the con-

troller,
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K

v (2.8)
_co - 2Pc °

(Ref. 40 indicates that desirable values of _co are 0.7 to 0.8).

Thus when flexible behavior is included, the controlled-system dynamics

may be represented as shown in Fig. 1, if the control axes are uncoupled.

In the figure, u represents the factor converting the rigid-body con-
n

trol Qc to the n th mode generalized forcing function, Qn:

Q
n

U - (2.9)
n Q

C

th
and a represents the factor converting the n generalized coordinate

n

to the quantity sensed by the feedback sensor (or sensors):

_n

a - (2.1oi
n qn

The factors u and a are determined in sign and magnitude by the
n n

location of the control force and sensor, respectively, with respect to

th
the n mode shape.

The system transfer function is given by

%(s) (KvS+ _p) _(s)

(s)-1+ r s +K ) _(s)
'ref kKv p

(2.11)

where, considering the first N flexural modes,

N
U a

nnc(s) = 2 2
n=O s + 2_nPnS + Pn

(2.12)
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FIG. i. BLOCK DIAGRAM REPRESENTATION OF ONE AXIS OF A FLEXIBLE

VEHICLE EMPLOYING A LINEAR-FEEDBACK CONTROL SYSTEM WITH

UNCOUPLED AXES.

The characteristic equation is

1÷ (KvS+Kp) c(s) =o
(2.13)

which can also be written as

I< s c(s) ]KpG ( v[1 + s)] 1 + 1 +K G(s) :o
P

(2.14)

The roots of this equation can be found, in principle, by using a

double root-locus plot: first plotting the locus of roots with respect

to K and then, for K fixed, plotting the locus of roots with respect
P P

to K . However, the zeros of G(s) are not readily available, so that
v

the solution of a quartic is required when two flexible modes are included

14 -



(e.g., see Fig. 20 on p. 80) the order of the equation rising by two for

each additional mode. The effort can be halved if damping is neglected

in finding the zeros; but the overall effort is still considerable if we

include the higher modes.

Because of the difficulty involved in determining the system stability

and characteristic roots by conventional analytical and graphical methods,

we devote the next two chapters to developing simple formulas for deter-

mining the stability and estimating the system characteristic roots of

flexible vehicles employing linear feedback control systems that have

coupled as well as uncoupled control axes.
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III. A GENERAL METHOD FOR DETERMINING STABILITY AND ESTIMATING

REAL-TIME RESPONSE FOR SYSTEMS WITH UNCOUPLED AXES _

In this chapter a general method is developed for determining the

stability, finding the system characteristic roots, and providing an

indication of the real-time response of flexible vehicles employing

linear feedback control, whose control axes can be considered uncoupled.

The approach is to expand the characteristic roots about their normalized

modal poles.

In Section A we develop a stability criterion and estimate the roots

for small gains. This development is extended in Section B to include

more complex control systems. Sections C and D provide an indication of

the real-time response of the system and a physical interpretation of

the results. The effects of sensor and control locations on system

stability for a simple vehicle are illustrated in Section E. The pre-

vious results are extended in Section F to include an estimate of the

system roots for large gains.

A. STABILITY AND CHARACTERISTIC ROOTS FOR SMALL EFFECTIVE GAINS

A much simpler approach than the conventional root-locus method for

studying stability is to exp-nd the characteristic roots about the nor-

malized modal poles. Observe that in Eq. (2.13), if we neglect the small

structural damping ratio _n' there are no roots on the imaginary axis,

except for K = 0 and K = _, so that the loci associated with K
v v v

never cross the imaginary axis. Thus if a root starts off into the left

half plane, it will remain stable for all gains, whereas if it starts off

into the right half plane, it will always be unstable. Small structural

damping displaces the root locus to the left but does not change the

relative character of the results. Therefore, to determine if a locus

th
associated with the i mode is stable, it is necessary only to deter-

mine its behavior in the vicinity of the ith-mode pole. This is the

customary problem of determining departure directions for the loci.

e.g., beamlike vehicles.
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To normalize the ith-mode pole, the numerator and denominator of each

2

term of G(s) in Eq. (2.13) are divided by Pi to obtain

N
u a

1 + (k's + k) Z n n

n=O _2 nrn_ 2+ 2_ + r n

= 0 (3.1)

where

as

_ s/p i (3.2)

A / (3.3)
r = Pn Pin

k' _= Kv/P i = effective velocity gain for the ith mode (3.4)

A 2 th

Kp/- = effective position gain for the i modek = Pi
(3.5)

th
For small gains the root near the i -mode upper pole can be expressed

S' = E + j(l+ 5) (3.6)

where

2,52C << 1 (3.7)

Substituting Eq. (3.6) into Eq. (3.1), and making use of inequality

(3.7) and the relations

I_nel, ]CnSI, Ik' l, Ik' =l, Ik l, Ik l, Ik nl, [k'Cnl << 1 (3.8)

and

2
E ,52 <<

2

1 -2 r2In
n _ i,m (3.9)

17 -



we obtain

r

[-5+ j(_i+E)] 2 + [-5+ j(_i+E)] + (u a +u a.)]+ 2 mm i 1

C:2)(k'_2 + k) uiai m. = 0

(3.10)

where m is the mode whose natural frequency is closest to that of the

th

i mode. By solving Eq. (3.10) for [-5 + J(_i + E)], and then equating

.th th
real and imaginary parts, we may obtain the roots near the 1 and m

modal poles. Equation (3.10) is useful for estimating the roots when two

natural frequencies are close together, or when the first-mode natural

frequency is close to that of the rigid mode.

In the more common case (which is treated in special detail here) the

modal frequencies are well separated so that

2 52
E , <<

2

i r 2
m

2
(3.11)

and Eq. (3.10) yields the relative departure of the upper ith-mode root

from its pole as

U a.

E = -k T i i _.
2 i

u a
i i

5 =k--
2

(3.12)

(3.13)

- 18-



For k fixed, it is evident from Eq. (3.12) that the roots always

leave the imaginary axis at 0 ° or 180 ° as k' is increased. Therefore

.th

for stability of the i mode without structural damping_ it is only

necessary that

I sgn u. = sgn a i1
(3.14)

If for given locations of the actuator and sensor, Eq. (3.14) is true

for all modes, then the entire system will be stable. In order for this

stability to occur in a vehicle that can be characterized by a beam, it

will be necessary when employing a control force to place the sensor and

actuator at such locations as the beginning or the end of the mode

shapes,* where the signs of the slope and deflection are normally the

same for all modes.

The effective gains k' and k decrease rapidly with mode number

[as is evident from Eqs. (3.4) and (3.5)]; therefore, for the case where

lUnan I does not increase with mode number, Eqs. (3.12) and (3.13) will

yield a good approximation to the higher modal roots. It should also be

observed that for this case the damping of the higher modal roots with

control will be determined primarily by structural damping, and therefore

the very high frequency modes will not be troublesome with normal struc-

tural damping.

Equations (3.12) and (3.13) may also be used to approximate the first

modal root, their validity depending on how well the assumptions are

satisfied (particularly the separation of the frequency of the first mode

from the rigid-body mode).

Using Eqs. (2.8) and (3.4) we can also express c in terms of the

rigid-mode damping ratio with control, as:

_CO 2 )1/2( u.a - _i (3 15)6 - Po + Kp I i
Pi

For a uniform toroid, the beginnings of the mode shapes are determined by

the axes chosen for control.
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B. USE OF A RATE NETWORK

If a lead-lag rate network is employed in place of rate, Eq. (2.13)

appears in the modified form:

K s + (1/To) p]i + v s + (l/A]+ _ C(s)= 0 (3.1_)

Proceeding as before, for the poles well separated, we obtain

= -k' --uiaiIT1[1-2[ I+ Tlpi(TI/T°)] }2 2 " _i

(3.17)

k+ k 2
'TIP i + ToTIP

2 2
1 + _ip i

u.a

i (3.18)
2

When the lead-lag network is designed so as not to alter the rigid-

mode roots from their pure rate values, we have that

2(2 ) 2(2TI Po + K << i << T O Po + K ) (3.19)
P P

and k' can be written in terms of the rigid-mode damping ratio with

control as:

K r

k' v o _ + k (3.20)-p. - 2_co_-
i 1

Using Eqs. (3.19) and (3.20), Eqs. (3.17) and (3.18) can be rewritten

as

_coro_l + k

:- 2 2 u_ai _i (3.21)
1 +Tlp i
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[I 1-11}_c01:iPo _ + k 2

5 = + 2 2 + _o_[IPi

1 +Tlp i

U° a.

1 1

(3.22)

It can be observed from Eq. (3.16) that, neglecting damping, no root

locus crosses the imaginary axis, so that the criterion for stability is

still that of Eq. (3.14). It can also be observed from Eqs. (3.21) and

(3.22) that the higher mode root departures are greatly reduced from the

pure rate case.

From Eqs. (3.21) and (3.22), it is found that with k fixed and k'

varied the angle of departure ¢ of the itb-mode locus from its pole

is

-i [5 - (k/2)uiai]= tan e + _i

-1{  lPi (1/ oPi)- }
[ + 1] sgn (uiai) (3.23)

= tan -sgn (uia i)

As expected, this angle is simply the angle obtained with pure rate,

modified by the angle change produced by using the rate network instead

of pure rate.

A similar perturbation analysis can be carried out for additional

poles and zeros in series with the controller transfer function (as might

.th
be provided by an actuator). Again the angle of departure from the i -

mode pole (with k fixed) will simply be that obtained with pure rate

feedback alone (determined by the sgn uiai), then shifted in angle to

account for the phase change at the pole due to the additional poles and

zeros. For the cases where the higher mode roots stay relatively close

to their poles, the angle of departure is usually all that is required to

determine their stability.
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C. REAL-TIMERESPONSE

i. Response to a Unit-Step Input

In terms of the characteristic roots of the system, Eq. (2.11)

can be written as

%(s)

_ref(S ) =

(Ks+K)
v p

N

I_ (S - Snl)(S - Sn2)

n--O

(3.24)

th
where the conjugate complex roots associated with the n mode are

Snl = [cn + j(1 + 5n)]Pn
(3.25)

Sn2 = [c n - j(l + 5n)]Pn
(3.26)

Taking the inverse Laplace transform of Eq. (3.24) and using

th
inequalities (3.7) and (3.8) gives the contribution of the i mode

to the response to a step input* as

_i(t)

a
N

1 +51+ 2 Z 5n

n=i

• [exp (_iPit)] cos [Pi(l + 5i)t + tan-l(-k'/-k)]
(3.27)

A step input might be applied to produce a vehicle constant attitude.
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Using Eqs. (3.12) and (3.13) for e and 5, for k : O, Eq. (3.27)

reduces to:

Piluiallxp Kv 2
(3.28)

It is observed that, for the same u.a. for all modes, the
1 1

amplitude of the response of the higher modes to a step input diminishes

rapidly as the natural frequency of the mode increases. For _i approxi-

mately constant with i, the time constant of decay rapidly decreases as

the natural frequency of the mode increases so that for the higher modes

the time constant associated with _i will usually dominate compared to

the time constant associated with the control.

2. Frequency Response to a Reference Input

The steady-state frequency response of the stable system can be

th
obtained by setting s = j_ in Eq. (2.11), where, for the i mode at

resonance and the modal frequencies well separated,

n)Kp i-I K v uia i "' K

(KvJ_ + Kp) G(j_)_ 2 Unan + -_ _ + P2 Una

n=i+l Pn

Kv i-i K u.a. K co

-j ua + P 1 1 v
2 Unan

n n 6u2 2_i Pn
n=O n=i+l

(3.29)

Observe that for the frequencies above resonance the excitation

is small and can be ignored when lUnan I does not increase with mode

number.

D. PHYSICAL INTERPRETATION

In deriving the general approach it was observed that, for 6 and

5 small compared to the separation of frequencies, the characteristic

th
roots of the system associated with the i mode were relatively
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\

independent of the other modes. Therefore, referring to Fig. i, for the

purpose of deriving the ith-mode roots we can consider the system to be
th

just the i modeof flexure with the feedback loop around it.
.th

Physically this can be interpreted as follows. If the i modeis

excited, then it will respond at its loop resonant frequency. If _ is
.th

small comparedto the frequency separation, then the i modewill be

relatively undampedand have a high Q (amplification ratio) at this

frequency comparedto the other modes (5 must also be small compared

to the frequency separation to maintain the frequency separation large
th

compared to c). Thus the i mode passes its loop resonant frequency

very readily compared to the other modes, so that they can be considered

to be effectively blocked off.

th
If another frequency is close to the i frequency compared to c,

th

5, or _, then it will have a sufficiently high response at the i -

mode loop frequency so that it must be considered. In that case we have

a quadratic expression determining the _ and 5, as in Eq. (3.10).

For the case where the frequencies are well separated each mode must

be stabilized independently. As there is only one controller, an undesired

sign reversal must be avoided in the loop. Therefore for a system with

simple rate and position feedback, the sign of u must be the same as
n

the sign of a .
n

If, besides rate and position feedback, there are additional leads or

lags in series with the gain, the following observations can be made:

If these leads or lags have time constants that are small compared to

the period of the rigid-mode loop, then they have very little effect upon

it. However, as we consider the higher modes, it is found that a point

may be reached where the control is applied too early or too late so that

it tends to aid the deflection rather than retard it, which in turn leads

to instability for an otherwise stable mode or, conversely, perhaps leads

to stability for an otherwise unstable mode.

E. THE una n RELATIONSHIPS FOR ATTITUDE CONTROL OF A SIMPLE BEAMLIKE

FLEXIBLE VEHICLE

The relationship of u and a to the positions of the forces and
n n

sensors along the mode shape can be illustrated by considering a simple
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position- and rate-feedback attitude control system for a flexible rocket,

missile, or satellite employing a lateral force F at the aft end for

attitude control. For such a simplified vehicle the u a relationships
n n

shown in Fig. 2 apply.

ATTITUDE SENSOR _ _s

CENTER

F OF MASS_^
a. u = l, a

O O

F

b. u I > 0, a I < 0

F

qi
/_I c. u I < 0, a I > 0

/

F

d. u 2 > 0, a 2 < 0

35565

Qc ---

FR

mass moment of inertia l

about the center of mass]

u =Q/Q
n n c

a =_/q
n n n

FIG. 2. THE u n AND a n RELATIONS FOR ATTITUDE CONTROL OF A

SIMPLIFIED FLEXIBLE ROCKET.
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Comparingthe first modein Fig. 2b to the rigid-body modein Fig. 2a,

it is found that uI > O, but for the sensor location shownthe sensor

reads a negative angle for a positive ql' so that aI < 0. Thus we have

a sign reversal as we go around the first-mode loop. If the first-mode

shape were normalized instead so that ql is positive upward, as shown

in Fig. 2c, then the sensor would read a positive angle for a positive

ql' so that aI > 0; but observe that then uI < 0. It is apparent

that, as the way wenormalize a modeshape is arbitrary, stability depends

only upon the sign of the product a.u., not upon the signs of the terms11
themselves.

From Fig 2d, weobserve that the second modeis stable, even though

the first modeis unstable. It is readily apparent that to insure that

all the modesare stable (no sign reversal in any modal loop), we need

only place the control force and the sensor together at either end of

the vehicle, for at the beginnings and ends of modeshapes the signs of

the slopes and deflections are the samefor all modes.

Observe from Fig. 3 that simply putting the control force and sensor

together at an arbitrary location does not insure that the sign of u ann

F CENTER

t OF MASS

_ _/._oF t

a. u = 1, a
o o

F

b. u I >0, a I >0

F
I
I

I

c. u I < O, a I > 0

35566

FIG. 3. THE u n and a n RELATIONS FOR A SIMPLIFIED VEHICLE ATTITUDE

CONTROL SYSTEM WITH THE CONTROL FORCE AND SENSOR AT A SINGLE LOCATION,

AS A FUNCTION OF THAT LOCATION.
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will be positive. Thus position A yields ula I > O, whereas position B

yields ula I < O. Therefore with a control system employing simple posi-

tion and rate feedback, the first mode would be unstable for position B,

and stable for position A.

F. ROOTS FOR LARGE GAINS

When the poles are well separated (as indicated in Fig. 20, p. 80),

inequality (3.7) may also be applicable for large gains. For this case

we obtain, from Eq. (3.1), for

j(e + _nrn )] [-5 + j(e + _i)]

2
l-r

n

<< 1 (n _ i) (3.30)

that

ua [< (ua)1-k' 2 + k@)- _i 1 -kU)2÷k'% +

(i - k_)2÷k'2(U÷ u--_Z)2

(3.31)

U. a.

1 (1 - kU)k-y-
2 u.a u.a. uia i

k

(3.32)

(1 - kU)2+k'2/U + u.a__ /

where

N

n=0

n_i

u a
n n

2
1 r

n

(3.33)
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Whenthe zero is close enough to the pole so that inequality (3.7)

holds (e.g., when the modeis excited very little), the relative departure

th ith-mode poleof the upper i -modezero of G(s)/[I+K G(s)] from the
P

is given by

-_i U
lim

u a
k '-*oo i i

U +
2

U. a.

1 1

2
lim 5- [3.35)

k t'_oo u.a.i 1
U +

2

Observe from Eq. (3.35) that inequality (3.7) would not hold for very

large values of k' if U had not been included.
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IV. FLEXIBLE VEHICLES WITH COUPLED TWO-AXIS

LINEAR-FEEDBACK CONTROL SYSTEMS*

In this chapter the results of the previous chapters are extended to

encompass flexible vehicles whose control axes are coupled via the control

system• These vehicles include unconventional platelike vehicles, such

as the toroid studied in this report.

In Section A we develop the system transfer function and character-

istic equation for such a vehicle, and indicate how the characteristic

equation may be factored• The conventional techniques of solution of

these factored characteristic equations, including the difficulties

involved, are then discussed•

In Section B, the simpler root expansion approach of Chapter III is

extended to obtain the system roots, for small gains, for vehicles having

coupled control axes. Section C considers the roots and stability cri-

teria of the first excited flexible mode for large values of gain.

A. CHARACTERISTIC EQUATION

Employing similar nomenclature and using similar arguments to those

of Chapter II, we can usually represent a flexible vehicle employing a

coupled two-axis linear-feedback control system by the diagram shown in

• , and Qy shown on the figure areFig. 4 The u's aT's, q's and Qx

(N+ l) × 1 vectors and the rest of the quantities are scalars, except

I/E and I/E which are defined as
x y

1

E
X

1

E
x
o

0
1

E

x N

9_

e.g., platelike vehicles.

s 2 2
+ 2_s Px s + Px

0 0 0
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1

2 2

s + 2_x Px s + p
N N XN

(4.1)



1

E

Y

1

E

Yo

0
1

E

YN

1

s 2 2+ 2_ p s +
Yo Yo PYo

0

2 2

s + 2_YNPyNS + PYN

w

(4.2)

l- I GAIN

/J- -_ - K s+K ]

refx_'_] vx PJ

COUPLING

FORCE THROUGH

COUPLING PLANT SENSORS

QCx _ qx _ _FIx

+ +

QCy _Sy

35567

FIG. 4. A MATRIX BLOCK DIAGRAM OF A FLEXIBLE VEHICLE WITH COUPLED

TWO-AXIS LINEAR-FEEDBACK CONTROL.
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Using Fig. 4 we find the sensed output vector as

s = GK_ref(I + GK) -I (4.3)

where

K A

<K s +K <K 0 )1

Vx Px)

0 s +K

Vy py

(4.4)

Ii Gxyl
G _ xx

t yx GyyA

(4.5)

and where

G
xx (auxxxxax Xnk/Un n= E +

n=0 Xn Yn /

(4.6)

G

xy  (auxxan)n XYn XYn YYn= E + E •

n=0 Xn Yn

(4.7)

G
yx  (auyx n xx y x n

n

= E +

n=O Xn Yn /

(4.8)

G
YY

N _ayxnUxy n ay_UyYn /

=7\ _Xn_ --
n=O Yn /

(4.9)
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Observe that, using these definitions, Fig. 5 is the concise matrix

equivalent of Fig. 4.

_ref

_$

FIG. 5. CONCISE MATRIX BLOCK

DIAGRAM EQUIVALENT OF FIG. 4.

35568

From Eq. (4.3), using the definitions of Eqs. (4.4) and (4.5), the

characteristic equation of the system is

s+ s.y)O
x \ y P YY

Vx Px Vy py xx yy
- GxyGy x)

= 0 (4.10)

If the gains for the two axes are linearly related so that

v py v p py x

(4.11)

we may readily factor Eq. (4.10) into

[ .vs0+<s,l[' .vso<s>][I + KG (s)][1÷ KG (s)] 1+ + -
p ÷ p - I+K G (s) l+Kp_ (s)

p +

=0 (4.12)

where

%(s) :
2h(GxxGyy - GxyGy x)

. 2
(Cxx + hGyy) _ /(Gxx hGyy)

+ 4hG G

xy yx

(4.13)
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Thoughformidable, when the characteristics and gains of the two axes

are equal, and the axes are uncoupled whenflexure is neglected, this

expression can be handled by conventional root locus (or Nyquist) tech-

niques if we consider the rigid-body modeand only the first excited

mode. However, due to the radical in the denominator of G±(s),flexible

we will not always have 0° or 180° root loci.

