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e modeling and attitude stabilization control problems of a four-rotor vertical takeo� and landing unmanned air vehicle (UAV)
known as the quadrotor are investigated. 
e quadrotor’s attitude is represented by the unit quaternion rather than Euler angles to
avoid singularity problem. Taking dynamical behavior of motors into consideration and ignoring aerodynamic e�ect, a nonlinear
controller is developed to stabilize the attitude. 
e control design is accomplished by using backstepping control technique. 
e
proposed control law is based on the compensation for the Coriolis and gyroscope torques. Applying Lyapunov stability analysis
proves that the closed-loop attitude system is asymptotic stable. Moreover, the controller can guarantee that all the states of the
system are uniformly ultimately bounded in the presence of external disturbance torque. 
e e�ectiveness of the proposed control
approach is analytically authenticated and also validated via simulation study.

1. Introduction

In the past decade, the small UAV market has grown rapidly.
Small UAVs are applied in various areas such as surveil-
lance, reconnaissance, and aerial photography. In particular,
quadrotor helicopters are an emerging rotorcra� concept for
UAV platforms. 
e particular interest of the research com-
munity in the quadrotor design can be linked to two main
advantages over comparable vertical takeo� and landing
(VTOL) UAVs, such as helicopters. First, quadrotors do not
require complex mechanical control linkages for rotor actua-
tion, relying instead on xed pitch rotors and using variation
in motor speed for vehicle control. 
is simplies both the
design andmaintenance of the vehicle. Second, the use of four
rotors ensures that individual rotors are smaller in diameter
than the equivalent main rotor on a helicopter, relative to the
airframe size. Consequently, the last decade has seen many
successfully developed platforms of micro-UAVs, especially
the quadrotor UAV, such as Australia National University’s
X-4 �yer aircra� prototype [1], the Stanford University’s
STARMAC quadrotor [2], the Swiss Federal Institute’s OS4

aircra� prototype [3], and the University of Pennsylvania’s
Grasp micro-UAV test bed [4].

To guide a quadrotor to accomplish the planned mission,
a control system needs to be designed. It consists of position
control for translational motion and attitude control for
rotation motion. In this study, the design of controller for
attitude control is investigated.One distinct feature of attitude
dynamics of a quadrotor is that its conguration manifold is
not linear; it evolves on a nonlinear manifold, referred to as
the special orthogonal group. 
is yields important and
unique properties that cannot be observed fromdynamic sys-
tems evolving on a linear space. As a result, the attitude con-
trol problem of a rigid body has been investigated by several
researchers, and a wide class of controllers based on classic or
modern control theory has been proposed. For instance,
based on the conventional proportional-integer-derivative
(PID) approach, an model-independent PD controller by
using quaternion-based feedback was proposed to stabilize
the quadrotor attitude system [5]. In [6], the design of a PID
control algorithm for the quadrotor attitude system was pre-
sented. 
e model of the vehicle was modied to simplify
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the controller design. Considering faults occurring on the
mounted motors, a control strategy by using gain scheduling
incorporating PID was developed in [7]. It successfully
achieved attitude and position control even in the presence of
actuator faults. In another recent work [8], the problemof sta-
bilization and disturbance rejection of attitude subsystem of a
quadrotor was addressed. 
e controller was designed in the
framework of PID control scheme; similar control methods
also can be found in [9–13].

In addition to the above PID-based attitude control
design, many modern control approaches have also been
applied to quadrotor attitude controller design. In [14], an
attitude control lawwas proposed for triple tilting rotormini-
UAV. It was robust with respect to dynamical couplings and
adverse torques.
e work in [15] investigated the application
of model reference adaptive control for quadrotor even in the
presence of actuator uncertainties. An adaptive law and con-
trol laws based on adaptive technique were developed and
applied for quadrotor UAV in case of actuator partial loss of
e�ectiveness faults [16]. In [17], the problem of fault tolerant
control for quadrotor was addressed by using backstepping
control approach. In [18], the output-feedback control system
design for a quadrotor was discussed. 
e position and attit-
ude control was designed by using model reference control
and nonlinear control allocation techniques. 
e position
control of vertical take-o� and landing UAV without linear
velocity measurements was also investigated in [19]. In [20],
an adaptive nonlinear attitude stabilization control scheme
was synthesized for a quadrotor. 
e problem of parametric
uncertainties in the quadrotor model was investigated, and
the controller was designed based on model reference adap-
tive control technique. In [21], an attitude free position con-
trol design was proposed for a quadrotor by using dynamic
inversion. In another related study [22], an adaptive law
was designed to asymptotically follow an attitude command
without the knowledge of the inertia matrix. 
e proposed
control was veried by using a quadrotorUAVmodel. In [23],
a quaternion-based feedback was developed for the attitude
stabilization of quadrotor. 
e control design took into
account a priori input bound and is based on nested satura-
tion approach. It forced the closed-loop trajectories to enter
in some a priori xed neighborhood of the origin in a nite
time and remain therea�er.


