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Abstract: The role of Unmanned Aircraft Vehicles (UAVs) has been increasing significantly in 
both military and civilian operations. Many complex systems, such as UAVs, are difficult to 
model accurately because they exhibit nonlinearity and show variations with time. Therefore, the 
control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, 
identification of the mathematical model is an important process in controller design. In this 
paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear 
state space model for attitude dynamics of UAV is derived and verified. Real time simulation 
results show that the model dynamics match experimental data. 
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1. INTRODUCTION 
 
UAVs have unmatched qualities that often make 

them the only effective solution in specialized tasks 
where risks to pilots are high, where beyond normal 
human endurance is required, or where human 
presence is not necessary. They have been used to 
perform missions in hazardous environments such as 
operations in nuclear power plants, exploration of 
Mars, and surveillance of enemy forces in the 
battlefield. Also, they are used for environmental 
monitoring, weather research, agricultural support, 
and mineral exploration. In general, the models for 
UAVs are dynamic with multiple inputs and outputs, 
and the measurements are noisy. While significant 
progress has been made in identification of linear 
systems over the broad spectrum of aerospace 
applications, the research to identify the nonlinear 
flight dynamics has been insufficient [1]. It has been 
recognized that the significant improvements of 
dynamic performance of current and new generation 
of advanced airplanes are possible if flight system 
design integrates nonlinear analysis, control, and 
identification [2]. Identification of nonlinear multi-
input multi-output vehicles is a challenging problem 
and the current interest has been shifted to the issues 

of handling the nonlinear identification.  
In this paper, a nonlinear mapping identification 

concept [2-6] is applied to identify the unknown 
parameters of attitude dynamics of UAV which is 
mapped by nonlinear differential equations. While 
nonlinear differential equations in a generic form can 
be found using Newtonian mechanics or the Lagrange 
equations of motion [7], the unknown parameters 
must be identified. The present work looks at the 
identification of the parameters that govern the 
attitude dynamics of UAV.  

The test flights to collect the data were conducted at 
ADFA@UNSW, Australia. 

The rest of the paper is organized as follows. 
Section 2 gives description of the identification 
approach. The attitude dynamics of UAV is presented 
in Section 3. Section 4 presents real time simulations 
using identification technique and in Section 5 some 
concluding remarks are presented.  

 
2. STATE SPACE IDENTIFICATION 

 
The nonlinear mapping identification method 

considers the system in the form 

( ) ( , ),x t F x u= 0t ≥ 0 0( ) ,x t x=   (1) 

where cx R∈ is the vector of the measured states with 
initial conditions 0 0( ) ,x t x=  mu R∈  is the known 
input vector, and ( , )F x u denotes a continuous vector 

function which is defined on { }\ 0cR with F(0,0) = 0.  
System (1) can be written in the matrix state space 

form as  

( ) ( ) ( , ),x t A t f x u= 0,t ≥ 0 0( ) ,x t x=   (2) 

where ( ) cxnA t R∈  is the real matrix, ( , )f x u  denotes 
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a given real analytic function, and ( ) : c mf R xR•  
.nR→  

The identified state space model is defined as 

( ) ( ) ( , ),m m mx t A t f x u= 0,t ≥ 0 0( ) .m mx t x=  (3) 

Matrix coefficients, ( ),mA t  are to be identified 
from flight data.  

The normalized parameter error matrix ( )A t∆  
cxnR∈  is defined as 

( ) ( ) ( ).mA t A t A t∆ = −    (4) 

The state error vector is introduced as 

0 0

( ) ( ) ( )
     ( ) ( , ) ( ) ( , , ),

0, ( ) .

m

m m

x t x t x t
A t f x u A t f x x u

t x t x

∆ = −
= ∆ + ∆

≥ ∆ = ∆
 

Here, ( , , ) ( , ) ( , ).m mf x x u f x u f x u∆ = −  
The error vector is defined as 

 ( ) ( ) ( ) ( , , ) ( ) ( , ).m me t x t A t f x x u A t f x u= ∆ − ∆ = ∆  (5) 

An identification algorithm converges if  

1im ( ) 0
t

e t
→+∞

=  and 1im ( ) 0.
t

A t
→+∞

∆ =  

Using the differential equation for the normalized 
parameter error matrix as in [2-6], one has 

0 0( ) ( ) ( , ) , , ( ) ,T nxnA t e t f x u K K R A t A∆ = − ∈ ∆ = ∆ (6) 

where K is the weighting matrix. The selection of K 
affects the convergence of the identified parameters to 
their real values. It is chosen by the designer to 
guarantee the convergence and to attain the desired 
convergence rate. 