Because of the difficulty of employing conventional analytical tech-

niques, in the next section we shall extend the general approach of

Chapter III to include vehicles whose control axes are coupled via the

control system.

B. A GENERAL METHOD FOR ESTIMATING THE STABILITY AND CHARACTERISTIC

ROOTS OF FLEXIBLE VEHICLES HAVING COUPLED CONTROL AXES

For the coupled system, the characteristic equation no longer has the

simple form of Eq. (2.13), and it therefore cannot be stated that the

root loci do not cross the imaginary axis, making the simple stability

theorem of Chapter III unavailable to us. We can, however, still use the

stability theorem for each of the factored portions of Eq. (4.12) if,

neglecting structural damping, the radical in Eq. (4.13) is always real

when evaluated on the imaginary axis.

More generally, we can obtain linear expansions of the system roots

about their normalized modal poles; and for those modes for which inequali-

ties (3.7) - (3.9) are satisfied, these expansions will yield good approxi-

mations to the actual roots, so that when their angle of initial departure

due to k' is well away from 90 ° or 270 ° , we can determine stability from

the sign of _ as in the uncoupled case.

If we make the assumption, that for each control axis, the departure

of the modal roots from their poles is small relative to the separation

o£ the modal frequencies, then using a procedure similar to that used in

Chapter III, together with the assumptions and definitions of that chapter,

we obtain the following approximations to the modal roots.

th
Case I: The m y-axis natural frequency is approximately equal to the

th
i x-axis natural frequency.
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For this case the characteristic equation reduces to:

+ ,. + kx)_xx
+ _ + -5 + j xi-5 + j xi

+ + ky + (kxJ + kx) + O_xxO_yy xy yx
= 0 (4.14)

where we have defined

a u a u

xx. xx.i i XYm YXm
_ + (4.15)

xx 2 2

a u a u

xxi xYi xYm YYm
_ + (4.1_)

xy 2 2

a u a u

yx i xx. YYm
i YXm (4.17)

- +
yx 2 2

a u a u

YXi xYi YYm YYm
_ + _4.18)

yy 2 2

Thus from Eq. (4.14), we may solve for the relative departures of the

th th
characteristic roots near the i x pole and the m y pole from

-5 + jinx i + eli -

+_ _kxJ + kx)O;xx + [kyj + ky .4(kxj + kx) (kyj+ ky)(%x_.yy - %yay x)

(4.19)
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If the gains are linearly related as in Eq. (4.11), then Eq. (4.23)

yields

For the radical real,

C --

2 xx - xx yx
(4.20

[ hCZyy) J( hJyy) 2 ]5 = - k_2 " ((_xx + -+ (_xx + 4hCZxyg_yx
(4.21

For the radical imaginary

k

k-- (5 + h_yy) +g = - 2 xx _xx " hCZyy ) 2
+ 4h_

xy yx

k ((_ +ha ) + k'
5 = _ xx yy - Y

- + 4h_

xx yy xy yx
(4.23

If we have transfer functions in series with the gains, similar

perturbation procedures are applicable.

Case II: The separation between Px. and the closest y frequency,
1

PYm' is large compared to the i th x-root departure from its pole.

For this case the relative departure from the i th x pole is given

as

u a u a
XX XX.

i i xYi yx.
1

5 = k + k (4.24
x 2 y 2

u a )

U a

xx. xx. xy yx i
c = - k' i i k' (4.25)

x 2 + -- " - _x
Y i

By comparing these equations with Eqs. (3.12) and (3.13), we see

immediately the effect of coupling when the frequencies of the two axes

are different.
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By interchanging x and y,

used to find the root near the

Eqs. (4.24) and (4.25) can of course be

th
y-axis i pole for this case.

C. ROOTS OF THE FIRST EXCITED FLEXIBLE MODE FOR LARGE GAINS

For the reasons given in Chapter III, the first excited mode is usually

most critical from the stability viewpoint, so that it is important to

consider it for large gains. We shall consider the case for which the

two axes are identical, the modal frequencies are well separated, the

rigid modes are uncoupled, and

(4.26)<< i

2
e ,5 2 <<

2

1 r 2
n

2
n / 0,1 (4.27)

215- j(E + _°r°)]['5+l r2 j(c + _1)] [

O

<< sup

] Uxxlaxxl
2 u.I)YYl YYl (4 28)

2

with no assumptions being made on the size of the gains.

Defining

A 1 (C_ +C_ )
c - 2 xx yy

(4.29)

d lJ( )2= - + 4(_ (Z
_xx yy xy yx

(4.30)

A 1
W --

2
1 - r

O

(4.31)
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we obtain from Eq. (4.10) the relative root departures from the upper

pole of the first excited flexural mode, as

d real

_lIk'2w[w- (c + d)] + (1 - wk) 2}

= (4.32)
(1 wk)2 2[ ]2- + k' w - (c ± d)

k'(c ± d)[1 - (c ± d)k]

-.(c ± d)(l - w.) ÷ .'2(c ± d)[w- (e ± d)] + _l{k'(e ± d)(l - wk)}
5 =

(i wk) 2- + k'2[w - (c ± d)] 2

(4.33)

d imaginary

E

k'[c _ k'wldl - k(c2÷ Id12)] ± kldl(1 - wk>

(1 wk _ k'fdl)2 . )2+ k'2(w c

_i{( i wk) 2 + k'2w(w - C) T- k' Id[ (l - wk)}

(i - wk ¥ k' Idl )2 + k,2(w _ e)2
(4.34)

-kc(1 wk) ± k' IdJ + k'2[c(w - c) [dl2]

(I - wk T- k'ldl)2 + k,2(w - c)2

_ik'{c(i- wk)T k'w[d]} (4.35)

÷ (i - wk ¥ k' Idl)2 ÷ k,2(w _ c12

For k = 0, comparing Eqs. (4.20) and (4.32) we observe that for

d real the stability criterion neglecting structural damping is inde-

pendent of gain, being

c < -d (4.36)
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However, comparing Eqs. (4.22) and (4.34), we observe that for d imagi-

nary and k = O, and neglecting structural damping, the stability cri-

terion changes with gain, being

c < -k'w[d ! (4.37)

Using the definitions for w, c, and d from Eqs. (4.29) through

(4.31), stable locations for the sensors, for a specific force configura-

tion, may be determined.

The simple stability criteria and the formulas for estimating the

system roots associated with the flexible modes, developed in these last

two chapters, will be utilized in the remainder of this study as a basis

for initially determining the placement of the control actuators and

sensors for the spinning space station. The results obtained in this

fashion will then be checked using a computer program to solve the "com-

plete" characteristic equation.

Before this can be done, it is first necessary to postulate a model

for the spinning space station, determine its natural frequencies and

mode shapes, and develop formulas for the flexural coupling parameters

u and a . These topics will be treated in the following chapter.
n n
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V. EQUATIONS OF MOTION FOR THE CONTROLLED SPINNING SPACE STATION

In this chapter we postulate a model for a spinning manned space

station and review the development of the equations of motion, the details

of which are given in Appendix B. The range of values of the modal fre-

quencies and damping ratios is indicated. Finally a conventional rate and

position feedback control system is postulated, and the appropriate flexural

coupling parameters u and a are indicated. A detailed consideration
n n

of the control system is given in Appendix C.

A. MATHEMATICAL MODEL AND EQUATIONS OF MOTION: UNCONTROLLED STATION

Loret [Ref. 41] indicates that to prevent orientation (canal) sickness

in a spinning manned space station, it is desirable to keep the spin speed

below 4 rpm, which indicates that station cabin radii of 60 ft or more are

required to obtain the equivalent gravitational level of one-fourth of an

earth g, or greater, required for satisfactory walking.

Two desirable configurations for spinning manned space stations are

the wheel-shaped configurations of Fig. 6 [Ref. 31]. Inasmuch as the

spokes are only a means of access to the hub (despun for docking and zero

g experiments), they are smaller in diameter and of lighter weight and

structure than the main compartment on the rim. Thus, during out-of-plane

A

SPACE STATION CONFIGURATION

(150 FT OIA)
FOLDED INTO NOSE

OF SATURN C5

35569

FIG. 6. SELF-ERECTING WHEEL-SHAPED SPACE STATIONS PROPOSED

BY BERGLUND AND WEBER [REF. 31].
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flexural motions, they tend to act as isolation between the hub and the

rim, especially for the higher frequency flexural modes. Therefore as

a first approximation to stations of the types represented by Fig. 6, we

can consider the station to be represented, for our purposes of analysis

of the out-of-plane motion, by a uniform toroid or ring which is the rim

of the station.

For numerical purposes, when we wish to illustrate our results by

example, we will consider a station having a mean rim radius of 85 ft,

a spin speed of 3 rpm, and a symmetrical cross section about i0 ft in

diameter for the rim. Such a station would provide a g level of about

one-third g.

Because of their dimensions, the toroids being considered behave

during vibration essentially as rings. Love [Ref. 34] shows that for a

nonspinning, unpressurized ring, the linearized motion divides itself

conveniently into sets of uncoupled motions: motion out of the plane of

the ring and motion in the plane of the ring. The primary linear effects

of pressurization and spin are to produce an equilibrium tension in the

ring and to induce Coriolis forces during in-plane motion.

The tension due to pressure simply retards buckling of the cross

section, while the tension due to spin produces restoring forces during

deflection, resulting in higher frequencies of vibration. The Coriolis

forces during free in-plane inextensible vibrations cause the "standing"

vibration to precess relative to the ring, as indicated by Eq. (B3.20).

As neither effect produces coupling of the in-plane and out-of-plane

motions, these motions are also decoupled for our case. In attempting to

control the motion of the spin axis, we excite or sense only the out-of-

plane motion (to first order). Therefore for the rest of this study we

shall consider only the out-of-plane motion due to flexure. This flexure

can be represented by the linear deflection z(7,t) and the twist _(7,t

of the centroidal line of the ring as indicated in Fig. 7.

Love shows that for a uniform ring the mode shapes of free vibrations

are sines and cosines of nT, where n is an integer, for continuity.

th

For the n mode of free vibration, the twist is proportional to the

deflection and can be obtained from Love as
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FIG. 7.

B(T,t)

Ix

BASIC GEOMETRY OF A SPINNING TOROID.

I E1 /Zk _n i
/%

B - - _5.i)

nZnn2 n

where _iIp/EI (defined in Appendix B) is the ratio of the torsional

rigidity to the bending rigidity of the cross section. B and the mode
n

shapes are unchanged when spin and pressurization are included.

To study the forced vibration we use the following modal expansions

for flexure:

N N N

z(7,t ) _ qns(t)sin n7 + _ qnc(t)cos n 7 /k n

n=2 n=2 n=2

(5.2)
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N N N

_(7,t) = _ Bnqns(t ) sin n7 + _ Bnqnc(t)cos n7 = _ _n

n=2 n=2 n=2

(5.3)

which, upon following the equations-of-equilibrium approach of Love, yield

the vibration equations:*

2_

• 2 2 |

qns + 2_nPnqns + Pnqns = Jo
v

fz(7) sin n 7 d 7 _ Qns= (n a 2) (5.4)

2_

qnc + 2_nPnCtnc + Pnqnc = M
= (n _ 2)fz(7) cos n7 d7 A Qnc (5.5)

where

2n 2_ M'

sin n7 d7 = f0 fz sin n7 d7 + f0 -R-X (n c°s n7 c°s 7 + sin n7 sin 7) d7

f02_ M_
+ (n cos n7 sin 7 " sin n7 cos 7) d7 (5.6)

f02_ f02_ M'f0 z cos n7 d7 = cos n7 d7 + n7 cos 7 n7

x
f (-nsin + cos sin 7) d7

z z R-

fo 2_ MR_
+ (-n sin n7 sin 7 - cos n7 cos 7) d7 (5.7)

For isotropic structural material and a symmetric cross section,

2 n2(n2 - I)2 + n2_2 (5.8)

Pn - _(n 2 + 1 + if)

We are concerned only with n _ 2, for n = 0 corresponds to rigid-body

translation and n = 1 corresponds to rigid-body rotation about a station

diameter.
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and

B = 1 (2 + 0-) (5.9)

[ II ÷n R i + 2

n

where the first term of the frequency equation is the same as that given

in Love and the second term results from including the potential energy

(during out-of-plane deflection) which is due to the centrifugal tension.

If, for our space station example, we consider the ratio of struc-

tural weight to gross weight of the station to be on the order of one-

tenth, and consider a range of structural materials, we find that we can

approximate the limits of the square of the ratios of frequency to spin

speed as

2

4 Pn n 4n <_<- 50

_2 -

(n _ 2) (5.10)

where the higher frequencies correspond to the higher stiffness-to-

weight-ratio structural materials. We also obtain approximately the

same range by considering allowable elongations due to the tension

resulting from centrifugal and pressure forces.

We shall consider the structural equivalent viscous damping ratio

to be the same for all frequencies and to have the range

_n

0.02 =< _n -<- 0.2 .I
(5.11)

with the lower values corresponding to the stiffer materials.

Equations (5.10) and (5.11) are the fundamental equations on which we

base our numerical results.

If we observe that, for small motions of the spin axis from its

inertial reference, the small vector angle between the rigid-mode spin

axis and the inertial reference, as seen in the body-fixed frame, is

given by

e-j@ A!_ = (¢ + j6) = [_ + ju (5.12)
x y
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then, as indicated by Lange [Ref. 39], we can write the vector equation

for the motion of the spin axis as

M + jMy
_2 x A

+ - A = Q (5.13)

B. EQUATIONS WITH CONTROL

By applying conventional position- and rate-feedback control

Qc = -Kv _t (P " _ref ) - K (_ - _ref)
P

(5.14)

to Eq. (5.13), the resulting system diagram is the same as that shown

in Fig. 4.

The angle _ may be directly measured by a star tracker, with rate

being derived from it, or rate may be obtained using body-mounted rate

gyros, if we observe from the Coriolis law that

_. = (COx + jCOy' ) - j_
(5.15)

Since the two methods are equivalent, even when we consider flexure,

we shall assume henceforth that rate is derived from the star-tracker

angle a. Because of the _ term in Eq. (5.13), it is only necessary

to employ _ feedback to obtain asymptotic stability.

The a's can be determined by observing that the body-mounted star
n

tracker senses twist, _, and _z/R_7 which is the slope of the deflec-

tion, as well as sensing the actual difference of the spin axis from the

inertial reference. Thus

a (7) n cos n7
xx - R cos 7 (B n sin nT) sin 7 (5.16)

n

a (7) - n sin n7 (5 17)

xy n R cos 7 - (B n cos nT) sin 7 .
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a (7') -n cos n_' sin 7' + (B sin nT') cos 7' (5.18)

yx n R n

a (7') n sin n_'=- sin 7' + (B cosnT') cos7' (_.19)
YYn R n

where _ is the location of the x-axis sensor and 7' is the location

of the y-axis sensor. The x axis corresponds to the sine modes; the

y axis to the cosine modes.

The u's are a function of the locations at which the control forces
n

or moments are placed. If we use control forces, the standard approach

is to use two orthogonal pairs, one for each axis, as shown in Fig. 8.

FIG. 8. LOCATION OF SENSORS AND

CONTROL FORCES OR MOMENTS.

2,,
/ _-

""
%2

35571

Using Eqs. (5.6), (5.7), and (5.13) in Eq. (2.9), we find that

U : ,JR(-1) (n-l)/2 (n odd,

XXn [0 (n even)

n>2)

(5.20)

=[0 (n odd)
u

XYn _0 (n even)

(5.21)

u = [0

(n odd)

YXn RZkFx ( - 1 )n/2 (n even )

(5.22)
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u ,n
YYn (n even)

Y

n>2)

where we have defined the fractional force in imbalances Z_F
Y

as:

F - F

Yl Y2
ZkF -

y F +F

Yl Y2

(5.23)

and Z_F
x

(5.24)

F - F

2XF A x I x 2
- (5.251

x F + F

x I x 2

We find that we have the same equations for the u's if, as shown
n

in Fig. 8, we employ control moments (assuming that their gyroscopic

coupling is negligible) rather than control forces at the same locations

and if we replace the fractional force imbalances, 2kF and 2kFx, byY

the fractional moment imbalances

M M

/k Yl Y2
_

y M + M

Yl Y2

(5.26)

M M

-_ xl x2 (5.27)
x M + M

x I x 2

Observe from Eqs. (5.20) (5.23) that for balanced forces (or

moments) only the odd modes (n = 3, 5, 7, ...) are excited.

If we use only a single control moment for each axis, and these are

placed together at a single location (e.g., a single control moment

device), so that one produces a moment about a radial axis (x) and the

other about a tangential axis, then all the modes are excited and the

associated u's are:
n
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u = nR c5._
xx

n

u = 0 (5.29)
xY n

u = o (5.3o)
Yx n

u = -R (5.31)
YYn

It is apparent from the above that the control axes are not coupled via

the control actuators.

In the next two chapters, we utilize the formulas and relations,

developed in these last three chapters, to determine the effects of

various placements and conditions of the control forces and sensors on

the excitation and stability of the spinning space station.
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VI. STABILITY OF THE FIRST EXCITED FLEXIBLE MODE OF CONTROLLED SPINNING

SPACE STATION FOR BALANCED CONTROL FORCES (OR MOMENTS)

In this chapter we investigate the stability of the toroidal station

as a function of sensor location, considering only the first excited flex-

ible mode (n = S), for the case of balanced control forces. The basic

parameter relationships required for the study are derived in Section A.

In Section B the root-locus approach is explored for our case, and in

Section C numerical values for the sensor location parameters are obtained

for our space station example. In Section D we establish stability cri-

teria based on the modal root expansion approach. The system stability

is explored in Section E and F using a single sensor and two sensors

respectively. The final two sections contain a summary of the important

results obtained from our analysis and a comparison of the results

obtained from the formulas with computer solutions.

A. BASIC PARAMETER RELATIONSHIPS

As indicated in the previous chapters, the first excited mode is

usually the most critical when considering stability because of the

reduction of the effective gains, k' and k, with increasing mode

number. For balanced control forces (or moments), the lowest excited

bending mode is n = 3. We shall initially investigate the stability of

this mode for K = 0, since (as indicated in the last chapter) only k'
P

is required for asymptotic stability for the rigid mode.

Using Eqs. (5.20) - (5.23) in Eqs. (4.15) (4.18), we obtain for

balanced control forces,

R r ] (6.1)(_ = - -- a -_-lj (n-l)/2
xx 2 xx

n

-- -- a

xy 2 xy n
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R [_ (_1) (n-1)/2] (6.3)
_yx = " 2 ayx n

R

C_ = - -- a (6.4)
yy 2 YYn

Substituting Eqs. (6.1) - (6.4) into Eqs. (4.28) and (4.29) we obtain

c = _ a [-(-1) (n'1)/21 + a = _ % (6._)
XXn YYn n

R J 2 (n-1)/2140_2 2h 4Rd = _2 ÷ [-(-1) = a 5 (6.6)
n n n

where

2 A

a I = a a - a a _//6.7_
n xYn yx n XXn YYn

For n = 3 these reduce to

C = _ a + a :
xx3 YY3 4 623

(6.8)

d = _ 23 + 4a 3 = 4 653 (6.9)

in which the e's are simply a function of the sensor locations.

B. ROOT LOCUS APPROACH

Considering just the first excited flexible mode

write Eq. (4.13) in the form

(n = 3), we can
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E3 ÷ 2Eo(-e +_ d)

% (s): %_3 (6.1o)

Defining

A_ R <C _ + C_2n I (6.11)
(_6 n 2 5 n

/k R <(_ " _2 > (6.12)
OLIn - 2 5 n n

Eq. (6.10) can be written as

E 3 + _63Eo
G (s) = (6.13)

+ EoE 3

E3 + _73E° (6.14)

G_(S) = EoE3

K
P

The factored characteristic equation, Eq. (4.12), can be written for

= 0 as

[1+ KvSC÷(s)][z+ KvSG.(s)]: 0 (6.15)

As both portions have the same form, it is only necessary to treat

the + portion, if we note that the portion is obtained simply by

replacing U63 by _73"

Using the expressions for E and
O

Eq. (6.13), we obtain

E 3 from Eqs. (4.1) and (4.2) in

2
v + v (s 2 + _2) s 2 2_3P3 s + P3

(6.16)
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4
Dividing numerator and denominator by P3 and defining

K

k' = _.y..v (1 + 0_63)
+ P3

(6.17)

_3

43 - 1 +
+ (%63

(6.18)

1 + 0_63r22 A

a3 - 1 +
+ 0_63

(6.19)

we can write Eq. (6.16) as

K s_ (s) : k'_ (_)
V + + +

(6.20)

where

+ 2_ 3 s +

+ +

+ 2 _2

(6.21)

and where

r --_3]o
<<i (6.22)

_A s
s -

P3

(6.23)

For

2

_3 << 1
(6.24)
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Eq. (6.21) can be written (for C_53 real) in factored form as

(_) = + + + + (6.25)

G+ (_- jr )(s+ jr )[_ - (-_3 + j)][s - ('_3- j)]
o o

Using Eq. (6.25), we can determine stability of the system from the

roots of

1 + k' G (9) = 0 (6.26)
+ +

and

i + k' G_(s) = 0 (6.27)

which we obtain from Eq. (6.26) by replacing U63 by _73'

Typical root loci for _53 real are given in Figs. 9-11. These loci

have the expected feature that stability is determined by the location of

the flexural-mode zeros.

It will be observed from Eq. (6.25), that for _3 complex (i.e.,

+

_53 imaginary), the zeros are no longer symmetric about the real axis,

and we no longer have 0 ° or 180 ° root loci. For these cases the form

Im (_)

k÷< 0 ---Re ('S')

k+G(s) 0

FIG. 9. TYPICAL ROOT LOCUS FOR

(-i/ro 2 < CZ63 <-I)-(0 > g2+).

35572
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Im(_l

G,-"

X-

X-

k+> 0

-ro

Re('_)

ROOTS OF I+k+G($)=O

i0. TYPICAL ROOT LOCUS FOR

< 563 < 0)= ( °° > _23+ > 1).

35573

Im ('i')

ro

-r o

k+>O

ROOTS OF I-I-k+'_(_')=O

ii. TYPICAL ROOT LOCUS FOR

2 i).< 0_63 _ 9)--- (1 >,_.3+ _ O.

3557_
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of the locus is dependent on the values of _23 and _53" (An example

of a 239 ° root locus plot is given in Fig. 15 on page 67.) The -

characteristic equation would yield the conjugate-complex root locus,

which is the image of the + characteristic equation about the real

axis.

Plotting the loci for various values of the parameters and finding

the roots for specific gains by the root locus technique is tedious and

not too illuminating. Having seen the basic form that the loci take, we

find it more instructive and far simpler to turn to the root expansion

formulas. However, specific cases will be illustrated by root locus

sketches.

C. VALUES OF THE PARAMETERS

Employing trigonometry, we can also write Eqs. (5.16) - (5.19) for

the sensor coupling parameters a as
n

(n)2a (7) = - B n cos 7(n- i) + _ + B n cos 7(n+ i)
xx

n

(6.28

2a (7)=-(R- Bn)sin 7(n-1)- (R + Bn)sin 7(n+ 1)
xY n

(6.29

(n)2a (7') : " _ - B n sin 7' (n- i) + + B n sin 7'(n+ i)

YX n

(6.30)

(R ) (n ) 7'(n+ i)2a (7') = - - B n cos 7'(n- I) + _ + B n cos

YYn

(6.31)

where 7 is the location of the x-axis sensor and 7' is the location

of the y-axis sensor. As an indication of the magnitude of the coef-

ficients, we can consider a symmetric cross section of isotropie material

for which we have, from Eq. (5.9),
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+o-+nJ

(6.32 /

Thus, for n = 3 and _ = 0.3,

2

B 3 _ - _ (6.33)

so that

5

+ B 3 _

D. STABILITY CRITERIA BASED ON THE MODAL ROOT EXPANSION APPROACH

For large gains the stability criteria neglecting structural damping

are given by Eqs. (4.36) and (4.3?) as

c < -d (d real) (6.36)

k I

c < 2 Jdt (d imaginary) (6.37)
i - r

0

Using Eqs. (6.8), (6.9), and (6.22) reduces the above, for our case, to

G23 < -G53 (G53 real) (6.38)

G23 < -k' la531 (CE53 imaginary) (6.39)

By observing from Figs. 9 and 10 that, for G53 real and _3 small,

instability occurs at small values of K , an estimate of the minimum
V
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structural dampingrequired for marginal stability (e = O) can be

obtained, for d real, from Eqs. (4.20), (4.29), and (4.30) as

or

11,2}- - + 4C_xy(ly x (6.40)_i 2 xx yy yy

_i = k'(c + d) (d real) (6.41)

Using Eqs. (6.8) and (6.9) in Eq. (6.41) yields

_3 k'R- 4 (_23 + _53 ) (_53 real) (6.42)

The minimum structural damping for stability, for 553 imaginary, cannot

be written as simply as Eq. (6.42) because the imaginary-axis crossing

may occur at large gains, even for _i small. An estimate of the minimum

_i required for this case can be obtained from Eq. (4.37) using the

criterion that

_i : sup (¢i(c+ = o), <i(_. : o)} (6.43)

Thus, for our case, the minimum structural damping for marginal stability

is given by

f R[k,((123¥ k'1C_53[)]
_3: sup [ R (i _C_23)]1 + k' _" 1%31+ k' R

(_53 imaginary)

K =0

P

(6.44)

These expressions can also be written in terms of the rigid-mode damping

ratio with control if we observe from Eqs. (2.7), (2.8), and (3.4) that

K (p2 + K )1/2
k' - V _ 2_CO o p (6.45)

Pi Pi
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so that, for our case (Kp = 0),

k' = 2ro_co (6.46)

E. STABILITY WITH A SINGLE SENSOR

With the force (or moment) locations fixed, the system stability is

dependent only on the sensor locations, as these determine the values of

523 and 553. For a single sensor package (7' = 7), using Eqs. (6.5)

(6.6), and (6.28) - (6.31), we find that

2 3

0_13 = - _ B 3 (6.47)

523 = (3 + B3 ) cos 47 (6.48)

Substituting for B 3 from Eq. (6.33) yields

2 6 (6.49)
_13 _ --2

R

cos 47 (6.50)
523 _ R

Using this in Eq. (6.9), we have

553 _ RI (cos 2 47 + 24) 1/2 _ R5 (6.51)

As Eq. (6.38) can never be satisfied, we can never have stability without

structural damping for a system employing a single sensor package.

Substitution of Eqs. (6.46), (6.50), and (6.51) in Eq. (6.42) gives

the minimum structural damping for stability as

ro_co

_3 - 2 [cos 47 + 5] (6.52)
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Using Eq (5.10),

0.016 < _ A- r < o.n (6.53)

P3 o

Therefore _3 required for marginal stability is roughly in the range

0'03_co < _3 < 0'3_co
(6.54)

Thus, for _co in the desirable range of 0.7 - 0.8, referring to Eq.

(5.11), an unusually high structural damping would be necessary to achieve

a satisfactory level of stability. Consequently, a system using a single-

sensor package would require a lower gain than would be desirable for the

rigid system. Therefore, we shall turn our attention to separate loca-

tions for the _x and _y sensors. However, before we do, it is

interesting to return to the root locus approach.

Using Eqs. (6.50) and (6.51) in Eqs. (6.11) and (6.12) we have

563 -2.5 cos 47 (6 55)2

573 _ +2.5 cos2 47 (6.56)

Thus the + characteristic equation is of the form shown in Fig. 9,

while the - characteristic equation is of the form shown in Fig. ii.

F. TWO SENSOR PACKAGES

1. Sensors Symmetric about 7 = ±45 °

From Eq. (6.52) we observe that the minimum damping required for

stability for a single sensor package occurs for

7 = 45 ° + m 90 ° (m an integer) (6.57)
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Thus we might suspect that in using two sensors we should try to place

them symmetrically about these locations. Further, since the actuators

are 90° apart we would suspect that the sensors should be also. For

generality we shall consider

7' = ±90 ° - 7 (6.58)

so that the sensors are symmetric about the +45 ° or the -45 ° axis.

Using Eq. (6.58) in the relations of Section C, and using Eqs.

(6.7), (6.8), and (6.9)yields

(223 = 2axx 3 (6.59)

Ct53 = 21a [ (6.60
xY 3

Using Eqs. (6.28), (6.29), (6.34), and (6.35) in Eqs. (6.59) and

(6.60) we have

P_23 _ 5 cos 27 + cos 47 (6.61)

P_53 = [5 sin 27 + sin 47] (6.62)

Equations (6.61) and (6.62) are plotted in Fig. 12. We observe

that there are large stable regions of approximately ±28 ° to either side

of 7 = ±90° that satisfy the criterion of Eq. (6.38). At these loca-

tions we observe from Eqs. (6.11) and (6.12) that

a63 = ct73 _ 2 (7 : +90°) (6.63)

yielding stable root loci of the form shown in Fig. ii. The boundary of

the region corresponds to
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FIG. 12. PARAMETERS R_23 AND R_53 AS A FUNCTION OF 7 FOR
7' = ±900 - 7"

C_63 = 0 (6.64)

C_73 _ 3 (6.65)

which is the crossover point between (I) the case that both of the

factored-characteristic-equation root loci are of the form of Fig. ll,

and (2) the case where the + characteristic-equation root locus takes

the form of Fig. 10.

The locations (7 ± 90°) yielding both locl identical are equiva-

lent to placing the _x sensor at either of the two points of control* of

_x' and the _y sensor at 7' = 0 °, 180 °, either of the two points of

control of _y.

Points where the control forces are applied.
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At these locations we observe from Eqs. (6.28) - (6.31) that for

n odd

a (7) = -B (-1) (n'1)/2 (6.66)
xx n

n

a (7) : 0 (6.67)

xY n

ayxn(7')= 0 (6.68)

ayyn(7' ) = Bn (6.69)

so that for balanced control forces the two control axes of the system

are uncoupled, and the only flexural motion picked up by the sensors is

twist.

2. Other Sensor Locations

To explore the regions of stability further, we consider several

additional cases, 7' = -7 (symmetry about the origin), 7' = 180 ° 7

(symmetry about 90°), and 7' = 7 ± m 90 ° (the two sensors 90 ° or 180 °

apart). Proceeding as in Section I, the system stability for these

additional sensor locations has been determined, using the stability

criteria of Section D, and is summarized as follows:

a. Sensors kept 180 ° apart have the same effect as a single

sensor

b. Sensors 90 ° apart (7' = 7 ± 90°) yield

R0_23 = 5 cos 27 + cos 47 (6.70)

R(553 = jI5 sin 27 + sin 471 (6.71)
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Theseequations are identical to Eqs. (6.61) and (6.62) for

the sensors symmetric about the diagonals, except that 553 is imaginary.

Therefore an indication of the stability can be obtained from Fig. 12 as

follows:

The equation for stability in this case is Eq. (6.39) rather

than Eq. (6.38). Thus the stability boundary is again centered about

7 = 90°, 270° (6.72)

and will stretch to somewhat less than 50 ° on either side, depending

upon k'. For example, using Eq. (6.39), the stability boundary will

stretch 45 ° to either side for k' = 0.2, and to nearly 50 ° for a

smaller k'

For small k's, the roots of the characteristic equation

are given by Eqs. (4.22) and (4.23) as

c : k'c - _i (6.73)

: _+k'[dr (6.74)

which for our case becomes

k T

e = -_- R_23 - _3 (6.75)

k !

- 4 R_53
(6.76)

The angle of departure

by

¢ of the upper roots from their poles is given

¢ _ tan RC_23-- /

(6.77)
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Observe from Fig. 12 that as the sensors move away from

their axes of control (7 = 90°, 270 ° ) the root angles of departure

from their poles change from their values of -180 ° , one departing upward,

the other downward, until, for the sensors 50 ° away from their control

axes, the root departures are both vertical. For this latter position

we observe, from Eqs. (4.34) and (4.35) that for _3 = 0

e = ,2 )2 (6.78)
k + (1 ¥ kt[d[

+k'Idl (1 ¥ k' Idl)

5 = ,2 )2 (6.79)k + (ZYk'Idl

so that one root takes off initially upward and curves into the right

half plane while the other root takes off initially downward and curves

into the left half plane.

For these positions of the sensors (50 ° away from their con-

trol axes)

R

d = _C_53 _ 1.3j (6.80)

_63 = -2.6j = -573 (6.81)

The root locus for this case is shown in Fig. 13, the solid

line being for the + characteristic equation, the dotted line for the

- characteristic equation.

c. Sensors symmetric about the control axes (7' = m 180 ° - 7,

m an integer)

For this case and using Eqs. (6.5) - (6.7) we have

R_23 = cos 4 7 (6.82)
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Im (s')

+ CHAR

EQUATION

kI =O.I

- CHARACTERISTIC
EQUATION

ro
Re (s')

and

35576

FIG. 13.

REGION,

ROOT LOCUS ON BOUNDARIES OF STABLE

7' = 7 +- 90°, 7 = -50° + m 180 ° .

R_53 = (25 cos 47 + sin 2 47) 1/2 (6.83)

which are plotted in Fig. 14. Observe that there are regions of stability

satisfying Eq. (6.39) centered about

7 = 45° + m 90 ° (m an integer) (6.84)
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FIG. 14. PARAMETERS RfiZ23 AND P_53 AS A FUNCTION OF 7
FOR 7' = m 180 ° - 7.

and extending about 20 ° to each side for

k' A= 2r o_co < 0.15 (6.85)
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FromEq. (6.53), it is apparent that Eq. (6.85) will be

satisfied for _co = 0.7, for nearly all structural materials; however

it is important to determine how well damped the flexural roots are. To

do this we observe the angles of initial departure from Eq. (6.77) and

note that over nearly the entire stable region these angles are almost

vertical, so that the roots will be poorly damped.

In the center of the region [given by Eq. (6.84)], we have

R ) 1 (i ± js)
a63'_73 = - 2 (CZ23 + a53 - 2 (6.86)

1 (6.87)

5

d = _ j (6.88)

The corresponding root locus is given by Fig. 15 for the +

characteristic equation. The loci for the - characteristic equation

is simply the complex conjugate of Fig. 15.

Again referring to Fig. 14, there is a very narrow region

in the vicinity of

7 = 45 ° + m 90 ° ± 21 ° (6.89)

which satisfies the stability criterion of Eqs. (6.38) and (6.39). These

points also have the advantage that since _63 and _73 are very small,

the excitation of the modes by the control system is small and the roots

stay essentially at the poles, with their damping being primarily struc-

tural damping. However desirable these interesting points may appear

initially, they are acutely sensitive to parameter changes such as the

sensors being slightly off their design location, or the vehicle being

somewhat nonuniform. As these sensor locations are on the borderline of

instability, they cannot be recommended and will not be pursued further.
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G. CONCLUSIONS ON THE EFFECTS OF SENSOR LOCATIONS ON STABILITY

The following conclusions on sensor locations were drawn, for K = 0
P

and for orthogonal pairs of control forces (or moments).

I. Single Sensor Package

Without structural damping it is impossible to find a position

that will stabilize the third mode (first flexible mode) using a single

sensor package.
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The minimum third-mode structural damping ratio

bility is roughly in the range

0"03_co < _3 < 0'3_co

_3 for marginal sta-

(6.90)

where the low portion of the range is for materials of high structural

stiffness. As Eq. (6.90) requires, for _co _ 0.7, higher values of

_3 than can reasonably be expected, _co would have to be lower than

the desirable range of 0.7 to 0.8 to achieve even marginal stability

with a single sensor package. Therefore separate sensor locations for

each control axis were investigated.

2. Two Sensors without Structural Damping

If the _x sensor (the sensor that controls motion about the

body-fixed x axis) is placed at 7 = 90°, or 270 ° , and the by sensor

is placed at 7 = 0°, or 180 °, the system is uncoupled and stable for

all values of gain.

If the sensors are symmetrically placed about the diagonals

(7 = ±45°), the regions of stability extend, for any value of gain,

approximately 28 ° to each side of the above locations.

If the sensors are kept 90 ° apart, the stable region may extend

nearly 50 ° to either side of the above locations, depending on the value

of the gain.

If the sensors are placed symmetrically about 7 = 0° or 90 ° ,

there is a stable region of about 220 ° width about the locations where

the sensors are 90 ° apart, for rate gains of

Kv = 2_co < 0"15P3 (6.91)

However, this region is poorly damped for all stable values of gain. At

the boundaries of this region there are very narrow stable regions for

the sensor locations, where the excitation of the third mode by the con-

trol system is small and the roots stay essentially at their poles.

However, these locations are acutely sensitive to vehicle parameter
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changes, and because they border on an unstable region, they cannot be

recommended.

Therefore, it is recommended that the _x sensor be placed in

the vicinity of 7 = ±90 ° and the _y sensor in the vicinity of

7 = 0°, 180°. These locations, for which the control axes decouple,

are equivalent to placing each of the sensors at one of its corresponding

control forces.

H. COMPARISON OF RESULTS WITH COMPUTER SOLUTIONS

In this study we have formulated an analytical method of attacking

the stability problem associated with flexible vehicle control. In this

chapter we have applied our simple formulas to determine the stability

of the first excited flexible mode of a spinning, toroidal space station

whose control axes are coupled due to flexibility. The results obtained

using these formulas have been verified using modified root locus tech-

niques. However, as was pointed out earlier, the root locus method

cannot be readily applied to the higher modes when we consider coupled

control axes, leaving us only with the formulas we have derived for

small gains for these modes.

To determine the effects of including the higher modes on the solu-

tion for the first excited flexible mode and to obtain an indication of

the accuracy of our approximate formulas for finding the roots, we now

utilize a digital computer to solve the "complete equations." In Appen-

dix D we have put the complete equations in standard form ("state space"

form). This form of the equations is suitable both for finding the

system roots by digital computer routines for finding the eigenvalues

of a matrix, and for obtaining the real time response by integration.

These equations are the complete set of linear equations suitable for

small motions, and are applicable to the entire class of flexible vehicle

control problems that are considered here. The only inputs required for

a particular vehicle are the values of the flexible vehicle force and

sensor coupling parameters, u and a and the natural frequencies
n n'

and structural damping.
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As the formulas we have been utilizing in this chapter for finding

the roots are postulated on the modal natural frequencies being well

separated from the rigid-mode natural frequency, compared to the root

departures from their poles, we shall choose for our space station

example:

Pn

-- = 2n 2 (n _ 2) (6 92)

_n = 0.05 (6.93)

which, referring to Eqs. (5.10) and (5.11), corresponds to the lower

frequency (or stiffness) range for the space station. These values are

used in all computer solutions throughout this report. For computational

economy, we shall always limit ourselves to the first three excited

flexible modes in our calculations.

The formulas we have derived for computing the system roots and the

root locus techniques we have used are both most complex when d is

imaginary. We shall therefore choose as our example from this chapter

the case where the sensors are on the diagonals (relative to the control

axes) for which we have drawn the root locus in Fig. 15. The corre-

sponding computer solution (considering three modes, n = 3, 5, 7) is

shown for the first mode in Fig. 16. Observe that, except for the effect

of damping and the fact that the roots of both the + and - charac-

teristic equations are included on the same plot, there is negligible

difference between it and Fig. 15 except at large gains where the effects

of the presence of the additional two modes become important. In Fig. 17

we present a detailed plot of the first excited mode (n = 3) over the

K range of interest, together with a tabulation of the computer results
V

and those obtained for small k' from formulas (4.22) and (4.23) and for

large k' from formulas (4.34) and (4.35). It is seen that there is

good agreement between the results obtained by the formulas and the com-

as high as one (k_ = 2) with the resultspurer results for _co

obtained from the formulas for large kTs being particularly close to

the computer results.

- 70



24

2O

16

IZ

o 4
o
ee

p-
ne
< 0
Z

(.9

-8

-12

-16

I I I

-2_20" 8 12 16 20

k_:9 (kt:O.5)

Pn k'o:1.4"_

"E=Z"2
_,: 0.05

(POLES AND ZEROS __9

SHOWN ARE DOUBLE)

_

I I I I I

-16 -12 "8 -4 0 4

REAL ROOT

FIG. 16. COMPUTER SOLUTION FOR 7' = -7, 7 = 45°.

Figure 18 illustrates the roots for all three flexible modes

(n = 3, 5, 7). It should be observed for this figure, and for all future

root loci for coupled axes, all poles and zeros shown are double. It is

particularly apparent from the figure that sensor locations on the diago-

nals are a poor choice, as the fifth mode goes unstable at a gain of

• = 0.6).k'o :l 2 ( co

Figure 19 illustrates the effect of position feedback. This is the

same case as Fig. 18 except that k ° = Kp/_ 2
is equal to 1 rather than
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0. There has been virtually no change in the roots associated with the

flexible modes, even though the rigid-mode effective stiffness has been

doubled. Table 1 provides a comparison of the values of the roots

obtained from the formulas with those obtained using the computer, for

= 0.7 (k' = 1.4) From the table the small k' formulas appearCO 0 " '

adequate for determining the roots of the higher modes.

In the next chapter we explore the stability of the higher modes

with the sensors at their recommended locations (at one of their points

of control), and examine the sensitivity of system stability to devia-

tions from nominal conditions.

TABLE i. COMPARISON OF SOLUTIONS FOR THE FLEXURAL MODAL ROOTS

= 07 (% = 1.4), k = 1
O

Solution

Computer

Small k'

Formula

Large k'

Formula

Third Mode

Root 1

+ Charac.

Equation

Root 2

Charac.