From (5) and (6), one gets  

0 0( ) ( ) ( ) ( , ) , ( ) .T
m m mA t A t e t f x u K A t A= + =  (7) 

At a given flight condition, UAV dynamics can be 
assumed as time invariant, i.e., system parameters are 
constant. Hence system (2) becomes time invariant, so 

( ) 0.A t =  
Then, we have the following nonlinear equation 

0 0

( ) [ ( ) ( , , )] ( , ) ,
( ) .

T
m m m

m m

A t x t A f x x u f x u K
A t A

= ∆ − ∆
=

 (8) 

The unknown parameters are found by solving 
nonlinear differential equation (8). 

 
3. UAV ATTITUDE DYNAMICS 

 
In this paper, the attitude dynamics of UAV is 

considered. The aircraft attitude dynamics is mapped 
by a set of three highly coupled nonlinear differential 
equations [7]. Instead of using an arbitrary structure 
these equations are used to get the basic structure for 
identification. The equations are  

2 2

( ) ,

( ) ( ) ,

( ) ,

x xz z y xz

y x z xz

z xz y x xz

L pI rI qr I I pqI

M qI pr I I p r I

N rI pI pq I I qrI

= − + − −

= + − + −

= − + − +

 (9) 

where , ,  and L M N  are the rolling, pitching and 
yawing moments respectively, ( ), ( ),  and ( )p t q t r t are 
the roll, pitch and yaw rates respectively, , ,x yI I  

and zI  are the moment of inertia about x, y, and z 
respectively, and xzI  is the product moment of inertia. 
Simplifying (9), one gets 

 

2

2 2

2

1 { [ ( ) ] [

(  ) ]},

1 [ ( ) ( ) ],   

1 { [ ( ) ] [

( ) ]}.

z y z xz
x z xz

x y z xz

z xz
y

x x y xz
x z xz

y x z xz

p I L I I qr I N
I I I

I I I pq I qr

q M pr I I r p IxI

r I N I I pq I L
I I I

I I I qr I pq

= + − +
−

+ − + −

= + − + −

= + − +
−

+ − − +

 (10) 

Model the aerodynamic moments as 

( , , , ) ,

( , , ) , 

( , , , )  ,

a r

e th

a r

a r p r a r

e th q e th

a r p r a r

L L p r l p l r l l

M M q m q m m

N N p r n p n r n nδ δ

δ δ

δ δ

δ δ δ δ

δ δ δ δ

δ δ δ δ

= = + + +

= = + +

= = + + +

(11) 

where , , ,  and e r a thδ δ δ δ  are the elevator, ruder, 
aileron and throttle servos deflections respectively and 
, , and 'l m n s are the aerodynamics derivative 

coefficients. 
Substituting (11) into (10), one obtains 

2

2 2

2

1 { [[ ]

( ) ] [[

] ( ) ]},

1 [ ( )

( ) ],
1 { [[ ] 

r a r

a

r

e th

a r

z p a r
x z xz

y z xz p r a

r x y z xz

q e th z
y

xz

x p r a r
x z xz

p I l p l r l l
I I I

I I qr I n p n r n

n I I I pq I qr

q m q m m pr I IxI

r p I

r I n p n r n n
I I I

δ

δ

δ

δ

δ δ

δ δ

δ δ

δ

δ

δ δ

δ δ

= + + +
−

+ − + + +

+ + − + −

= + + + + −

+ −

= + + +
−

(12) 
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( ) ] [[

] (  ) ]}.
r a

r

x y xz p a

r y x z xz

I I pq I l p l r l

l I I I qr I pqδ

δ δ

δ

+ − + + +

+ + − − +
 

The state vector is given by 

[ ] [ ]1 2 3( ) .TTx t p q r x x x= =  

By choosing 

2 2( , )
T

e r a thf x u pq qr pr p r p q r δ δ δ δ =  

      

2 2
1 2 2 3 1 3 1 3 1 2 3

1 2 3 4 ,
T

x x x x x x x x x x x

u u u u

= 




 

and rewriting (12) according to (2), one obtains 

11 12 16 18 110 111

23 24 25 27 29 212

31 32 36 38 310 111

0 0 0 0 0 0
( ) 0 0 0 0 0 0 ,

0 0 0 0 0 0

A A A A A A
A t A A A A A A

A A A A A A

 
 =  
  

 

where 
 

2

11 122 2

16 182 2

110 1112 2

23 24 25 27

( ) ( )
, ,

 ,

  , A  ,

, , ,

ar ar

xz x y z z y z xz

x z xz x z xz

z p xz p z r xz r

x z xz x z xz

z xzz xz

x z xz x z xz

qz xz xz

y y y

I I I I I I I I
A A

I I I I I I
I l I n I l I n

A A
I I I I I I

I l I nI l I n
A

I I I I I I
mI I I IxA A A A

I I I I

δδ δδ

− + − −
= =

− −
+ +

= =
− −

++
= =

− −

− −
= = = =

29 212

2

31 322 2

36 382 2

310 3112 2

,

, ,

( ) ( )
, ,

,  ,

, and A  .