Equation

Fifth Mode Seventh Mode

Root 1

-3.19

i01.12

Root 1 Root 2

-0.31 +0.43

50.99 49.06

+0.03 +0.002

50.95 48.98

-3.21

101.23

Root 2

Upper number represents the real part of the root in the upper half

plane. The lower number represents the imaginary part of the root.
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VII. STABILITY OF HIGHER MODES OF THE CONTROLLED SPINNING STATION AND

THE EFFECTS OF UNBALANCED FORCES OR MOMENTS

In the first two sections of this chapter the stability of the

higher modes for orthogonal pairs of balanced control forces is investi-

gated for the sensors at both their optimum location, as determined for

the third mode, and in the vicinity of the optimum locations. The

effects of unbalanced control forces (or moments), for the case where

the forces for the two axes are orthogonal, are determined in Section

C. Then in Section D we investigate the stability for the case where

the control moments for the two axes are located at the same point. The

results obtained from these investigations are summarized in Section E.

A. STABILITY OF THE HIGHER MODES FOR BALANCED CONTROL FORCES WITH THE

SENSORS AT THEIR CONTROL POINTS

I. Stability Using the Root-Expansion Approach

It was found in Chapter VI that, for balanced control forces,

if the sensors are placed at one of their points of control, then the

third mode would be stable and the axes uncoupled. Thus if the _x

sensor is placed at _ = 90 ° or 270 ° , and the by sensor is placed at

7 = 0° or 180 ° , it can be observed from Eqs. (5.20) - (5.23) and (6.66)

(6.69) that the two axes are uncoupled and that, for both axes:

-RB (n odd)

n
a u =

n n 0 (n even )

(7.1)

where, from Eq. (6.32), for ff = 0.3 and a symmetric cross section,

RB
n

2.3

1 + (1.3/n 2)

(7.2)

Using Eq. (7.2) in (7.1)

au --2.3 /_= B v
n n

(n odd, n > 2) (7.3)
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Substituting Eq. (7.3) into Eqs. (3.13) and (3.15) gives, for k' small,

(7.4)

K

5 = 1.15 -_p
2

Pi

(7.5)

The roots themselves are given by

s = pi[_+ j(l + _)]

[ j2 1= -2"3_co Po + Kp - _iPi + J[Pi + l'15(Kp/Pi)] (7.6)

Observe that the real portion of the roots due to control is approximately

the same for all flexible modes. However, for _i the same for all modes,

the structural damping dominates for the higher modes.

From Eqs. (3.28) and (3.29), it is apparent that, as u.a. is
Ii

constant with mode number, for small gains the response of the higher

modes is small and should cause very little trouble. Further reduction

in the response of the flexible modes could be achieved using a rate

network in place of rate, as can be observed from Eqs. (3.21 and (3.22).

2. Root Locus Approach

As the two axes are uncoupled for these sensor locations, the

characteristic equation has the form of Eq. (2.13), which for K = 0
P

can be written as

1 + K s _(s) --o (7.7)
V
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where

N N
U a u a

nn_Z _nnG(s) = _ 2 2
n n=0 s + 2(-nPnS_ + Pnn--0

(7.8)

To find the open-loop zeros is obviously difficult if we con-

sider many modes. Therefore we shall restrict ourselves to two flexible

modes. Thus

1 u3a3 u5a5 _ E3E5 + Eo(U3a3E5 + u5a5E3 ) (7.9)

Substituting for u a from Eq. (7.3), neglecting structural
n n

damping in the numerator, and observing from Eq. (5.10) that

(n __ 3) (7.10)

reduces Eq. (7.9) to

G(s) =

2 2) 22s4(1 + 2B') + s2(1 + B') P3 + P5 + P3P5

EoE3E 5

(7. II )

Dividing numerator and denominator by

numerator, we obtain

6
D- and factoring the

_(s)

2

(i + 2B') _2 r3
s +

P5 (I+B') l+r 3
)

r 3

2 +B' (l+r3 _ 2

+ +2B' (l+B,)(l+r 3

(_ 02)( _)(_ )+ r _2 _
+ 2_3r3s + r 3 + 2_5s + 1

(7.12)
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Substituting for B' from Eq. (7.3), and observing from Eq.

(5.10) that

\P5/
(7.13)

we can write Eq. (7.7) as

1 + k'(5.6) _,(_,2 + 0.035) (_,2 + 0.63)

(_2 o_)(_. 0._2_3_+0._)(_+_ + _)=0 (_._I

The corresponding root locus is shown in Fig. 20.

3. Cqmputer Results

Figure 21 presents computer results for the same case, indicating

good agreement with the root locus approach. Figure 22 provides a com-

parison between roots computed by formulas (3.12) and (3.13) for small

k', formulas (3.28) and (3.29) for large k', and the computer results.

Observe the excellent agreement between all methods for values of k'
O

up to 1.4 (_co = 0.7) and the excellent agreement of the large k'

formulas with the computer results for values of k' up to 5. Figure
o

23 indicates the small effects of using a position feedback of k = 1
o

(doubling the effective stiffness of the rigid-body mode). Table 2

compares the formula results with the computer results for this case.

It indicates that use of the formulas for preliminary design is very

satisfactory when the conditions under which these formulas were derived

are satisfied. In particular, the simple small k' formulas appear

quite adequate as a "first step" design tool, and we shall utilize them

in this manner in the rest of this chapter.
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TABLE 2. COMPARISON OF ROOTS FOR THE NOMINAL CASE

k = 0
O

Third Mode

k ' Rigid

o Mode Small Large

Computer k ' k '

-0.70 _ -2.31 -2.30 -2.28
1.4

1.24 17.84 18.06 17.81

-1.12 -3.14 -3.10 -3.01
2.2

0.90 17.61 18.06 17.53

Fifth Mode

Small Large

Computer k ' k '

-4.03 -4.03 -4.01

49.75 50.02 49.79

-4.90 -4.91 -4.84

49.51 50.02 49.53

Seventh Mode

Small

Computer k'

-6.46 -6.48

97.66 98.01

-7.33 -7.38

97.40 98.01

Large

k _

-6.45

97.77

-7.30

97.50

Upper number represents the real part of the root in the upper half

plane. The lower number represents the imaginary part of the root.

Figure 24 indicates the effects of using a rate network instead

of rate feedback for this example. Three flexible modes (n = 3, 5, 7)

were used, but only the roots associated with the first are shown.

Values of the time constants of Top ° = 5 and Tlp ° = 0.5 were used.

As indicated in Section i, and as can he seen by a comparison of Figs. 22

and 24, use of a rate network greatly reduces the distance of the root de-

partures from the flexible-mode poles. However, for the rate-network time

constants chosen, the shape of the rigid-mode locus is also affected, so

that only a maximum damping ratio of 0.35 can be achieved. By using

active networks, a wider ratio of lead-lag time constants can be attained,

so that a rigid-mode damping ratio of 0.7 can be realized.

Table 3 provides a comparison between computer results and the

use of formulas (3.17) and (3.18) for computing the flexural-mode roots

when a rate network is employed. Observe the good agreement between the

two methods.

B. STABILITY OF THE HIGHER MODES FOR BALANCED FORCES WITH THE SENSORS

NEAR THEIR CONTROL POINTS

Chapter VI indicated that for balanced control forces the stability

region of interest centered about the

_x sensor at 7 = ±90° (7.15)
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TABLE 3. COMPARISON OF METHODS OF FINDING ROOTS FOR

BALANCED CONTROL FORCES WITH THE SENSORS AT ONE OF

THEIR POINTS OF CONTROL AND USING A RATE NETWORK

, 2

k = 0, =0 5, =s, ko/P°- 3.6 ( coo Tlp ° . Top ° = = 0.32)

Method Network Root Rigid Mode Third Mode Fifth Mode Seventh Mode

-0.735* -0.609 -0.920 -2.503 -4.901

Computer 0 1.80 18.18 50.02 97.92

-0.920 -2.503 -4.901

Formula 18.22 50.08 98.04

Upper number represents the real part of the root in the upper half

plane. The lower number represents the imaginary part of the root.

and the

by sensor at 7' = 0 ° or 180 ° (7.16)

To investigate the stability region in this vicinity for the higher

modes, let

= I 90° +_7
7

[ -90 ° + A7

(7.17)

[180 ° + AT'

(7.18)

When lUnan I does not increase with mode number as fast as Pn' then

for the very high modes the root time constants are dominated by the

structural damping, regardless of where we put the sensor, so that sensor

location is unimportant. For the modes not quite that high, we shall

assume the incremental angles to be small enough that
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sin nZl7 = nAT (7.19)

sin nikT' = nAT'
(7.20)

cos n_7 = cos r_7' = i
(7.21)

Substituting Eqs. (7.19) - (7.21) into Eqs. (5.16) - (5.19), we obtain

for

n/k72 << 1 (7.22)

that

a (_) = (-I) (n-l)/2 B
xx n

n

a <,>--<-,><°-'>/"n_(-_+_°)
xY n

(7.23)

(7.24)

° <,>=_,_,(-_+.o)
YX n

(7.25)

(7') = B
ayy n n

(7.26)

Substituting Eqs. (7.23) - (7.26) into Eqs. (6.5) and (6.6), we obtain

R (7.27)
c=_B n

n (7.28)
d = _ )1 + _n)¢'Az'_7

For

sgn (_') =-sgn (aT) (7.29)
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d is real, and we can substitute Eqs. (7.27) and (7.28) into Eqs. (4.20)

and (4.21) to obtain

5 = _ k2(RBn-+nll + RBnI¢-AT'AT) (7.30)

k( )e - 2 RBn -4- nil + RBnI¢-A7'A 7 - _n (7.31)

For

sgn (A 7') = sgn (A 7) (7.32)

d is imaginary, so that substituting Eqs. (7.27) and (7.28) into Eqs.

(4.22) and (4.23) yields

5= _ k k'_ +- nil+ _ I¢_'_ (7.33)n- 2 n

k' k nl I + RB i V/-_,/_ 7 _n6 = + -_- RBn + _ n
(7.34)

For a symmetrical cross section employing isotropic structural material,

we have, from Eq. (7.2), that

RB _ -2.3 (n @ 3) (7.35)
n

From Eq. (6.45) we can express k' in terms of the controlled rigid-mode

damping ratio _eo as

k' - v _ 2 _-- _co 1 + (7.36)
Pn Pn
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and from Eq. (3.5), we have

K

k- p (737)
2

Pn

Substituting Eqs. (7.35) - (7.37) into Eqs. (7.30), (7.31), (7.33), and

(7.34), we obtain, for -AZ'A _ > 0,

K
!

- P (2 3
2 \ "

2P n

_ =- _---_coJ1 + (Kp/_ 2) (2.3' 1.3n_) - _n
Pn

(7.38)

(7.39)

and for A_'A_ > 0

K

5 - P
2

2P n
Pn

( 2"3 _2 _c° jl . (Kp/_22) ¥ l'3n_2pn V_'A7) -_n

2P n

(7.40)

(7.41)

Observe from Eq. (5.10) that

Pn /

(7.42)

so that the second terms of Eqs. (7.38) - (7.41) decrease as the mode

number increases, even though they contain n as a multiplying factor.

It is seen from Eqs. (7.38) (7.41) that small departures of the

sensors from their corresponding points of control have a negligible
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effect on the stability of the higher modes. It is also observed that

moving both sensors in the same direction from their control points is

less deleterious on stability than moving them in opposite directions.

This agrees (for n = 3) with the results of Chapter VI.

Observe from Eqs. (7.38) and (7.39) that for K = O, as the two
P

sensors are moved in opposite directions from their points of control,

the roots depart from the equal-root case to the right and left, thus

decreasing system stability. Neglecting damping, the system becomes

unstable when

_( 2.3 _2
AT'AT < \l.3n/

(7.43)

If

IAT'l = IATI (7.44)

then, from Eq. (7.43), at the point of instability we have that

2.3

I 71 - 1.3n radians (7.45)

For n = 3, this corresponds to

IATI = 34 ° (7.46)

This compares well with the 28 ° figure of Section F.I of Chapter VI con-

sidering the simplifying approximations we have made.

From Eqs. (7.38) (7.41) we observe that 5 and e + _n decrease

with mode number. Therefore, for locations of the sensors near their

points of control, if we compute the stability bounds on the basis of the

third mode without damping, then, given reasonable structural damping

these stability bounds should hold for the higher modes as well. This

point may be illustrated as follows: Use the value of I_71 of Eq.

(7.46) in Eq. (7.39) for K = 0 to obtain
P

90 -



6 - - --_C0(2.3 g 0.77n) - (_n
Pn

(7.47)

Use Eqs. (5.10) and (5.11) for _/Pn and _n in Eq. (7.47) to obtain,

for n => 3,

_co

e = - _ (2.3 ¥0.77n)- 0.2
n

(low-stiffness

structural material)
(7.48)

_co (high-stiffness
e - (2.3 T-0.77n)- 0.02 (7 49)

7n 2 structural material ) "

< 1, that in both cases e < O, so that we haveObserve, for _co

stability for all modes for the choice of sensor locations based on the

third mode without damping. Therefore the sensor-location stability

bounds of ±28 ° from the control points, determined in Chapter VI for the

third mode (Kp = 0), should hold for the higher modes as well. Figure

25 presents the computer results for these sensor locations. In the

0 .9, whichfigure, the fifth and seventh modes go unstable at _co

is in good agreement with the above results considering the small-angle

assumptions made, and in excellent agreement with Eq. (4.24), again indi-

cating the efficacy of the simple root formulas as a design tool.

C.

unbalanced actuators that for n odd we obtain Eqs. (6.1)

are the same equations we had for balanced control forces.

n even we obtain

R (_l)n/2
- AF x axx 2

xY n

EFFECT OF UNBALANCED CONTROL FORCES OR MOMENTS USING THE GENERAL

METHOD: SENSORS AT ONE OF THEIR POINTS OF CONTROL

Using Eqs. (5.20) - (5.23) in Eqs. (4.15) (4.18), we find for

(64), which

However, for

(7.50)

R (7.51)0: = --AF a

xy 2 y xyn
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R _x(_1)n/2 (7.52)
%X = 2 ayy n

C_ = __R _ a (7.53)

yy 2 Y YYn

For each of the sensors at one of its points of control, that is, the

_x sensor at 71 = 90 ° (7.54)

or 72 = -90 ° (7.55)

and the

' = 0 ° (7.56)
_y sensor at 71

or 72 1so ° (7.57)

Eqs. (5.16) - (5.19) become, for n even,

a = o (7.58)
XX

n

a = (-1) x Bn(-1) n/2
xY n

(7.59)

a : 0 (7.60)
YXn

a = -B (-1) y (7.61)

YYn n

where the x and y powers are either 1 or 2 depending on the appro-

priate sensor-location index as defined in Eqs. (7.54) - (7.57).
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Substituting Eqs. (7.58) - (7.61) into Eqs. (7.50)

th
for the n even mode, that

(7.53), we have,

(-i)x
n (7.62/0_ - ZXF

xx 2 x

R Bn(_l)n/2 (_l)X AF (7.63)
axy = - _ Y

R )n/2 )y
ayx - 2 Bn (-I (-i AFx

(7.64)

R (7 65)= -- -i) y AF
yy 2 Bn ( y

Substituting Eqs. (7.62) - (7.65) into Eqs. (4.20) and (4.21), for

th
small k's and h = 1 we obtain for the n even mode

I:RBn AFx('i)x + _,(-i) y

[ , 1
5=

fl k' ,('I)Y " {n

}

_n

(7.66)

(7.67)

Thus as could have been ascertained from the u's and a's and
n n

from Fig. 4, for small gains only the y (or cosine) axis modes are

excited by unbalanced control forces.

Substituting for k' in Eq. (7.67) from Eq. (6.45), we find that

th

the condition for stability of the n even cosine mode is

' _n _ _CO + (Kp/_2)
Arx(-l)X + AFy(-I) < - _nn
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If we desire that the allowable force imbalance be equal for both

axes, then the criterion is that

l_21max= l_iImax< - 2_
n

-I

(7 •69)

For K = 0 and _Coo = 0.7, this becomes
P

1_21max = I_llmax < _n (___n)1.4RB
n

(7.70)

Obviously the first even mode (n = 2) is most critical.

From Eqs. (B4.8) and (B4.9) in Appendix B, we have, for a symmetrical

cross section with isotropic structural material and (T = 0.3, that

2

2[ 1 2] n<n2[ 0,n21,21n i + <--- i + (7.71)

(n 2 + 1.3) f_2 = (n2+ 1.3) J

Thus for n = 2,

P2

3.3 <-'_'- < 19 (7.72)

As indicated by Eq. (5.11), the damping ratio corresponding to the

more rigid (higher frequency) materials is in the order of _n = 0.02,

while the damping ratio corresponding to the less rigid materials may be

in the order of _n = 0.2. Thus using Eq. (7.2) for RBn and

• _"-_ $ 0 7 (7 73)04 _ _2 "
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we find from Eq. (7.70) that

016 [ xlm : l yJm <_-0.30 (7.74)

Therefore we are allowed on the order of 15 to 30 percent imbalance of

forces about each axis (depending upon structural stiffness and damping)

without destabilizing the even modes. A typical computer solution for

I0 percent imbalance is shown in Fig. 26, where we have considered the

first three excited flexible modes (n = 2, 3, 4). Observe that there

is a slight effect on the third mode at the higher gains due to modal

coupling.

If we use only a single unbalanced force (or moment) for control

about each axis, we find that all the modes (both even and odd) will be

stable if we place the sensor and the control force at the same point

for each axis. This follows from the earlier observation that for small

gains the odd modes are unaffected by force imbalance, and that, from

Eqs. (5.24) and (5.25),

AFy(-1) y : Fy I - Fy 2 (_I)Y

Fy 1 + Fy 2

(7.75)

AF (-I) x _ Fxl FX2 (-i) x (7.76)

x Fxl + FX2

so that Eqs. (7.75) and (7.76) will be negative for the sensor and the

single control force located together for each axis. For this case, Eqs.

(7.66) and (7.67) become

5 = Ii kRBn

(n th even mode) (7.77)
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I kIRB - _n

n

6 (n th= even mode) (7.78)

Substituting for k' and k from Eqs. (6.45) and (3.5), Eqs. (7.77)

and (7.78) become (for the n th even cosine mode)

K

5 = - _ RB (7.79)
2 n

Pn

6 = 2_coRB _----/i + (Kp/_2) - _n (7.80)
n Pn

Thus using Eq. (7.2) for RBn, and Eq. (7.72) for _/P2' we

observe that the second mode is highly excited by the control system

(though being well damped by it) and all the even modes are stable for

the sensor and control force coincident for each axis. Comparing Eqs.

(7.79) and (7.80) with Eqs. (7.4) and (7.5), we observe that for small

gains the relative departure of the cosine mode roots from their poles

is approximately twice as great for the even modes as it is for the odd

modes. Figure 27 is the corresponding computer root locus. Observe

that for large gains the third-mode x- and y-axis roots are strongly

coupled.

D. USE OF A SINGLE COMMON MOMENT LOCATION FOR CONTROL OF BOTH AXES

If we use a single control moment for each control axis and if we

locate the control moments for the two axes at the same point (which we

designate as 7 = O, e.g., place Mxl at My I in Fig. 8 and dispense

with Mx2 and My2) , then all modes (both odd and even) are excited,

and we have, from Eqs. (5.28) - (5.31),

l -- \

U = nR [7.81)
XX

n
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u = 0 <7.82)
xY n

u -- o _7.83_
yx

n

u : -R (7.84)
YYn

where the sine mode corresponds to the x axis and the cosine mode to

the y axis.

As the location of the y-axis control is unchanged from the pre-

ceding section, it is reasonable to place the y sensor at its y

moment (7' = O) as before, and to explore the effect of various loca-

tions for the x sensor. For this y-sensor location, from Eqs. (5.18)

and (5.19) we have

ayxn(7') = 0 (7.85)

a (7') = B (7.86)

YYn n

so that the axes are decoupled.

Using Eqs. (7.81) - (7.86) in Eqs. (3.12) and (3.13) yields

_ RBn - _yi

= (7.87)

- _ Rn a _xi
xx n

{ik
RBn

5=

Rn a

xx n

(7.88)
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where from Eq. (5.16)

a
xx

n

n (7.89)
(7) = _ cos n7 cos 7 - Bn sin n7 sin 7

By comparing Eqs. (7.87) and (7.88) with Eqs. (7.4) and (7.5), it

is observed that the first set of roots, corresponding to the y-axis

control, are (for the odd modes) the same as before and show stability.

The second set of roots, corresponding to the control of the x axis,

yields stability for all modes if [as can be observed from Eq. (7.89)]

the x sensor is placed at 7 = 0, so that

a
xx

n

n (7.90)
R

yielding

k' 2

6 - 2 n - _xi (7.91)

k 2 (7.92)
5 =_n

Noting from Eq. (7.2), that

2 2

n n (7.93)

_:_ - . t/)JZl.3"n 2''-1n 2 3[1 +

and comparing Eqs. (7.91) and (7.92) with the first set of roots of Eqs.

(7.87) and (7.88), we find that the sine modes are much more excited than

the cosine modes, as can be observed by the greatly increased damping due

to control.

Using Eqs. (7.36), (7.37), and (7.42) in Eqs. (7.91) and (7.92), and

neglecting structural damping yields
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en+I
1 (7.94)

6
n

n

Thus, for these locations the damping due to control is approximately

constant (for sufficiently small gains) for all the sine modes.

For Kp = 0, using Eqs. (7.36) and (5.10) in Eq. (7.91) yields

Icl (7.96)

so that the excitation of the sine modes is so strong that we are out of

the linear range for the larger values of _co"

Therefore, due to the strong excitation of all the flexible sine

modes, a single location for the control moments and sensors, though

stable, cannot be recommended, although considerable improvement can be

achieved by use of a rate network, rather than rate.

Figures 28 and 29 present computer results for the x and y mode

roots, respectively. Observe the extreme departures of the x-axis roots

from their poles compared to those of the y axis for the same gains.

Table 4 compares the computer results with those obtained by the

formulas. Observe that for k' _ i, the conditions under which the
o

formulas were derived (that the relative root departures from the poles

are small compared to the modal frequency separation) are violated, so

that the formulas only serve to indicate that large root departures have

occurred.
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TABLE4. COMPARISONOFMETHODSOFFINDINGROOTSFOR BOTH

CONTROL MOMENTS TOGETHER FOR THE x AXIS AND k = 0
O

k' Rigid

o Mode

-0.31"
0.6

0.97

-0.56
1.00

0.91

-0.63
i.i0

0.87

-0.81
1.30

0.79

Second Mode

I Small

Computer k'

-1.71 -1.60

8.07 8.00

-2.94 -2.40

8.55 8.00

-3.31 -2.60

8.90 8.00

-3.48 -3.00

10.07 8.00

Large

k'

-1.60

7.96

-2.40

7.97

-2.60

7.97

-3.00

7.98

Third Mode

Small Large

Computer k' k'

-4.04 -3.60 -3.56

17.69 18.00 17.59

-8.46 -5.40 -5.23

15.78 18.00 17.03

-11.69 -5.85 -5.63

10.89 18.00 16.86

-13.57 -6.75 -6.41

6.20 18.00 16.48

Fourth Mode

Small

Computer k'

-5.84 -6.40

29.60 32.00

-5.94 -9.60

26.05 32.00

-4.93 -10.40

25.26 32.00

-4.54 -12.00

25.11 32.00

Large

k'

-5.36

29.90

-6.16

27.83

-6.20

27.37

-6.17

26.57

Upper number represents the real part of the root in the upper half

plane. The lower number represents the imaginary part of the root.

E. SUMMARY

In this chapter, using the general method for coupled axes, we have

explored the stability of the higher modes for sensor locations in the

vicinity of their nominal positions at their points of control, and the

effects of unbalanced control forces or moments. It was found for

balanced control forces that the stability boundaries of ±28 ° for the

sensor locations about their points of control, obtained for the third

mode neglecting structural damping, will insure the stability of the

higher modes as well, provided reasonable damping is included.

For small gains, unbalanced control forces do not affect the odd

modes but do tend to excite the even modes. For the sensors at one of

their control points, we are allowed on the order of a 15 to 30 percent

imbalance of forces (or moments) about each axis (depending on structural

stiffness and damping) without destabilizing the second and higher even

modes. The lower values of allowable imbalance correspond to the higher

stiffness-to-weight-ratio structural materials.
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If only a single unbalanced force (or moment) is used for control

about each axis, we find that the second mode is well damped and all the

modes (both even and odd) will be stable if we place the sensor and the

control force at the same point for each axis (for the forces or moments

for the two axes 90 ° apart).

If the control moments for the two axes are placed at the same point

(one-control-moment package), so that the output axis of one control

moment is tangential to the centroidal line and the output axis of the

other is radial, then all modes are excited; but if both sensors are

also located at the same point, these modes will be stable. For small

gains the axis corresponding to the excitation of the cosine modes has

the same roots (except for a factor of 1/2 for the even modes) as for

the preceding case of orthogonal moment locations. However, the radial

control axis, exciting the sine modes, produces much greater excitation

than in the previous case, yielding (for sufficiently small values of

_co) approximately equal control damping of all modes. This strong

excitation of the flexible modes is undesirable from moment, power, and

response considerations affecting the crewmen, so that placing the con-

trol moments in one location is inadvisable.

We demonstrated, for the nominal case, the attenuation of the root

departures at the flexible modal poles due to the use of a rate network,

rather than rate, making it advisable to use a rate network provided a

sufficiently high ratio of lead-lag-network time constants is used so

that the desirable damping ratio of _co = 0.7 can be realized for the

rigid mode.

The validity of the use of the simple root formulas as a "first step"

design tool was also demonstrated by comparison with computer solutions.

It was shown that when the relative root departures from their modal

poles were small compared to the separation of the modal poles, excellent

agreement was obtained.
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VIII. SUMMARY AND CONCLUSIONS

In this study we first explored the basic character of flexible

vehicles employing linear-feedback control systems. The results of that

work were then applied to a flexible, spinning, toroidal manned space

station employing a continuous-attitude-control system for controlling

the direction of the spin axis. Desirable locations were found for the

control forces and sensors such that the rigid modes and all the flex-

ible modes of motion are stable.

A. RESULTS FOR A GENERAL FLEXIBLE VEHICLE

i. Vehicles with Uncoupled Control Axes

It was shown that the controlled-system dynamics for flexible

vehicles can usually be represented by Fig. 1 for vehicles with un-

coupled axes and by Fig. 4 for vehicles whose control axes are coupled.

From these figures it is evident that the basic parameters that couple

the flexible motion to the rigid-body motion to be controlled are the

u 's and a 's. These flexibility control coupling parameters are
n n

given by

Q
n

u - the factor converting the rigid-body control, (8 1)
n q '

c Qc' to the n th mode forcing function, Qn

_ns
a B

n %
the factor converting the n th mode generalized

coordinate, qn' to the quantity, _ns' sensed

by the feedback instrument

(8.2)

The u and a parameters are determined in sign and magnitude by
n n

the positions of the control force (or moment) and control sensor with

th
respect to the n mode shape, respectively.

e.g., beamlike vehicles.
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Wethen indicated how the characteristic roots of such systems

might be found by root locus methods. However, a muchsimpler approach

to determining system stability and estimating the system characteristic

roots and real-time response was to employ a linearized expansion of

the modal roots about the normalized modal frequency poles. For small
th

root departures from the modal poles, we can write the n - moderoot

in the upper half plane as

s n = pn[J(1 + 5n ) + en] (8.3)

where

82 2 << 1 (8.4)
n _ n

th
Thus stability of the n mode is determined by the sign of

n"

By substituting Eq. (8.3) into the characteristic equation of

the uncoupled system, assuming the equivalent structural damping ratio,

_n' small and using Eq. (8.4), we obtain, for small gains and the modal

frequencies well separated:

k !

e = - n n nn 2 u a

U a

n n

= k_
n 2

(8.5)

(8.6)

where

k __ K PO J ( 2) (8.7), v _ 2 -- _co 1 + Kp/p o

Pn Pn

K

/x £
k =

2

Pn

(8.8)
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Po = rigid-body natural frequency (_ in our case)

_co = rigid-body damping ratio with control

Thus, as the root loci of the uncoupled system never cross the

th
imaginary axis (neglecting structural damping), the n mode is stable

if

sgn u = sgn a [8.9)
n n

From Eqs. (8.7) and (8.8) we observe that the equivalent gains,

k' and k, rapidly diminish with mode number, so that for the cases

where any increase with mode number of lUnan I is less than the

increase of Pn' the relative departures of the roots of the higher

modes from their poles are small. Because of this effect, Eqs. (8.5)

and (8.6) also yield a good approximation to the higher mode roots.

In a similar fashion, we developed an indication of the real

time and frequency response of the system.

If we have additional poles and zeros in series with the con-

troller transfer function, we can estimate stability quickly, as K
v

is varied, simply by using Eq. (8.5) to determine the basic angle of

th
departure and then adding the angle change produced at the n modal

pole by the additional poles and zeros. Another approach is to use

Eqs. (8.3) and (8.4) in the new characteristic equation and determine

the new c and 5. In this way it was found that use of a rate circuit

rather than rate feedback changes the phase at the poles and reduces

the relative departure of the higher frequency roots but does not

destabilize the system.

For the case where the departure of the roots from their flex-

ible mode poles is small relative to the separation of the modal poles,

equations were also developed for determining the system roots for large

gains.
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2. Vehicles with Control Axes Coupled by Flexure (e.$., Platelike

Vehicles)

For a system with the control axes coupled by flexure, using

Eqs. (8.3) and (8.4) in the coupled characteristic equation, for small

gains we obtained a quadratic expression for e and 5 , given by
n n

Eq. (4.14).

As for the uncoupled case, equations for finding the coupled

roots associated with the first excited flexible mode were developed

for large gains, for the case where the two control axes were the same

and the departure of the roots from the flexible-mode poles is small

compared to the separation of the modal poles. From these equations we

found that the stability criteria for the first excited flexible mode

could be expressed in terms of two parameters, c and d, which are

just functions of the u's and a 's. Thus for pure rate feedback,
n n

the stability criteria, neglecting structural damping, are:

c < -d (d real) (8.10)

k' Wdl
C < - (d imaginary) (8.11)

1 (po/Pl)2

Thus for d real, stability is independent of gain, just as in

Eq. (8.9) for the uncoupled case. However, for d imaginary, we no

longer have 0 ° or 180 ° root loci, and the stability is gain dependent.

The adequacy of the small-gain and large-gain formulas as design

tools, for the conditions for which they were derived, was verified by

comparison with "exact" computer solutions for a space station example.

3. Conclusions

From consideration of the general root expansion approach, we

can reach some general conclusions for any flexible vehicle employing a

similar control system:

1. The gain associated with the rigid mode usually has very little

effect on the roots of the higher modes, so that the extent of their

stability is primarily determined by their own structural damping

ratio.
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th
2. The stability of the n mode is dependent on the sign of u a .

nn

3. For vehicles which can be characterized as beams, it is unlikely

that all flexible modes can be stabilized without structural

damping, unless the sensor and the control force for each axis

are placed where the signs of the slope and deflection are the

same for all modes, such as the beginnings or ends of the mode

shapes.

4. For beamlike vehicles, simply placing the sensor and the control

force together at an arbitrary location is insufficient to insure

that Una n will be either positive or negative or that the system

will be stable. However, for the uncoupled case, when u n varies

in the same fashion as an along the mode shape, such as when we

apply a moment and measure the resulting angle in a torsion or

bending problem, then placing the moment and sensor together is

sufficient to insure that Una n will be positive.

5. The uncoupling of the roots of one mode from those of the other

modes, for small gains, can be attributed physically to the

resonance phenomenon (for small damping) of the n th mode at

its own loop frequency, and the relatively low response of the

other modes to this frequency due to the separation of modal fre-

quencies.

B. EQUATIONS OF THE SPACE STATION

i. Vibration

Consideration of the effect of including man on the system

design led to the study of a rotating manned space station shaped like

a toroid having a large ratio of station radius to cross-section diam-

eter very much like a uniform spinning ring.

Though the analysis is general, for the purpose of numerical

examples we chose a spin speed of 3 rpm, a station radius of 85 ft, and

a symmetrical cross section having a diameter of about i0 ft and using

isotropic structural material with a Poisson's ratio of 0.3.

The dynamic response of such a rotating uniform toroid, with a

large centroidal-radius to cross-sectional-radius ratio, was found to be

divided into two uncoupled motions: motion in the plane of the _entroi-

dal line of the cross sections, and motion perpendicular to the plane.

The inextensible motion in the plane consists of radial motion

and rotational motion about axes parallel to the spin axis. The natural
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modesof vibration are sines and cosines of n7, where n is an inte-

ger for continuity. The natural frequency was found to be

Pn -
n [ (n2 - 1)2 + _2(n2 - 3)]

(n 2 + 1)l/2 [m(7)R3/EIy b

1/2

(n _ 2) (8.12)

where

= angular velocity of spin

m(7 ) = cross-sectional mass per unit central angle 7

R = radius of the centroidal line of the station

EI = flexural rigidity of the cross section about an axis

Yb

parallel to the spin axis.

However due to Coriolis forces, the in-plane vibration was not

stationary with respect to the station but precessed about the ring with

a frequency

2_n (8.13)
APn- 2

n + 1

Since the in-plane motion is uncoupled from the motion to be controlled,

it was unnecessary to consider it further.

The motion perpendicular to the plane consists of deflection

parallel to the spin vector coupled with twist about the centroidal line,

proportional to the deflection. As before, the natural modes of vibra-

th

tion are sines and cosines of n7. For the n natural mode of vibra-

tion, the ratio of twist to deflection is given by

2
B = _ n__ EI (8.14)

n R _I
2

i + _ n
EI
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where

_I = torsional stiffness of the cross section about the centroi-
P

dal axis of the cross sections

EI = flexural rigidity of the cross section about the radial axis.

th
The natural frequency squared of vibration for the n mode is

given by

[¢n2(2 1 - 1) RB n + n + (8.15)Pn =

where

= m(_)R3 (8.16)
EI

For a symmetric cross section of isotropic structural material,

the above expressions reduce to

2

n 2 + ff _f8.17 _jB
n R 2

l+ o'+ n

2 n2(n 2 - 1) 2
n2_ 2+ (8.18)

Pn _(n 2 + 1 + if)

where _ represents Poisson's ratio.

these quantities are

For our example, the values of

RB = -2.3 +
n

(8.19)

2

4 <Pn 4
n _ m _< 50n

- 2 -
(n _ 3) (8.20)
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where the range of frequencies corresponds to the range of stiffness-to-

weight ratios of the structural material.

For the high-stiffness materials we used an equivalent struc-

tural damping ratio _n of 0.02 for each mode, while for the low-

stiffness materials we used a value of 0.2 in our numerical calculations.

2. The Rigid-Body Equations

Following the approach of Lange [Ref. 39], the rigid-body equa-

tions of angular motion about axes in the plane, were transformed into

a single vector equation in the body axis system. The resultant equa-

tion is

+ a2_ = Q (8.21)

where

= the vector angle in body-fixed coordinates of the spin axis

to an inertial frame

Q = the vector moment in body coordinates divided by the station

moment of inertia about a diameter.

It should be observed that for our case, where the station moment

of inertia about the spin axis is approximately twice that of the moment

of inertia about a diameter, the natural frequency of the rigid station

is once per revolution. Thus from an inertial reference frame, the axis

of the spinning station may take up any fixed angle, which would appear

as a once-per-revolution angle modulation as seen in a body-fixed

reference frame.

3. The Control System

Equation (8.21) is the vector equation for two uncoupled oscil-

lators. For these simple systems, it is conventional to employ position

and rate feedback to design a continuous position servo. The desired

quantities _ and _ can readily be obtained from a star tracker, sun

sensor, inertial platform, or similar device. If we obtain _ by using
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body-fixed rate gyros, we must also add

relation:

according to the following

_t = q - _2 × _ (8.22)

where q is the in-plane angular velocity vector.

Since the various methods of obtaining _ are equivalent--

insofar as the analysis is concerned--if the sensors are placed at the

same location, we postulated that _ is derived from the star-tracker

signal as pure rate. (We indicated earlier the modifications induced

by using a rate circuit.)

As seen from Eq. (8.22), _ inherently is related to _, and

the analysis shows that it is only necessary to employ _ in the feedback

path. The employment of _ feedback simply serves to raise the rigid-

body frequency of oscillation above _. Thus the remainder of the

analysis was concentrated on velocity feedback.

Note that a portion of the velocity feedback (that proportional

to q) could be supplied by a body-fixed rate damper. If the rate

damper is operated alone, angular rates of the spin axis would decay

with a twice-per-revolution oscillation. In this case any fixed direc-

tion of the spin axis would suffice, since a rate damper does not con-

trol the orientation of the spin vector.

4. Control Forces and Moments

Two basic arrangements were considered for the control force

(or moments): (1) orthogonal pairs as shown in Fig 8 ( or which con-

trol forces and moments give identical results), and (2) a single con-

trol moment for each axis with the moments applied at the same location

(e.g., use of a single control moment device).
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C. RESULTSFORTHESPINNINGSPACESTATION

i. Balanced Control Forces or Moments

a. Lowest Excited Mode (n = 3)

Considering just the first excited flexible mode (n = 3),

the following results were obtained for K = 0:
P

(i) S in_le-Sensor Package. Without structural damping it

is impossible to find a position that will stabilize the third flexible

mode using a single-sensor package. The minimum third-mode structural

damping ratio _3 for marginal stability is roughly in the range

0"03_co < _3 < 0"3_co (8.23)

where the low portion of the range is for materials of high structural

stiffness. As Eq. (8.23) requires for _co _ 0.7, higher values of _3

than can reasonably be expected, it appears that _co would have to be

lower than the desirable range of 0.7 to 0.8 to achieve even marginal

stability with a single-sensor package. Therefore separate sensor loca-

tions for each control axis were investigated.

(2) Two Sensors without Structural Damping. If the _x

sensor (sensor that controls motion about the body-fixed x axis) is

placed at 7 = 90° or 270 ° , and the by sensor is placed at 7 = O°

or 180 ° , the system is uncoupled and stable for all values of gain.

If the sensors are symmetrically placed about the

diagonals (7 = ±45°), the regions of stability extend, for any value

of gain, approximately 28 ° to each side of the above locations for a

space station with a symmetric cross section and isotropic structural

material.

If the sensors are kept 90 ° apart, the stable region

may extend nearly 50 ° to either side of the above locations, depending

on the values of the gain.

If the sensors are placed symmetrically about 7 = O°

or 90 ° , there is a stable region of about ±20 ° width about the locations

where the sensors are 90 ° apart, for rate gains of
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K v = 2_c ° < 0.15P3 (8.24)

However, this region is poorly damped for all stable values of gain as

shown by the root locus plot (at the center of this region) of Fig. 15.

Therefore, it is recommended that the Px sensor be

placed in the vicinity of 7 = ±90° and the by sensor in the vicinity

of 7 = 0°, 180°. These locations, for which the control axes decouple,

are equivalent to placing each of the sensors at one of its corresponding

control forces.

b. Stability of the Higher Modes

Using the general method, stability of the higher modes

(n _ 5) was investigated for the _ sensors placed at the points where

the two axes of control uncouple, which is the most desirable position

for the third mode. It was found that without structural damping, all

of the higher modes were stable for these positions of the _ sensors.

In fact it was found that because the effective gain k' is proportional

to _/Pn' the application of control had little effect on the higher

modes.

2. Effect of Unbalanced Control Forces or Moments

Using the general method, it was found that, for the preferred

locations of the sensors at one of their points of control, the system

can tolerate up to a 15 to 30 percent imbalance of forces or moments

about each axis (depending upon structural stiffness and damping) with-

out destabilizing the even modes.

For small gains the imbalance had no

effect on the odd modes. Based on

results of this study, a composite

diagram of allowable actuator imbal-

ances and discrepancies in sensor

locations from their corresponding

points of control may be assumed to

be as shown in the adjacent sketch.

ALLOWABLE PERCENT
FORCE OR MOMENT
IMBALANCE PER AXIS

I ,LOW-STIFFNESS

130 / STRUCTURAL MATERIAL
/HIGH-STIFFNESS

,_///_l 15/./_ STRUCTURALMATER I AL

-28 28 ° VARIATION
IN SENSOR

LOCAT I 0 N

STABLE, .50
REGION
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If only a single unbalanced force or moment is used for control

about each axis, so that the forces or moments for the two axes are

orthogonal, we find that all the modes (both even and odd) are excited,

but that they will be stable and reasonably damped if for each axis we

place the sensor and the control force or moment at the same point.

If we locate the moments for the two axes at the same point, we

find that the system is stable provided we put the sensors there as well.

However, all the flexible sine modes are highly excited by the control,

and therefore we cannot consider it a satisfactory solution.

D. RECOMMENDED LOCATIONS FOR THE FORCES AND SENSORS FOR THE SPINNING

SPACE STATION

Based on the preceding considerations, the recommended configuration

for the control forces and sensors is as follows:

I. For each control axis a balanced pair of control forces or moments,

located on opposite sides of a station diameter, should be employed.

The controls for the two axes should be orthogonal.

2. The sensor for each axis should be located at one of its corre-

sponding control forces or moments.

3. A rate network or filtered rate should be employed in place of pure

rate, in order to further reduce the flexible-mode response for the

higher modes.

With this arrangement, the system is stable and only the odd flexible

modes (n = 3, 5, 7, ...) are excited. The excitation of these modes is

small and diminishes rapidly as the mode number is increased.
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IX. CONTRIBUTIONS OF THIS STUDY AND SUGGESTED FUTURE WORK

A. CONTRIBUTIONS

As set forth in the introductory chapter, the principal contributions

resulting from this investigation are as follows:

i. Development of the basic form of the equations of motion of flex-

ible vehicles, from which the equations of forced motion of spin-

ning pressurized toroids and the determination of their natural

frequencies can be deduced.

2. Indication of a general method of approach, and derivation of

simple formulas, for quickly estimating the stability, roots, and

real-time response of flexible vehicles employing multiaxis linear

control systems.

3. A general solution to the problem of where to place the sensors,

control forces, and moments for stability of a flexible, spinning,

toroidal manned space station.

4. Physical interpretation of the effect of flexibility on a control

system, to provide a guide to the design or study of the control

of flexible vehicles.