e th

a ar r

y

y y

x x y xz xz y x z

x z xz x z xz

x p xz p x r xz r

x z xz x z xz

x xzx xz

x z xz x z xz

m m
A A

I I

I I I I I I I I
A A

I I I I I I
I n I l I n I l

A A
I I I I I I

I n I lI n I l
A

I I I I I I

δ δ

δ δδ δ

= =

− + − −
= =

− −
+ +

= =
− −

++
= =

− −
 

The matrix coefficients A  are unknown and need 
to be identified.  

The model identifier equation (3) is given by 

1 11 1 2 12 2 3 16 1 18 3

110 2 111 3
2 2

2 23 2 3 24 1 25 3 27 2

29 1 212 4

, 

, 

m m m m m m m m m m m

m m

m m m m m m m m m m

m m

x A x x A x x A x A x
A u A u

x A x x A x A x A x
A u A u

= + + +
+ +

= + + +
+ +

3 31 1 3 32 2 3 36 1 38 3

310 2 311 3.
m m m m m m m m m m m

m m

x A x x A x x A x A x
A u A u

= + + +
+ +

 
Equation (5) leads to 

1 1 11 1 3 1 3 12 2 3

2 3 16 1 1 18 3 3
2

2 2 23 1 3 1 3 24 1
2 2 2
1 25 3 3 27 2 2

3 3 31 1 3 1 3 32 2 3

2

( ) [ ( ) (
) ( ) ( )],

( ) [ ( ) (      

) ( ) ( )],
( ) [ ( ) (

m m m m m m

m m m m

m m m m m

m m m m

m m m m m m

e t x A x x x x A x x
x x A x x A x x

e t x A x x x x A x

x A x x A x x
e t x A x x x x A x x

x

= ∆ − − +
− + − + −

= ∆ − − +

− + − + −
= ∆ − − +

− 3 36 1 1 38 3 3) ( ) ( )].m m m mx A x x A x x+ − + −
(13) 

Using (7), (8), and (13), one gets 
 

[ ]1 2 3

2 2
1 2 2 3 1 3 1 3 1 2 3

( ) ( , ) ( ) ( ) ( ) TT
m

e a r th

A t ef x u K e t e t e t

x x x x x x x x x x x Kδ δ δ δ

= =

 
 
 
If we assume that K is a diagonal matrix then 
 

11 12
1 1 2 11 1 2 3 22

16 18
1 1 66 1 3 88

110 111
1 2 1010 1 3 1111

223 24
2 2 3 33 2 1 44

( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) ( ) , ( ) ( ) ,

m m

m m

m m

m m

dA dA
e t x t x t k e t x t x t k

dt dt
dA dA

e t x t k e t x t k
dt dt

dA dA
e t u t k e t u t k

dt dt
dA dA

e t x t x t k e t x t k
dt dt

dA

= =

= =

= =

= =

225 27
2 3 55 2 2 77

29 212
2 1 99 2 4 1212

31 32
3 1 2 11 3 2 3 22

36 38
3 1 66 3 3 88

310

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,     

( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) ( ) , ( ) ( ) ,   

m m

m m

m m

m m

m

dA
e t x t k e t x t k

dt dt
dA dA

e t u t k e t u t k
dt dt

dA dA
e t x t x t k e t x t x t k

dt dt
dA dA

e t x t k e t x t k
dt dt

dA

= =

= =

= =

= =

311
3 2 1010 3 3 1111( ) ( ) , and ( ) ( ) .mdA

e t u t k e t u t k
dt dt

= =

(14) 
By solving nonlinear equation (14) the unknown 

parameters matrix can be identified.  
The weighting matrix K is chosen so that the 

convergence of the identified parameters to the actual 
values is very fast. For the present work, it was 
selected as  

12 12[ ] ,x
ijK diag k R= ∈  where 0.001.ijk =  

The selection of a diagonal matrix makes it 
computationally easy to assess the effect of the 
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elements in the K matrix for convergence. Also to 
check for the practicality of the K matrix, it was used 
at different flight conditions and the parameters 
conversion to the real values was achieved. However, 
the results for a particular flight condition only 
presented in this paper. 