5. Discovery that the Coriolis forces induce precession, relative to

the spinning toroid, of the natural in-plane inextensible vibrations.

B. SUGGESTED FUTURE WORK

The following areas are suggested for further exploration:

i. Study of the response of the system to internal and external dis-

turbance forces.

2. The detailed effects of gyroscopic coupling associated with control

moment devices.

3. Application of the root perturbation approach to different space

station configurations and other vehicles such as boosters, mis-

siles, and rockets.

4. The effects of discontinuous and nonlinear control on flexible

vehicles.

5. The possibility of obtaining a general approach (similar to that

derived here for force and sensor coupling) for structural coupling

between control axes, as might occur if we include the effects of

the hub on the space station but retain the toroidal mode shapes.

6. The effects of rotary inertia as applied to the space station.
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7. The general problem of the effect of Coriolis forces on the free

vibration of an arbitrary spinning vehicle.

C. FURTHER COMMENTS

Some further comments on the assumptionsemployed in this study are

in order here.

i. Rotary Inertia

By neglecting rotary inertia (i.e., assuming that the moment of

inertia of a cross-sectional element is zero), a number of phenomena were

bypassed. One of the results of neglecting rotary inertia was that the

ratio of the station moments of inertia about the spin and in-plane axes

is C/A = 2. If rotary inertia is included, then for our space station

example, this ratio would be approximately 1.997. If the hub is included,

the ratio would be even somewhat less.

For a more general C/A, Eq. (C.4) of Appendix C would be

C ej_
_- _ j_=Q

(9.1)

yielding the following vector equation for the star-tracker angle _:

_ C (9.2)

Writing this in component form, we have

_x - _y(2- _)Q + (_ - l)_2_x : Qx

+ - _ _ty = Qy

(9.3)

(9.4)
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Applying rate and position feedback control, as previously, we

obtain (for zero reference input)

(9.6)

Thus the characteristic equation is given by

s 2 )+ K s + _Dco
V

gs
-0s _ )I

s 2+ K s + Dco
V

: 0 (9.7)

where

g : 2 _ (9.8)

Equation (9.7) yields

2

+K s +pc ° + g s
V

= 0 (9.9)

For K = 0 and g small
V

s _ +JPco +-- 2Pc °

(9.10)

so that the natural frequencies of the rigid mode are slightly removed

from the uncoupled (C/A = 2) case.
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Equation (9.9) can be factored into

($2 2 )( )+ K s + + jgs s 2 2
v Pco + KvS + Pco - jgs = 0

(9.11)

or

Ksv sv+ 2 2 + 2 2

s + Pco + jgs s + Pco jgs/

= 0 (9.12)

which can be approximately rewritten with the denominators factored as

Kv s }

Kv s }'x  /0co 0
(9.13)

For g small, these factored characteristic equations yield

only slightly different roots than the case where the rotary inertia was

neglected. As we have seen earlier, the flexible-mode roots are very

little affected by the rigid-mode conditions, so that these small changes

in the rigid-mode roots will have a negligible effect on the roots asso-

ciated with the flexible modes.

For g large, as might occur if we had a very large hub, it

might be worthwhile to modify the control equations to take the rigid-

body axis coupling into consideration as was done by Lange [Ref. 39].

For such a modified control system, it would be necessary to modify our

perturbation analysis, as was done for the lead-lag network, to obtain

the new flexible-mode roots. If we follow our previous approach, new

mode shapes based upon the new configuration would be required for this

case. A way to circumvent this is to (1) employ the toroidal mode shapes,
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(2) consider the hub rigid and the spokes represented by weightless beams,

and (3) match forces, moments, and deflections where the spokes join the

toroid. In such an analysis, we would have structural coupling between

the mode shapes for the two axes, as well as coupling due to control,

and again a new perturbation analysis would be necessary.

2. Response of the System to Larye Star-Tracker Angles

As can be determined from Appendix A, the form of the vibration

equations is unaffected by large reference angles. Similarly, the sensor

feedback of the flexible motion is independent of the reference angles of

the rigid body. Thus the character of the flexible motion is unchanged

by large angular motions of the rigid body.

If the vibratory motion were to exceed the linear range, we would

be in the structural yield region so that the response would be unsatis-

factory. Thus for the purposes of analysis, use of the linear equations

for the flexible motion is satisfactory, and the problem of large angular

motions of the body is primarily a rigid-body rather than a flexible one,

as long as the applied forces or moments are sufficiently small such that

the flexible motion is in the linear range.

- 123 -



APPENDIX A. BASIC FORM OF THE EQUATIONS OF MOTION OF FLEXIBLE VEHICLES

In this appendix we indicate the basic form of the equations of

motion of flexible vehicles. Specifically, we show that for a wide

range of conditions, the rigid-body motion and the flexural motion are

uncoupled, except for the coupling that might occur through the applied

forces.

i. Free Vibration about Equilibrium

If we consider a generic mass particle,

law of motion we have

p dV, then from Newton's

padV- p c.
m.

A }+ _ X x + + w x + + Zkr + 2_X dV
o o

= _el + _O + d-F (A.I)

where

H

p = mass density

V = volume

c.m.

r
o

= acceleration of the center of mass (c.m.) of the vehicle

= the undeflected vector position of the mass particle with

respect to the vehicle, measured from the vehicle center

of mass

A

Zkr = total elastic deflection

_el = the elastic force acting on the particle

dF = the steady state force acting on the particle, such as
o

internal pressure

D

dF = variable portion of the forces acting on the particle
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For the equilibrium condition at a constant spin velocity, _, Eq.

(A.I) can be written as

-- o

p X X + = Lel(Zkro) + d--V-
(A.2)

m

where Zkr° is the equilibrium deflection and Lel is a linear vector

operator involving Zir and its partial derivatives with respect to r.

If we consider small perturbations about the equilibrium condition,

by letting

A: _ + Zkr (A.3)
o

r = r + Zir (A.4)
o o

0_ = _2 + Z_ (A.5)

then Eq. (A.I) reduces to

[P ac.m.
+F_x ($xT) +_x (_x_)

_x (FxT) +_

+ _) X "r + _ X _ + _ + 24T_)X _] = + Lel (_) + + d--V

(A.6)
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or

[2 +_x (_xr)P c.m.

-_x(_xT)+_xr+_x_+ = L(_) + d--_-

(A.7)

where we have defined

(A. 8)

For free vibration about equilibrium, we have

_2_(_,t)
p = L(_) (A.9)

_t 2

If we let

flr = T(t) w(r) (A. i0 )

Eq. (A.9) takes the form

_(T) _(t) = I[_(T)] T(t) (A. II )

tWe will assume in the remainder of this appendix that this Coriolis term

is insignificant. When the Coriolis term is significant, we no longer

have the equation of free vibration in the simple form of Eq. (A.9) and

special approaches must then be employed in its solution. One such

approach will be illustrated later by the treatment of the in-plane

motion of the space station. Of course the Coriolis term could be

retained as a forcing term and Zkr expanded in terms of the mode shapes

which were obtained by neglecting the Coriolis forces, as in Eq. (A.25).

However, lack of suitable orthogonality conditions causes the equations

for the modal generalized coordinates qn(t) to appear in coupled form

rather than in the desirable uncoupled form of Eq. (A.41).
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Equation (A.11) is satisfied for T's of the form

T(t) = T e ipt (A.12)
o

yielding the equation for w

_[_(_)] + p2p_(_) : 0 (A. 13 )

2

If we take two values of the eigenvalue p , and their corresponding
m

eigenfunctions w, that satisfy Eq. (A.13) for the boundary Conditions

appropriate to the particular flexible vehicle, we have the equations

[Wn ] 2-- --(r) + Pn Wn(r) p = 0 (A. 14 )

w )] 2 wCr) 0 (A. 15)E m(r + Pm P=

Taking the dot products of Eq. (A.14) with w (r) and Eq. (A.15)
m

with w (r) and integrating over the volume yields
n

_Wm(r) [Wn(r) ] 2 _ -- ----p• L dV + Pn Wm(r) " Wn(r) dV = 0

V V

(A.16)

>1 "f ....(r) • L (r dV + Pm p Wn(r) • Wm(r) dV = 0

V V

(A. 17 )

Subtracting Eq. (A.17) from Eq. (A.16) gives

(pn2 -pm 2) _p wi(r)* wi(r ) dV = _ I_n(r)• L(L)- win(r)• L(_n)] dV

V V

(A.18)
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If we integrate the right-hand side by parts, we usually find that

(since the eigenfunctions satisfy the boundary conditions) the right-hand

side is equal to zero. Thus we have the modal orthogonality conditions

B mp Wn(r ) • Wm(r ) dV = 0 m _ n (A.19)

V

Using Eq. (A.19) in Eq. (A.16), we also obtain

Wm(r ) • L dV = 0 m _ n

V

(A. 20 )

In addition, because there are no external forces or moments induced

by the free vibrations of a flexible vehicle, the linear momentum and

the angular momentum are unaffected, thus yielding the relationships

Wn(r ) dV = 0P

V

(A.21)

x pWn(¥) dV = 0
V

(A.22)

m

where we have measured r from the center of mass of the vehicle.

From Eq. (A.13), it is apparent that Eqs. (A.21) and (A.22) also

imply that

_L[Wn(r)] dV = 0

V

(A.23)

r

V
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For forced vibration problems we can employ a modal expansion for

the deflection

N

m=l

(A.25)

and solve for the generalized coordinates qm(t).

2. Forced Vibration

For forced vibration we may employ Eq. (A.25) in Eq. (A.7) and discard

products of small quantities to obtain

xT)

+ ¢0 X r + _m(t) Wm(r = qm(t) L (r +m

m=l m=l

(A. 26 )

Integrating Eq. (A.26) over the volume and using Eqs. (A.21) and

(A.23), we obtain the rigid-body equation of translation

M a = F
o c.m.

(A.27)

where

O = p dV,

V

the mass of the vehicle (A.28)
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Similarly, taking the cross product with _ and using Eqs. (A.22)

and (A.24), and the center-of-mass condition, Eq. (A.26) yields the

rigid-body equation of angular motion about the center of mass

? • - - (7 5)(D + CO X " =m _
c.m.

(A. 29 )

where Mc.m. is the external moment about the center of mass and I is

the inertia dyadic about the center of mass.

Taking the dot product of Eq. (A.26) with 7 (7), integrating over
n

V, and utilizing Eqs. (A.19) and (A.20), we obtain the vibration

equations

Mnq n + Knq n = Fn - _ p[_ X (_ X r) - _ X (_ X _)] • wi(_ ) dV

V

p[co X r] • Wn(r ) dV

V

(A. 30 )

where

M
n f - _ [nth-mode ]= p w n(r) " w n(7) dV = [generalized[

V Lmass A

(A.31)

K
n

f .... Fnth-m°de 7
= - J Wn(r) " L[Wn(r)] dV = lgeneralized l

V Lspring constant]

(A. 32 )

F
n

f _ -- -- rnth-mOde 7

= $ _ " Wn(r) dV = |generalized I

V [force J

(A.33)
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Equation (A.30) can be rewritten as

2 1 | -- --
qn + Pnqn = Qn " _-- J p[_ x (_ x r) - _ x (_ x _)] • Wn(r ) dV

n
V

j-

- j p[ xr] • w (r) dVn

n

V

(A.34)

where

K
2 n

Pn - M - square of nth-mode natural frequency of vibration (A.35)

n

F
n th

Qn - M - n -mode forcing function (A. 36)
n

A simple approach to determine the nth-mode natural frequency is to

equate the maximum potential energy to the maximum kinetic energy of the

th
n mode to obtain a version of the Rayleigh equation

2V

2 n (A.37)
Pn - 2

qn Mn

th
where V is the potential energy of the n mode.

n

If we call the spin axis z, expand the integrals in Eq. (A.34) and

make use of Eqs. (A.5) and (A.22), we obtain

2 (A.38)
qn + Pnqn : Qn +fk_Y"_x(Wzx + Wxz ) +92kOy(Wzy + Wyz) - 29ZY'_z(Wxx + Wyy)
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where we have defined

n

V

(A. 39 )

Observe that if the vehicle is not spinning (_ = 0), or if the

deflection is (i) only in the direction of the spin vector or (2) due

to pure torsion about the spin axis, then Eq. (A.38) reduces to

2

qn + Pnqn = Qn (A.40)

where we employed Eq. (A.22) in the last two cases.

If we include equivalent viscous structural damping forces propor-

tional to the modal deflection, Eq. (A.40) takes the form

qn + 2_nPnqn + Pnqn = Qn
(A. 41 )

where _n is the equivalent viscous damping ratio.

In this study we only deal with systems whose modal equations are of

the form of Eq. (A.40) or (A.41). However, it is interesting to note

that for those systems for which the Coriolis forces are negligible, the

resulting general equation, Eq. (A.38), can also be put in the form of

th
Eq. (A.40), except that the new n -mode forcing function contains terms

proportional to the rigid-body forcing function and its derivative. This

may be demonstrated as follows.

Expanding Eq. (A.29) and making use of Eq. (A.5), we have (for x,

y, z the principal axes)

M
xA

2_ + 2kn a - - Q (A.42)
x y I x

X

M
A

ZR_ - Zkn b = --_ _ Q (A.43)
y x I Y

Y
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M

Z_ zA
-- _ QZz I

Z

(A. 44 )

where

I - I

A z y_a -
I
X

(A.45)

I - I
A z x

b - fl
I

Y

(A.46)

Substituting for c_ in Eq. (A.43) from Eq. (A.42), and for
Y x

Eq. (A.42) from Eq. (A.43), we obtain

in

Z_6 + abLk_ =-aQ +- Q (A.47)
x x y x

Z_y + abL_y = bQ x + Qy (A.48)

Multiplying Eq. (A.47) by _, Eq. (A.48) by _, and the derivative

of Eq. (A.44) by v, adding them to Eq. (A.38), and defining

= + vLk_ (A 49)
qn qn + 2_x + _y z

we obtain

qn + Pnqn = Qn + Z_ WX ZX
( 2)]+ Wxz)g - h ab - Pn a}kQy + }kQx

[ (+ Zk_y (Wzy + Wyz)g - _ ab - Pn + b_Qx + _Qy

- Wyy) 2] •+ _ 2g(W + + Vpn + VQz
y xx

(A. 50 )
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If we let

(W + W )2
ZX XZ

2

ab - Pn

(A. 51)

_ (Wzy + Wyz)a
2

ab - Pn

(A. 52 )

2(w + w )a
xx yy

2

Pn

(A. 53 )

then Eq. (A.50) reduces to

2_

qn + Pnqn = Qn + b_Qx - a)kQy + 2_Q x + _t_Qy + v_Q z

_~ (t)
: Qn

(A. 54 )
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APPENDIXB. EQUATIONS OF MOTION OF THE SPACE STATION

In this appendix we derive the equations of motion of a spinning,

pressurized, toroidal space station. In the first section we discuss

the mathematical model and the assumptions, we indicate how the required

coordinate transformations are obtained, and we derive the total linear

acceleration of the origin of the local body-fixed axes. Then in Section

2 we derive the equations of motion of an element of the toroid, using

the equations of equilibrium approach, and observe the the motion divides

itself into uncoupled in-plane and out-of-plane motions even when spin

and pressurization are included. In Section 3, employing the techniques

of Appendix A, we obtain the solutions to the free vibration equations,

and present the equations of forced motion in terms of the mode shapes

for the out-of-plane motion. And in the last section we determine the

range of values of the natural frequencies of vibration for our example

space station.

i. Fundamentals

a. Mathematical Model and Assumptions

(i) The mathematical model of the space station chosen for

analysis is a uniform, flexible, circular toroid, whose overall diameter

is large in comparison with the diameter of its cross section. The

principal axes of the cross section are considered to be (for the unde-

fleeted case) in the radial and spin axis directions.

(2) Since the cross-sectional diameter of the toroid is small

in relation to the overall diameter, the inertial forces associated with

the motion of a cross section can be considered to be due to the motion

of the center of mass of the cross section. Thus, as is common in beam

vibration theory [see for example Tong, Ref. 42, p. 247] when the diameter

of the cross section is small compared to the length of the beam or the

wavelength of vibration, the dynamic effects of the rotary inertia of

the cross section will be neglected.
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(3) All vibrational motions, changes in spin speed, or departure

of the spin axis from an inertially fixed direction will be assumed small,

so that higher order terms consisting of powers or products of these

motions and their derivatives may be neglected as having only second and

higher order effects.

(4) The stresses due to deflection will be assumed to be approxi-

mately proportional to the additional curvature or twist due to strain.

This is consistent with simple beam theory, which is good when the cross-

sectional diameter of the beam is small compared to the length or radius

of curvature of the beam and when the distortion of the cross section is

small compared to the rotation of the cross section.

(5) As the frequencies associated with gravity gradient effects

are much smaller than the spin velocity or flexural frequencies, we will

neglect gravity gradient effects for this study and will consider our

vehicle to be effectively in inertial space.

Based on these assumptions, we have the mathematical model shown

in Fig. 30. The axes x, y, z are fixed to the rigid vehicle and act

as a point of departure for the flexural motion. These axes (x, y, z)

are referenced to the inertially fixed axes X, Y, Z by the Euler angles

$, e, _. The vehicle spin axis is z.

Following the notation of Love [Ref. 34], the local undeflected

axes fixed to the rigid body are Xo' Yo' Zo.

body-fixed axes are Xb' Yb' Zb'

b. Coordinate Transformations

Using the flow diagram method of Curtis [Ref. 43], Fig. Sl pre-

sents the Euler-angle flow diagram from the inertially fixed axes to the

deflected local body axes. The coordinate transformations required in

this study can be read by inspection from this diagram.

The next to the last three rotations shown in Fig. 31 are the

components of the small vector angle _, which specifies the rotation

of the deflected local body-fixed axes b to the undeflected local

axes o. For small deflections, _ can be written in terms of the

direction cosines as

The corresponding deflected
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FIG. 30. MATHEMATICAL MODEL OF A SPINNING TOROID.
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FIG. 31. COORDINATE TRANSFORMATION FLOW DIAGRAM.
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/c°sZo /t
o_=]oos_zbXo_I

ic°s (Xb,Yo) j

(BI.I)

Substituting for the direction cosines from Eqs. (6), page 447

of Love [Ref. 34], we obtain _ in terms of the deflections (u, v, w)

along the o axes and the twist, _, about the z axis, as
0

m

_=

0

bv

au w

Ts+_
(B1.2)

Since the angle is small, the components can be considered to be

in either the o or b coordinate systems.

The last three rotations shown in Fig. 31 are the components of

N--the small vector rotation of the body axes over the arc length ds--

due to the components of curvature and twist, _, _', _. Thus

b

(BI.3)

For an originally untwisted ring of radius R, we have

_o =

[_o

(BI.4)

t
A letter under a vector denotes the coordinate system in which the com-

ponents are expressed.
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Thus from Eqs. (6), page 447 of Love [Ref. 34], we have

T

_ d2v

R ds 2

1 d2u dw

ds 2

d_ 1 dv

_s + Rds

(B1.5)

b

c. The Total Linear Acceleration of the Origin of the Local Body-

Fixed Axes

In addition to using the notation that a letter under a vector

denotes the coordinate system in which the components are expressed, we

will now use the notation that a letter above a vector indicates time

differentiation with respect to that coordinate system. Thus I above

a vector indicates its time rate of change with respect to inertial

space.

The total linear acceleration of the body-fixed axes b in the

o coordinate system is thus expressed as

a b = a c

O O

I

+ _ X (R + r) + _ X [_ X (R + r)] + 2_ X Vre I + are 1

0 0 0 0 0 0 0 0

(BI. 6 )

where (using Fig. 31):

= the angular velocity of the rigid body

o in o coordinates

-(_ cos 7 + _ sin 7)}

x Y

z

cos 7 - _ sin 7

Y X

(BI. 7 )
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m

a
c

o

r =

o

= acceleration of the origin of the rigid-body axes:

-(a c cos 7 + ac sin 7)

x y

a
c
z

(ac c°s 7 - a sin7)c

y x

x, y, Z

(B1.8)

(BI.9)

Vre I = = r

o o

(BI. I0 )

are I = = r

o o

Considering all quantities small except co
z

can thus be written in component form as

(BI .ii)

and R, (re.s)

m

a b =

o

a
c

z

a c

Y

cos 7+ a sin 7) +co2R co2- u+2_o *+_
C Z Z Z

x y

- R(CSy_cos 7-&x sin 7) +_0zR(C0x- cos 7+C0y sin 7) +0+

2cos 7 " a sin 7 +¢o R-Co w- 24o fl+'_
C Z Z Z

X

(Bl.12)

The total acceleration of the body axes in the

is given by

a--'b = a--b- _" × a b

b o o o

Xb' Yb' zb coordinates

(BI.13)

Using Eq. (B.I.2) for _ and noting that all quantities are small except

2
R<o so that their products may be discarded, we obtain

z
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a b =

b

!
-|a cos 7 + a

\ c c
x y

2 R 2sin 7 + - _ u + _ @ + H
z z z

__2+ a - R(_ cos 7 -
z c y x

z
sin 7) + _zR(_ x- cos 7 + c9 sin 7) +

Y

+ a cos 7 - a
z c c

y x
sin

(BI.14)

2. Derivation of the Equations of Motion of an Element of the Toroid

As indicated by Lang [Ref. 33], "forced-motion solutions of vibrating

rings have been given little consideration." Therefore, we will return

to Love and extend his basic derivation in a somewhat modified form to

fit our problem. Because of the dimensions of the toroid we are con-

sidering, it behaves essentially as a ring and therefore has often been

referred to as such in this report. In the following derivation we con-

sider the principal axes of the cross section to be, in the undeflected

case, in the radial and spin-axis directions. First we derive the

linearized equations of equilibrium for an element of the ring. Then

we substitute for the stress couples in these equations in terms of the

curvature and twist due to deflection. In the third subsection we per-

turb the equations about a constant spin velocity and internal pressure,

and obtain the equations of motion of the element as uncoupled sets of

inplane and out-of-plane motions. For convenience we make a change of

variable from the distance s around the rim to the nondimensional

central angle, 7.

a. Derivation of the Equations of Equilibrium of an Element

Following the nomenclature of Love, we will consider an element

of the ring of length ds, as shown in Fig. 32, where Xb, Yb' z b are

body-fixed orthogonal axes. Assuming that a cross section rotates with-

out appreciable distortion:

z b is the axis along the deflected centroidal line of the ring

x b is the axis originally along the radius (directed inward)

Yb is the axis originally perpendicular to the plane of the

undeflected ring.
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35584

x b

FIG. 32. FORCES AND MOMENTS ACTING ON AN ELEMENT OF THE RING

OF LENGTH ds.

The force equation for the element can be written using Newton's law as

force = (mass) × acceleration

or

(B2.2)

whe re

m = mass per unit arc length s along the centroidal line

ds = external force vector acting on the element

= (N, N' T) = traction on the cross section
9
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Discarding terms in (ds) 2 and dividing through by ds yields

-_ -_ _
f" + _S X T + -_S = m a (B2.3)

Writing Eq. (B2.3) in component form, we have

fx b + _s - N'q7 + TE' = maxb

f + - TE + NT = ma (B2.4)

Yb _ Yb

fz b + _s - N_' + N'_ = mazb

U_ing the D'Alembert principle, the moment equation for the element

can be written as

]_sds = 0 (B2.5)

or for ds small, we have from Fig. 32:

where

-5-x ¥+_y
ds _ ds ]_DAL

+-_x(¥-_-)+--8_--s ds=O (B2.6)

ds = external moment vector acting on the element

= (G, G', H) = stress moment vector acting on the cross
S

section

_DAL

ds = DTAlembert moment vector acting on the element due to

rotary inertia.
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Discarding terms in (ds) 2, and dividing through by ds and

noting that in the limit

m

ds
- _ = unit vector along z b (B2.7)

ds z b

we have

_DAL

s -- (B2 8)
_1.+ "-_'_s + ¢" X M + _" X W + = 0

s z b _

Neglecting rotary inertia we can write Eq. (B2.8) in component

form as

71Ixb + _S - G'%- + H_' - N' = 0

7)lyb + -_s = lie + GT + N = 0

(B2.9)

_]z b + _s " C_' + G'_: = 0

b. Substitution for the Stress Couples

Using the ordinary approximate theory used by Love, the stress

couples are related to the curvature and twist by the following equations

for isotropic material

G = - %)

G' = EI (/<:' - go )
Y

(B2. I0 )
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where

E = Young's modulus of elasticity

= the shear modulus of elasticity

I = area moment of inertia about x_
x D

I = area moment of inertia about v_
Y

I = area moment of inertia about z_,
P D

Noting from Eqs. (B1.4) and (B1.5) that (_ - _o) , (_v - _ ), and
o

(T - T ) are small and that E and • are zero, we can substitute
o o o

Eq. (B2.10) into (B2.9) which reduces it to

+ EI + _IpT_" o -_lx b x _S

N' =0

o

lily b + Ely _s + N = 0 (B2.11)

)]]Zb + _Ip _s - EIx_'o = 0

From the first two of these equations we have

N' =_Xb + F,Ix _S + _Ip%_o

N = -9]] - EI

Yb Y 8s

_(_' - _, )
o

(B2.12)

Substituting Eqs. (B2.12) into (B2.4) and again noting that the

curvature and twist due to deflection and their derivatives are small,

and assuming that _ and 9_1 are on the average small, we obtain

Xb Yb
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_9]] _2(/_, - _O )Yb

fxb - _ - Ely _s 2 + TE' = maxb

x b _2 _IP _°f + + E1 _ + _s - T_: = ma
Yb _ x _s 2 Yb

(B2.13)

_(_' - _'o) _w

fzb + _:' 9TI + _:'EI + = mao Yb o y 8s _s z b

Using the last of Eqs. (B2.11) in the second of Eqs. (B2.13)

yields

_2(_, _, )
EI o + T_' = ma

x b Y _s 2 x b

Yb+ EI + ]__--; -TtC = ma
x Yb

(B2.14)

_(E' - Eo ) _T

fzb + _:'EI + = mao y _s 7ss z b

where we have defined

x b

Yb

z b

A
=f

x b

A
= f

Yb

A
= f

z b

Yb

_s

x b

+ -Sj-s - _:'_o
zb

(B2.15)
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Substituting for g, g', and _ from Eqs. (BI.4) and (BI.5) in

Eqs.(B2.11)and(B2.14)_efinanyhave

 )ma
- y \_S 4 + R _S3/ T + --_ + _ Xb

Yb x _s 2 _S 4 + R 3 R2 _S 2/- T\R _s2/

_b + -zR\_s 3 + R _s2/ _-- %

= ma (B2.16)

Yb

and

7nx b x _s - _s3/+ _tlp R _s

7[ly b y \_S 3 + R _S2/ N = 0

_,<,,x(L, +
9]]zb R 2 R _s21 _Ip \--_ R _S2/ 0

(B2.17)

c. Equations Perturbed about a Constant Spin Velocity and Internal

Pressure

If the ring is not vibrating, has no external forces, and is

A

spinning at constant angular velocity _ = _ about an axis at right
z

angles to the plane of the ring, then the conditions at every element

are the same. Thus all derivatives with respect to s are zero.

Employing this condition in the first of Eqs. (B2.16) and using the

accelerations due to spin from Eq. (BI.14), we obtain
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T _ m<R- u>_2 - f (B2.18)
R x b

where

f = -E'SP (B2.19)

xb

S = cross-sectional area

P = internal pressure.

Thus if we (1) consider R as the equilibrium radius under constant spin

speed _ and tension

v, w, fxb and fYb'

SP due to internal pressure, (2) define new u,

which are equal to zero at equilibrium, (3) let

A mR2_2T= + SP +AT (B2.20)

and

A (B2.21)
Z Z

where _T and Zko are small (e.g., external tangential forces are
Z

small), and (4) dispense with the equations for N and N', then Eqs.

(B2.16) and (B2.17) reduce to the two uncoupled sets:

Out-of-Plane Equations

(7)

_ -_ a

mx+ R \.-_--'_ + - '_-"4" - _7 2 x _)2/ x Yb

(B2.22)

R2_ (_
z b

EI x + _72 + EIx/ + \EIx _72

(B2.23)
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In-Plane Equations

_4u 53w _2 (r 52u
Y f (7) _/4 + _ny \ +_xb _z3 _2 AT v+ + _..._,jm = m a

Y Y x b

(B2.24)

53u _2 w mY _ (_) +--+--+_ =_a
z b _73 _7 2 Y z b

(B2.25)

In the above equations we have used the definitions

v

m
Y EI

Y

(B2.26

v m(Z)R 3
m -

x EI
x

(B2.27

where m(7 ) is the mass per unit angle, 7, and from Eqs. (B2.15),

using Eq. (B1.5), we have defined

v

f (7) af= (7
Yb Yb

(B2.28

x b x b
R (B2.29)

1

:f'Zb(7) _ fzb(7 + _ 07[yb(7)
(B2.30)

where f(7), _(7) are the force and moment, respectively, per unit

angle 7, and we have employed

s =R7 (B2.31)
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3. Equations of Motion

From Section 2, we observe that the in-plane and out-of-plane equa-

tions are decoupled.* However, coupling might be introduced by the

control system. To examine this possibility we make the following

observations: To control the angular motions of the spin axis, we apply

moments parallel to the plane of the ring, or, equivalently, forces

parallel to the spin axis. To first order, these moments or forces have

no effect on the in-plane motion. Similarly, to sense the angular motion

of the spin axis, we use attitude or rate sensors having input axes

parallel to the plane of the ring. Again to first order, these do not

sense in-plane motions. Therefore the only portion of the flexural

motion directly excited or sensed by the control system is the out-of-

plane motion and thus for the rest of this study we need only consider

the out-of-plane motion due to flexure. This flexure can be represented

by the linear deflection z(F,t) and the twist _(_,t) of the centroi-

dal line of the ring, as shown in Fig. 30.

Using the approach of Appendix A, we may solve the unforced equations

of motion for their natural frequencies and mode shapes of free vibra-

tion, and obtain the equations of forced motion in terms of their mode

shapes. Though we only present complete results for the out-of-plane

motion, it is interesting to examine the in-plane vibration because of

the Coriolis forces discussed in Appendix A.

a. Solution of the Unforced Equations of In-Plane Motion

The free vibration equations of in-plane motion are obtained

from Eqs. (B2.24) and (B2.25), by employing Eq. (BI.14) for the accel-

eration (considering the base plane fixed and rotating at constant

angular velocity _), as

_2u _

Y bt 2 m(,7) _,2, 4 _/3J + y \_72 + _ + U Y\

(B3.1)

This effect may be illustrated easily for the nonrotating case by taking

an inflated English bicycle tube and shaking it appropriately to produce

both rigid-body and flexural motions in each of the two regimes and

observing that the in-plane and out-of-plane motions are uncoupled.
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(B3.2)

Observe that Eqs. (B3.1) and (B3.2) are simply the in-plane com-

ponents of Eq. (A.9), with the Coriolis term of Eq. (A.7) included.

Love indicates that for the nonrotating case, the solutions to

these equations are separable into modes in which the centroidal line

is unextended and much higher frequency modes involving extension of the

centroidal line. As we do not intend to directly apply forces in the

in-plane direction for attitude control, excitation of in-plane motions

should be small, so we will only concern ourselves with the inextensible

modes.

The conditions for nonextension of the centroidal line is given

by Eq. (8), page 448 of Love, as

= U (B3.3)

Eliminating _T/_ between Eqs. (B3.1) and (B3.2) and making

use of Eq. (B3.3), we obtain

(ew
_6 2 _4 _2 + _2_ + 3y\_)4 _2/

-4_m _2w / '-_4w _2wh

Y _y_-_ + m + = 0 (B3.4)y \ t2 2  t2/

Equation (B3.4) is not separable, but noting from Love that the

eigenfunctions for the nonrotating case are sines and cosines of nT,

we shall seek solutions of the form

w(7,t) = Tl(t) sin n? + T2(t ) cos n7 (B3.5)
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Substituting Eq. (B3.5) in Eq. (B3.4) yields

In - 2 _[Tl(t ) sin n7 + T2(t) cos nT] 6 2n 4 + n + _2_ (n 4 3n 2
Y

 2(t) ]- 4_m i_ n7 sin n7yn cos -
L

+ m sin n7 + cos n in2+ i]

Y L _t2 _t2

= 0 (B3.6)

If we define the square of the natural frequency, neglecting the

Coriolis forces, as

2 A n2(n 2 1) 2 a2 n2(n 2 3) _
Pn = - + - (B3.7)

my(n2+ 1) (n 2 + 1)

and

we may write Eq. (B3.6) as

A 2_n (B3.8)
_Pn - (n2 + I)

._2Tl!t) _2T2(t)

8t 2 sin n7 + 8t 2 COS n - 2ZXpn L_ cos n 7 -_ sin n

2

+ Pn[Tl(t) sin nT+T2(t) cos nT] =0

(B3.9)

TObserve that the negative frequency (or instability) for the rigid mode

(n = 1) arises because we have assumed the base plane (and center of

rotation) fixed. The rigid-mode instability disappears if we consider

the coupling with the rigid base plane accelerations, _c" The first

two modes (n = 0 and 1) have zero bending frequency contributions and

are large and small rigid-body translations respectively. As this is

incorporated in the motion of the plane xy, we need not consider them.
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Since Eq. (B3.9) must hold for all 7, the coefficients of

sin n7 and cos n 7 must each be individually zero, so that we obtain

_W2(t)+ P_TI(t + 2lkPn _t - 0 (B3.10)

._2T2 (t)

_t 2
1 _Tl(t)

+ P_T2(t - 2ZlPn _ = 0 (B3.11)

Defining

T(t) _ Tl(t) + jT2(t) (B3.12)

we may write Eqs. (B3.10) and (B3.11) as

j2ZXPnT(t ) = 0
(B3.13)

Taking the Laplace transform of Eq. (B3.13) yields

Is 2 - 2jZ_PnS + pn2]T(s) : [s - 2jZkPn]T(O) + T(O)
(B3.14)

The roots of the associated characteristic equation are

s : j[APn +-Pny 1 - (APn/Pn)2 ]
(B3.15)

By defining

, A Jl - (_n/Pn)2Pn = Pn
(B3.16)
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t
these reduce to:

s = J(Pn + £XPn) J(-Pn + ZhPn)
(B3.17)

Thus we can write Eq. (B3.14) as

[s- 2jZ_Pn]T(0)+ T(0)

T(s) - Is - J(Pn + Z_Pn)][s" J('Pn'+ £_Pn)]
(B3.18)

Taking the inverse Laplace transform, we have

[ Ic ' Z_Pn nt) _p_ 1
T(t) = T(O) os pn z- j _-L-Y-Sill p + sin pn t exp (jZ_Pnt)

Pn

(B3.19)

Substituting from Eq. (B3.19) into Eq. (B3.5), we obtain

n L Pn + T2(O) PnJ sin pn t sin (n7 + ZhPnt)

{T2(0 ) cos Pnt + [[T2(4)Pn

cos (n7 + £XPnt)

(B3.20)

Observe that the presence of the Coriolis terms causes the fol-

lowing:

I. A reduction of the natural in-plane frequency Pn"

2. Coupling of the in-plane sine and cosine modes.

3. Precession of the in-plane vibration around the ring with the fre-

quency Zipn .

TReference 36 shows that for the case of a rotating disk, the Coriolis

forces produce coupling between the radial and tangential types of

vibration and that the radial vibration frequencies are increased,

whereas the tangential vibration frequencies are decreased.
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b. Summaryof the Differential Equations of Motion Considering

Out-of-Plane Vibration

We may conveniently summarize the differential equations of

%
motion as follows:

(I) Translation

M/
c 12_ _x<7) fo2_= d7 cos _ - f (7) d7 sin

Y
(B3.21)

fo 2_ fx(r) fo 2_ fy(rMY = dr sin _ + v ) d r cos
c

(B3.22)

2_e z
(B3.23)

(2) Rotation

+ 26}_ : _ fz(r) (sin r cos _ + cos r sin _) dr (B3.24)

Rfo2 - 2¢_ = _ _ fz(r) (sin 7 sin _ - cos 7 cos _) dr
(B3.25)

-R f02x v R f02_ _y(7 )- _ fx(r) sin r dr + _ cos r dr (B3.26)

(3) Out-of-Plane Vibration

•. 2 2 --|2n

qns + 2_nPnqns + Pnqns = M J0 fz(rv ) sin n7 dr _ Qns

TThe symbols are defined in Section b.(4).

(n > 2)

(B3.27
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2 2 fO 2_qnc + 2_nPnqnc + Pnqns = M fz(7) cos n7 d7 Z_"' " = Qnc
(n -> 2)

(B3.28)

where

f02__0 2z f sin d7 = f sin n 7 d7
n7

Z Z

2_ M'

f0 __x (n cos n 7 cos 7 + sin n7 sin 7) d7R

2_
Z

_02n
cos n7 d7 = f

Z

M !

-flY (n cos n7 sin 7 " sin n7 cos 7) d7
R

(B3.29)

cos n7 d7

_02_ M'
x (-n sin n7 cos 7 + cos n7 sin 7) d7

+ -f

+

2_ M'

f0 __Z (-n sin n7 sin 7 - cos n 7 cos 7) d7R

(B3.30)

and where we have used the following modal expansions for flexure:

N N N

Z(7,t) = _ qns(t)sin n7 + _ qnc (t) cOS n7 _ _ zn

n=2 n=2 n=2

(B3.31)

N

_(7,t) = _ Bnqns(t ) sin n7 +

n=2

N N

Bnqnc(t ) cos n7 Q _ _n

n=2 n=2

(B3.32)
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For isotropic structural material and a symmetric cross section

2 n2(n 2 - 1) 2 2_2
: + n (B3.33)

Pn _n(n 2 + 1 + 0")

B = - 1 (2 + _) (B3.34)

n R [1 + (l+ 0")/n 2]

(4) Notation

The symbols used in these equations are either defined by

Fig. 30 or are given below:

M = 2_ m(7 ) = mass of the station (B3.35)

MR- mass moment of inertia Of t,he t_)'B-. --_A
- 2 - station about a diameter

= m(7)R3 (B3.37)
EI

m(7 ) = mass per unit angle of the station rim

th
_._7) = equivalent force per unit angle in the i direction (includes

1

the actual force and the apparent force per unit angle due to

the position rate of change of the moment distribution)

.th
M!(7) = rate of change with respect to 7 of the moments in the l

1

direction

.th
f.(7) = force per unit angle in the 1 direction

1

th

_n = structural damping ratio of the n mode of vibration

th

Pn = natural frequency of the n mode of vibration

= Poisson's ratio

E = Young's modulus for the structural material
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I = area moment of inertia of the cross section about the radial

axi s

th
z (7,t) = deflection of the n out-of-plane mode of vibration
n

th

Bn = "--(_n/Zn) = ratio of twist to deflection for the n out-of-

plane mode of vibration

= spin speed, equilibrium value of _.

Observe that the natural frequency may also be obtained by

employing Eq. (A.37) as follows:

th

For our problem, the potential energy of the n mode can

be written for free out-of-plane vibration as

V 1 _0 2_ 1 _0 2nn 2 EI(_ - _ )2 R d7 += o n

2

_Ip(_ - "_o)n R d 7

- 2 _0 m(7)_2 zn d7

(B3.38)

where _ is the torsional rigidity of the structural material and I
P

is the polar area moment of inertia of the cross-sectional structure.

Using Eqs. (B3.31), (B3.38), (B1.4), (B1.5) and (A.31) in

Eq. (A.37) and noting that

Iw[ - z(7 ) (B3.39)

we obtain

2 n2(n2- 1)2 - + n2f_ 2 (B3.40)
Pn =

m[(EI/_Ip) + n 2]
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in which we have employed

S _-

n

2 [1 + )]n (_Ip/EI

R [i + (_Ip/EI)n2]

(B3.41)

For isotropic structural material

(B3.42)

and for a symmetric cross section

I

I =-/_
2

(B3.43)

so that Eq. (B3.40) reduces to Eq. (B3.33) as required.

4. Values of Parameters

An indication of the values of the parameters may be obtained as

follows:

a. Natural Frequencies of the Station

We will relate the natural frequencies of the station to the

spin speed _ which is the rigid-body frequency.

From Eq. (B3.33) we can write the ratio of the square of the

th

n natural frequency to spin speed as

2

0n2[  n21 2(1_2-n 1 + 2n + 1 + ff m(7) a2R R J

(B4.1)

For an artificial g level of one-third of an earth g, we

have that

m(7 ) _2R = m(7 ) g =
3 3

(B4.2)

- 159 -



where W(7 ) is the earth weight of the station cross section per unit

angle.

The structural area moment of inertia of the cross section for

a monocoque shell is given by

= 2 - 2\2R/
(B4.3)

where

A
d = diameter of the cross section

A A= structural area of the cross section.

However we may express A as

A - Ws(S) A_ Ws(7) (B4.4)

Ps Ps R

where

W (s) = weight of the structure per unit length of perimeter
s

Ps = weight density of the structural material.

Substituting Eqs. (B4.2) - (B4.4) in Eq. (B2.1), we have

2{Pn 2 3(n 2 -

_2-n 1 + n 2 1)2(d/2R)2
+I+ ff

(B4.5)

If we use nominal values of

w
s

W----(_ = 0.1

R = 85 ft × 12 _ I000 in.
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if=0.3

d = i0 ft X 12 = 120 in.

then Eq. (B4.5) becomes

2

Pn _ n2 [ 1 + 0.5 10-6(n2- 1)2 __E ]
_2 2 Psn +1.3

(B4.6)

For materials like aluminum, which have a high stiffness-to-

weight ratio

E 107 psi
--_ = 108 in.

Ps 0.I ib/in.3

(B4.7)

Thus using Eq. (B4.7) in Eq. (B4.6) to obtain an upper limit on

the frequency ratio, we have

+ (B4.8)
L n + 1.3J

A lower limit might be established by considering an E/p s of

1/50 in Eq. (B4.7) to obtain

2

Pnn2[ 112]--_ 1 +

_2- 2n + 1.3J

(B4.9)

2 2

Thus for n __ 3, we may roughly approximate the limits of pn/__ as

2

4 Pn n 4
n <-----<50

- _2

n _ 3 (B4.10)
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2 2

As a check on this range of pn/_ , we may proceed as follows.