Flight tests were carried out to collect a range of 
data for differing flight conditions. Inertial Navigation 
Unit with three axis gyros and accelerometers is 
employed. Figs. 1 and 2 show the test flight data for a 
typical condition. Since the purpose of the present 
work is to demonstrate the capability for imitating the 
non-linear dynamics of UAV and not the dynamics 
characteristics of the UAV in terms of frequency and 
damping ratios of different modes of motions (short 
period, phugoid, etc.), no particular maneuver inputs 
were considered. 

As shown in the Figs. 1 and 2 the data is noisy. This 
is due to the mounting of the Inertial Navigation Unit 
near the engine which imparts substantial noise to the 
platform and hence gyros. In addition, the gyros are 
cheap ones to minimise the cost of the unit and their 
sensitivity is 12.5mv/deg/sec.  

4. RESULTS 
 
The flight data are used directly for the 

identification. Before implementing the identification 
technique using on-board micro-controllers, and to 
check for the applicability of the identification 
techniques there is a necessity for real time simulation 
using Matlab/Simulink. Fig. 3 shows the real time 
simulation loop for the system where the flight data 
collected are taken at a sampling rate of 0.05. The 
identification algorithm is written as s-function. The 
simulink model is built and executed in real time.  

Fig. 4 shows the identified model (grey) and the 
flight data (black). It is clear from Fig. 4 that the 
pitching rate, q(t), is reasonably identified but for the 
roll rate, p(t), and yaw rate, r(t), the identified model 
and the actual values didn’t match each other.  

To improve this, the rolling and yawing moments 
are modeled as,  

( , , , , )

,   

( , , , , )  

.

p r a

thr

p r a

thr

a r th l l l a

l r l th

a r th n n n a

n r n th

L L p r C p C r C

C C

N N p r C p C r C

C C

δ

δ

δ

δ

δ

δ

δ δ δ δ

δ δ

δ δ δ δ

δ δ

= = + +

+ +

= = + +

+ +

(15) 

This means two A coefficients are added to the 
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Fig. 1. Servos input data. 
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Fig. 2. Gyros output data. 

 
  

Identification 
Algorithm 

 
Identified 

Model  

Flight 
Data 

),,

,,,(

thra

erqp

δδδ

δ mA

mx  

Fig. 3. Real time Simulation for UAV. 
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Fig. 4. Identified model (grey) and flight data (black).
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structure as well as for the identifier model structure. 

112 3112 2A and Ath th thz xz th x xz

x z xz x z xz

I l I n I n I l

I I I I I I
δ δ δδ+ +

= =
− −

 

 
After adding the two coefficients to UAV model we 

found that the identified model and the actual values 
matched for p(t), q(t), and r(t) better than if we didn’t 
include the throttle affect on rolling and yawing 
moments as shown in Fig. 5. Since our UAV is fixed 
wing UAV and is driven by a propeller, the change in 
the modelling of the rolling and pitching moments is 
reasonably accurate and that is clearly recognized 
from the results. Fig. 6 shows comparison of results 
for another set of flight data for which the identified 
model has been tried. 
The numerical values for the parameters of the A  
matrix are given by 

11 12 16

18 110 111

112 23 24

25 27 29

A 0.0010, A 0.0107, A -0.1361,
A 0.0111, A 0.0181, A 0.0030,
A 0.0014, A 0.0107, A  -0.0103,
A   0.0103, A -0.1090, A 0.0105,

= = =
= = =
= = =
= = =

 

212 31 32

36 38 310

311 312

A 0.0004, A 0.0102, A 0.0093,
A   0.0104, A -0.1032, A -0.0011,
A 0.0054, and A 0.0001.

= = =
= = =
= =

 

 
5. CONCLUSIONS 

 
The main contribution of this paper is the solution 

of the nonlinear identification problem for UAV 
attitude dynamics which are described by nonlinear 
differential equations. Also, changing in the modeling 
of the rolling and yaw moment to include the effect of 
the throttle is reasonably accurate for fixed wing UAV 
which is driven by a propeller. A nonlinear mapping 
identification concept is applied to identify the 
unknown parameters of multivariable UAV which is 
mapped by nonlinear differential equations. Real time 
simulation results show good match between the flight 
data and the simulated data after including the effect 
of throttle on the rolling and yawing moments. 
Presently the work is continuing to reduce the gyro 
noise, the Hardware-In-Loop simulation and the 
verification for on-line identification. In addition the 
design of a suitable controller based on the identified 
model is currently under development. 
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Fig. 5. Identified model (grey) and flight data (black).
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