We may write the equilibrium tension along the centroidal line of the

cross section as

T = m(7) R_ 2 + SP (B4. ii )

where

S = area of station cross section

P = internal pressure of station.

The elongation per unit length along the centroidal line is given by

e m

T

AE
(B4.12)

Thus using Eqs. (B4.2) and (B4.12) in (B4.11), we have

T W(7)/3 + sP
AE - -

e e
(B4.13)

Using Eqs. (B4.2), (B4.3) and (B4.13) in Eq. (B4.1), we obtain

2Pn 2 (n 2- l) 2

fl--_=n 1 + 2n +i+_
2e

(B4.14)

The station cross-sectional area and weight can be expressed as

(B4.15)

W(7)_ W (B4.16)
2n

where W is the earth weight of the station.
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Using Eqs. (B4.5) and (B4.6) yields

3SP 6_2R2(d/2R)2p

w(7) - w
(B4.17)

If we use Eq. (B4.17) in Eq. (B4.14), and let

W = 150,000 Ib

P = 7.5 psi (an enriched atmosphere of lower pressure

being used to retard leakage)

and then use the other nominal values for the parameters, we obtain:

2 ' 1Pn 2_ [ (n2-1_>2 O02
- n 1 + i _ _ ._ -,- ,.,_/---'- __2 t u'" '

(B4.18)

If we allow an e, due to equilibrium tension, of 0.0005 for

the stiffer materials and 0.02 for the softer materials, we find the

2 2

upper and lower bounds for pn/__ as

2 :]Pn < n 2 [ 40(n 2 - i)
_2 = 1 + 2n + 1 +

(B4.19)

2 1
Pn n 2 [ _n 2- I)2
_> 1+ '

_2- 2n + I +O-J

(B4.20)

Thus the expression of Eq. (B4.10) appears to be a reasonable

approximation and therefore has been used throughout this study.

b. Structural Damping

Though the equivalent viscous structural damping ratio _n is

usually considered to increase with frequency, we shall consider it to

be the same for all frequencies.
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We shall assume that

_ <0.2
0.02 < _n

(B4.21)

with the lower values corresponding to materials with a high stiffness-

to-weight ratio, and the higher values corresponding to materials with

a low stiffness-to-weight ratio.
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APPENDIX C. SYNTHESIS OF A LINEAR CONTROL SYSTEM AND THE EFFECTS

OF FLEXIBILITY ON THE OUTPUT OF THE FEEDBACK SENSOR

In synthesizing the control of flexible missiles and similar vehicles,

it is common to first formulate the control system assuming the vehicle

rigid. Then the effects of flexibility on the system are determined, and

suitable modifications to the control are made to obtain the desired per-

formance in the presence of flexibility. We follow a similar approach.

Though many systems have been conceived for the control of the spin

axis of a rigid spinning satellite [Refs. 48-58], the one suggested by

Lange [Ref. 39] * appears to be among the most straightforward and useful

approaches to the problem when we consider a continuous linear control

system. We therefore essentially follow that derivation with the modi-

fications necessary to apply it to our system.

Having determined a suitable control system for the rigid vehicle,

we then determine the quantities actually sensed by the feedback instru-

ments when flexibility is included.

In Section 1 below we employ complex variable theory to simplify the

equations of the angular motion of the spin axis. In Section 2 we incor-

porate a control law. Section 3 contains a discussion of the mechaniza-

tion of the control system. In Section 4 we determine the quantities

actually sensed by the feedback instruments.

io Transformation of the Equations of Angular Motion

Equations (B3.24) and (B3.25) for the angular motion of the spin axis

can be written as

,](7)sin7 d cos,+
z

[ So ,] [ So2.-2¢_ = fz(7) sin 7 d sin _ -

fz(7) COS 7 d71 sin

(c.1)

z(7) cos 7 d71 cos _/

(c.2)

_Lobel [Ref. 44] uses a similar control law but his presentation lacks

the excellent analytical justification of Lange.
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Defining the small vector angle of the spin axis as

0_= ¢+ jE) (C.3)

then multiplying Eq. (C.2) by j and adding it to Eq. (C.l), we have

- 2j_& : (Qx + JQy) ej* _ Q ej_
(C.4)

where Q is the vector moment expressed in the body-fixed coordinates

divided by the moment of inertia. Its components are

Qx - A fz (7) sin 7 d7
(C.5)

Qy - A fz(7) cos 7 d7 (C.6)

Equation (C.4) is the vector equation for the motion of the spin axis

written in inertial coordinates. However, it is difficult to work with

because of the presence of j.

For our problem, we can obtain a single vector equation without the

j if we write U in the body frame. Thus, as indicated in Fig. 33, we

define the small vector angle of the spin vector in body coordinates as

A e-j_

Using Eq. (C.7), we can rewrite Eq. (C.4) as*

+ +2 = Q (C.8)

Lange indicates that a somewhat more complex equation results when the

moment-of-inertia ratios of the station are other than 2.
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wX

35585

NOTE THAT IN THE ROTATING SYSTEM

(_ APPEARS TO BE ROTATING CLOCK-

WISE wITH VELOCITY _, OR

FL = _ e -j_t = CZ e -j*

FIG. 33. RELATIONSHIP OF THE SMALL VECTOR ANGLE

OF THE SPIN AXIS POSITION IN NONROTATING AND

ROTATING FRAMES.

which is the simple vector equation for the angle of the spin axis as

written in body coordinates. Thus as seen from the rotating system the

vector angle _ (the angle of the spin axis referenced to inertial

space) oscillates at _ with a natural period of once per revolution.

2. Incorporation of a Control Law

The forcing function Q may be broken up into a control moment and

a disturbance moment

Q = Qc + QD (C.9)

For a simple system such as Eq. (C.8), it is natural to assume the

standard control law

where K
V

Qc = -Kv_ - Kp_

is the velocity gain and K is the position gain.
P
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Thus Eq. (C.8) becomes

_+Kv_+ ( _2 )• +K ta =Q D
P

(C.II)

where, for the variation in _ small, _ has been replaced by the

nominal spin speed _.

The characteristic equation of Eq. (C.11) is

2 (_2 Kp) (C.12)
S +Ks+ + =0

v

where s is the Laplace operator for equations in rotating coordinates.

Equation (C.12) can be written in the form

s
1 + _ = 0 <Cl3j

v 2 (_2 )s + + K
P

for which the root locus is given in Fig. 34 as a function of K . It is
v

observed that _ (and equivalently, its real and imaginary parts, _x

and by). is stable for all positive values of K and K .

p ( v
1/2

Note that _ is asymptotically stable for K 2\Kp +
= so that

v

to an observer on the station (for this value of K ) a spin-axis-angle
v

error would be decreasing exponentially in a nonoscillatory fashion. How-

ever in inertial space, at this value of K the spin axis would be
v'

spiraling in with a rotational frequency equal to spin rate. To observe

this let us turn our attention back to 5. From Eq. (C.7)

C_ = _ e jat (C.14)

so that

(C.15)
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/_ref KvS "t- Kp
s2+aq2

=0

35586

FIG. 34. CHARACTERISTIC ROOTS OF _ (THE ANGLE

OF THE SPIN VECTOR IN BODY COORDINATES).

Therefore the root locus for _ is simply the root locus for

(given in Fig. 34) shifted upward by _, as indicated in Fig. 35.

3. Mechanization

The control given in Eq. (C.lO) could be mechanized using a body-

fixed star tracker to measure _ directly, with _ being derived from

it. The star-tracker angle rate _ may also be obtained by observing

from the Coriolis law that

= q - _ X _ = q - j_ (C.16)
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=0

35587

FIG. 35. CHARACTERISTIC ROOTS OF CZ (THE ANGLE

OF THE SPIN VECTOR IN INERTIAL COORDINATES).

where the in-plane angular velocity vector q is given by

q=_ + • (c.17)
x O_y

Thus Eq. (C.lO) could be written as

Qc = -Kv_ - Kp_

= -Kvq - (Kp - JKvg)p. (C. 18)

The components of q could be obtained directly by body-mounted rate

gyros with input axes along x and y, thus no differentiation of

need be required: however, a knowledge of _ is necessary and a compli-

cation of the control system results due to the crossproduct term. How-

ever -K q could be provided by a rate damper, so that a reduction of
v
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the active control force could be realized, and the system could be

passive, except when we desire to control _.

If we just have a passive control system, then

Qc = "Kvq = "Kv(# + JQ_) (C.19)

and Eq. (C.8) becomes

_i + Kv_ + (_2 + J_KvI_ = QD (C. 20 )

The characteristic equation of (C.20) is

2 (_Q2 J_Kv )s + K S + + = 0 (C.21)
v

or

1 + K s+ j_ = 0 (C 22)

v 2 _2s +

The root loci of Eq. (C.22) is given in Fig. 36. It is observed that

the system is stable for all values of K and in the rotating system
v'

the vector _ rotates at once per revolution and approaches a limit cycle

which corresponds to a fixed vector _ in inertial space.

4.
Quantities Actually Sensed by the Attitude and Rate Instruments When

Flexibility Is Considered

In Section 2 we found that the control law could be expressed by

Qc = -Kv_ - Kp_
(C.23)

or

Qc = "Kvq - (Kp - Kv_fX)p.
(C.24)

which were written for zero reference conditions.
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F CHARACTERISTIC EQUATION = I + Kv $+jA_,) ($-jA'A

35588

FIG. 36. ROOT LOCI FOR A RATE-DAMPED SYSTEM

CONSIDERED IN A ROTATING FRAME.

From Fig. 31 we note that

_" -- _ (c.25)
yb z

so that the effect of deflection on the magnitude of the body-fixed con-

trol force is negligible. Thus the effect of deflection on the values of

the control system quantities must be only through the sensors which read

and q.

For small deflections the sensed _ and q are given by

_s = _R + _F
(C.26)

qs = qR + qF (C.27)
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where the subscripts

respectively.

We note that

R and F refer to the rigid and flexible portions

_F (7) = _F + J_F = T + jT (C.28)
x y

x y

where the small vector angle T for the angle due to flexure is obtained

from Eq. (B1.2) and Fig. 30 as

Thus Eq. (C.26) becomes

x

=

Y

[w

I z

I 5_

_ cos 7 - _ sin 7

1 5_.
_ cos 7 + _ sin 7

i /_u \

+ w/ j

(C. 29 )

_s = _R + _F

_R + J_R + _ cos 7 - _ sin 7
x y

)
+ j _ sin 7 + _ cos 7

(C. 30)

From Fig. 31 the angular velocity measured in body-fixed coordinates

Xb' Yb' zb is given by

tbb =

b

- (_ cos 7 + 6_
_z x y

k

03 + '- +

_z
_z + _y cos 7 " _x sin 7 +

(C.31)
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Again referring to Fig. 30 we observe that body-mounted gyros located

at 7, positioned in the x, y, z directions when undeflected, will

actually sense in the deflected case:

_R + COF
X X

_R + _F
Z Z

-COS 7

= -sin 7

0

0 -sin 7

0 COS

0

i

 xb]
co

Yb

co

Zbl

_zh (_ _z1 _--_]COS 7 - + sin 7_x - _z - _ _--_co_/

_ 1 "37"_/sln 7 + + _ cos 7
(C.32)

Using

N N

z(7't) : __ qns(t) sin n7 + _ qnc(t) cos n7

n=2 n=2

(C.33)
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and

=

N N

BnZn =

n=2 n=2

Bn[qns(t) sin n 7 + qnc(t) cos nT] (C. 34)

we find from Eq. (C. 30) that

_z

x

COS 7 - _ sin 7)

N

= _ n(qns cos n_ - qnc sin nT) cos 7

n=2

N

_. Bn(qns sin n7 + qnc cos nT) sin _

n=2

N

x
n=2 n

N

= 7 [<R c°s n_ cos 7 - Bn

n=2

sin n7 sin 7) qns

(° ) ]+ - _ sin n 7 cos )' - Bn cos n7 sin 7 qnc

N

n n XYn Yn
n=2

(C. 35 )
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Y

cos 7 + _ cos 7)

N

1 _ n(qn s cos n7 sin nT) sin 7= - qne

n=2

N

n=2

Bn(qn s sin n7 + qnc cos nT) cos 7

N

= _F

n=2 Yn

N

= _ [(R cos n7 sin 7 + Bn

n=2

sin n7 cos 7) qns

(n ) 1+ - _ sin n7 sin 7 + Bn cos n 7 cos 7 qnc

N

= a qx + a q
YXn n YYn Yn

n=2

(C.36)

If we used gyros to obtain rate, then from Eqs. (C.16) and (C.17)

= qF " _ x _Fz
(C.37)

where

qF -- _F + J_F
x y

(C.38)
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Substituting for the _'s from Eq. (C.32), we find that Eq. (C.37) yields

the sameanswer for _F as would be obtained from differentiating Eqs.

(C.35) and (C.36).

Therefore for active control of the system, whether we mechanize the

system using gyros or derive _ from the _ sensor output, the results

considering flexure are basically the same.
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APPENDIX D. SUMMARY OF EQUATIONS IN STATE SPACE

FORM FOR COMPUTER SOLUTION

In this appendix we summarize the system equations derived in Appen-

dixes B and C, and write them in a form suitable for computer solution.

i. Summary of Equations

For generality it is convenient to normalize all quantities with

respect to the rigid-body natural frequency Po" Thus we define

T = po t (D.1)

k° :Kp/po (D2)

k'o : Kv/Po (D.3)

ron : pn/p ° (D.4)

/ 2

(D.5)P : Q/Po

Using Eqs. (D.I) - (D.5) in the results of Appendixes B and C yields

the following:

RiGid-Body Equations

d2_R

x + _R : p + PD (D.6)c
dq: 2 x x x
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d2_ R

_Y + _R = Pc

dT 2 y Y
+ PD (D. 7)

Y

Vibration Equations

d2qn dq n un

2_nron x 2 ^ _ xx (Pcx + dT + ronqn R
dT 2 x x

2A A

d qn dqn Un

_____Z + r 2 YX (p cY + 2_nron dT nqn - R
dT 2 y x

where we have defined

u PDn

) ( ) ox+ PD +xy Pc + PD +_
R R

x y y

(D.8)

u PDn

+,o>+
x y y

(D.9)

= _ (D i0
R

so that R has been used as a normalizing factor to give the q's the

same dimensions as the _'s.

Control Equations for Position and Rate Feedback

d_ s d_re f

P = -k' x x
c o dT kog s + k' + (D iio dT ko_ref

x x x

d_ s d_re f

P = -k' ----I + k' --Z +
C o dT - ko_s o dT ko_ref

Y Y Y

(D.12
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Control Equations for the Use of a Rate Network in Place of Rate

1 1_ _ : +_[_ _l_0o_o+_<_s
Cx \Po o x

_ref x )

(D.13)

dP
C

___[+ i p

dq7 _ii Cy
= - >/d_Sy d_ref ) .(/ k_ k ll/_k° + k o \_ " -----_ + (_s _ref )\Po d_ \PoTo y y

(D.14)

where we have defined the normalized lead-lag-network time constants as

T (D.15)
o = PoTo

(D 16)
T I = Po_I

and where _s' the quantity sensed by the feedback instrumentation, is

given by

N

_tS : _R + _ (Ran _In + Ran qn ) (D.17)

x x n=2 xx x xy y

N

_s = _R + I (Ran qn + Ran qn^ ) (D.18)

Y Y n=2 yx y yy y

2. Equations in State Space Form

a. Position and Rate Feedback

For the use of position and rate feedback we define the state

vector for the x axis as
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x

_R
x

d_ R /dT

x

q2x

d 2x/dT

q3x

dq3x/dT

q4x

dq4x/dT

(D.19)

A

where we interpret 22 , and q4 to be the normalized generalized

coordinates of the first three excited flexible modes. In this appendix

we will only show three flexible modes, the generalization to a greater

numbcr of modes being _pp_rent:

Using the previous equations, we now write the equations of motion

in state space form for pure rate and position feedback as

dz /k

dT

dz
x

dT

dz

__E
dT

=Bz+C

_ref x

d

d-_ (_refx)

_'ref

Y

d

Y

+ D _

PD
x

PD2x

PD3x

PD4x

PD

Y

PD2y

PD3y

PD

• 4y

(D. 20)

where

B = B 1 - k_B 2 koB 3 (D.21)
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and C and D are the appropriate matrices associated with the reference

inputs and the disturbance functions, respectively. Thus

B 1 =

"0 1

-I 0

0

B 2 =

@

O

o _

2

-ro2 2_2ro2 0

0 0 1

_r 2
03 -2_3ro3 0

0 0 1

2

-ro4 2_4ro4

0

0 1

-i 0

0

"o o

0 1

0 0 0 0 0 0 0 0

u 2xx 0 0
0 _ 0 A22XX A23XX A24xx

0 0 0 0 0 0 0 0

0 _-_ 0 A32xx 0 A33XX 0 A44XX

0 0 0 0 0 0 0 0

0 U4xx 0
R A42xx 0 A43xx O A44xx

0 0 0 0 0 0 0

0 Ra2x x 0 Ra3x x 0 Ra4x x 0

0

0

0 1

_i, 2
02 -2_2ro2 0

0 0 0 0 0 0 0 0

0 0 0 Ra2y x 0 Ra3y x 0 Ra4y x

0 0 0 0 0 0 0 0

u

0 2--_RX 0 A22y x 0 A23y x 0 A24y x

0 0 0 0 0 0 0 0

0 u3-_-Rx 0 A32y x 0 A33y x 0 A34y x

0 0 0 0 0 0 0 0

0 u4-_RX 0 A42y x 0 A43y x 0 A44y x

0

0 0 1

_r 2
03 -2_3ro3 0

0 0 1

2

-ro4 2_4ro4

0 0 0 0 0 0 "

0 Ra2xy 0 Ra3xy 0 Ra4xy

0 0 0 0 0 0 0 0

o _ o
R A22xy 0 A23xy 0 A24xy

O 0 0 0 0 0 0 0

0 U3xy 0
R A32xy 0 A33xy 0 A34xy

0 0 0 0 O 0 0 0

0 U4xy 0 0 0

R A42xy A43xy A44xy

0 0

0 i

0 0 0 0 0

0 U2yy 0 0
R A22yy

0 0 0 O 0

0 U3yy 0 0
R A32yy

0 0 0 0 0

0 0 0 0 0 0

0 Ra2yy 0 Ra3yy 0 Ra4yy

0 0 0

A23yy 0 A24yy

0 0 0

A33yy 0 A34yy

0 0 0

0 U4YY 0 A42yy 0 A43yy 0 A44yy

R

(D.22)

(D.23)
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t

where we have defined

Anmij = u ..a .. + u .a .. (i,j are x or y) (D.24)nzz mzj nij mjj

Matrix B3 is the same as matrix B2 except that all its columns

are shifted one column to the left, i.e.,

B3(i,j) = B2(i,j+l ) (D.25)

If we partition B into quarters, the off-diagonal matrices con-

tain the coupling terms between the x and y axes. The presence of

the Anmij terms, where n _ m, represents the coupling between the

flexible modes that has been neglected in the derivation of the perturba-

tion formulas for finding the roots associated with the flexible modes.

b. Use of a Rate Network

For the case where we use a rate network in place of rate, it is

convenient to define an augmented state vector, including the control

functions, as follows:

z ,A
X

P
C

X

_R
X

/dr
X

A

q2x

d 2x/d 
A

q3x

d 3x/dT
A

q4x

d 4x/dT

(D.26)
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Thus for a rate network we can write

dE I

x

d_

dz _

dT
dz t

__Zy
dT

= BTZ I + C v

_ref x

d

X

_ref

Y

di_re f )

Y

+ D'

PD

x

_X

_j
z_X

PD

Y

D

zy

Jy

_y

(D.27)

where C' and D' represent the new appropriate natrices and where

k !

B' , o , - koB_ (D28)
= B1 Po B2

!

The matrices for B I

?

following page; B 3

T 1 .

and B_ are given in Eqs. (D.29) and (D.30) on the

' except that T is replaced by
is the same as B 2 o
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T

BI=

m

1

-¥ 0

0 0

1 -i

0 0

U2X X

o

0 0

U3x x

--_- o

0 0

U4xx

o

U2yx

R

0

U3yx

R

0

1
0 --

T o

0 0

1

o o 0

0 0 1

0 -r 2
02 -2_2ro2 0

0 0 0 0 I

0 0 0 -r 2
03 -2_3ro3 0

0 0 0 0 0 0

U2xy

R

0

R

0

0

0 0 0 0 0 -r 2
04 -2_4ro4--

0

U4xy

R

1

-_ 0

0 0

1 -I

0 0

u_____y 0

0 0

u-_------!y 0

0 0

U4v v

1

0 0

0 0 1 _J

0 -r 2
o2 -2_2ro2 0

O 0 0 0 1

0 0 0 -r 2
03 -2_3ro3 0
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