e sliding mode control (SMC) is a powerful theory for
controlling uncertain systems [24]. 
e main advantages are
that the SMC system has great robustness with respect to
uncertain parameters and external disturbances. Hence,
applying SMC to design attitude control for quadrotor has
been intensively carried out in recent years. In [25] integral
SMC and reinforcement learning control were presented as
two design techniques for accommodating the nonlinear dis-
turbances of an outdoor quadrotor. In [26], SMC was used to
control a quadrotor UAV in the presence of disturbance and
actuator fault. 
e proposed approach was able to achieve
disturbance rejection in the fault-free condition and also able
to recover some of performances when a fault occurred. To
regulate the attitude angle of a quadrotor to the desired sig-
nals, an SMC-based attitude controller was proposed in [27].
In that approach, an adaptive estimatorwas incorporated, and

the adaptive technique was used to estimate the upper bound
of the virtual command. 
e work in [28] explained the
developments of the use of SMC for a fully actuated subsys-
tem of a quadrotor to obtain attitude control stability. In
[29], an SMC attitude controller was developed for a quadro-
tor. It allowed for a continuous control robust to external
disturbance andmodel uncertainties to be computed without
the use of high control gain. In another work [30], an aug-
mented SMC-based fault-tolerant control was designed the-
oretically, implemented practically, and tested experimentally
in a quadrotor. 
e problems of propeller damage and actu-
ator fault conditions for tracking control were discussed.
Moreover, many other nonlinear control techniques based
controller design were also proposed for quadrotor, as sug-
gested in [31–33].

Based on the results available in the literature, this work
will investigate the attitude control design of a quadrotor
UAV.
e attitude orientation of the quadrotor is represented
by using unit quaternion. Backstepping technique is adopted
to develop the controller. It is shown that the controller can
asymptotically stabilize the attitude system. Explicitly taking
external disturbance torque acting on the quadrotor into con-
sideration, the controller is able to guarantee the uniformly
ultimately bounded stability of the attitude system. All the
states of the closed-loop attitude system are governed to
be uniformly ultimately bounded. 
e remainder of this
paper is organized as follows. In Section 2, mathematical
model of a quadrotorUAV attitude system and problem state-
ment are summarized. A backstepping-based attitude control
approach is presented in Section 3, and also the stability
of closed-loop system is provided. In Section 4, simulation
results with the application of the designed control scheme
to a quadrotor are presented. Section 5 presents some con-
cluding remarks and future work.

2. Mathematical Model and
Control Problem Statement

2.1. Attitude Dynamic Model of a Quadrotor. 
e quadrotor
UAV under consideration consists of a rigid cross frame
equipped with four rotors as shown in Figure 1. 
ose four
rotors are divided into front (�2), back (�4), le� (�1), and
right (�3) motors. Motors �2 and �4 rotate in counter-
clockwise direction, while the other two in clockwise direc-
tion. All of themovements can be controlled by the changes of
each rotor speed. If a yawmotion is desired, one has to reduce
the thrust of one set of rotors and increase the thrust of
the other set while maintaining the same total thrust to avoid
an up-down motion. Hence, the yaw motion is then realized
in the direction of the induced reactive torque. To accomplish
roll motion, it should decrease (increase) the speed of motor�3 and increase (decrease) the speed of motor �1. On the
other hand, pitch motion can be maneuvered by decreasing
(increasing) the speed of motor �1 while increasing
(decreasing) the speed of motor�4.

LetF�(��, ��, ��) xed with the Earth denote an inertial
frame, and letF�(��, ��, ��) denote a frame rigidly attached
to the quadrotor body as shown in Figure 1. 
e vector
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Figure 1: 
e structure of quadrotor UAV and its coordinate
reference frames.

Θ = [� � 	]� is the orientation of body frame F� with
respect to F� called Euler angles. 
ese angles are bounded
as follows:

−�2 < � < �2 , −�2 < � < �2 , −�2 < 	 < �2 . (1)

When using Euler angles to represent quadrotor attitude,
direction cosinematrix will be used to describe the kinematic
motion of attitude.However, one of the drawbackswith appli-
cation of the direction cosinematrix is the inherent geometric
singularity. It is known that the four-parameter description
of the orientation called the quaternion representation can
be applied to avoid that drawback. Consequently, the unit
quaternion will be used in this work for attitude represen-
tation of quadrotor UAV. Ignoring aerodynamic e�ect, the
mathematical model of quadrotor attitude system can be
described as follows [5]:

̇0 = −12q�� (2)

q̇ = 12 [0E3 + S (q)]� (3)

I�̇ = −S (�) I� − G� + u (4)

����̇� = �� − ��, � = 1, 2, 3, 4, (5)

whereQ = [0 q�]� ∈ R
4 with q ∈ R

3 is the unit quaternion
denoting the attitude of quadrotor with respect to the inertial

frameF�. It is subject to the equation 20 + q�q = 1. � ∈ R
3

denotes the angular velocity of the quadrotor with respect to

F� and expressed in F�. I ∈ R
3×3 is the positive-denite,

symmetric inertia matrix of the UAV. �� ∈ R and �� ∈ R are
the moment of inertia and the speed of the rotor��, respec-
tively. G� ∈ R

3 denotes the gyroscope torques due to the
combination of the rotation of the quadrotor and the four
motors; it is given by

G� =
4∑
�=1

�mi (� × e�) (−1)�+1�� (6)

and e� = [0 0 1]� denotes the unit vector inF�. 
e matrix
S(x) is a skew-symmetric matrix such that S(x)y = x × y for

any vector for x, y ∈ R
3, where “×” denotes the vector cross-

product. E3 denotes the 3 × 3 identity matrix.

In (4), u = [�1 �2 �3]� ∈ R
3 is the total torque acting

on the UAV, and it is generated by four motors.
Consider the following:

u = [[[[
[

�� (�23 − �21)
�� (�22 − �24)

! (�22 + �24 − �21 − �23)
]]]]
]
, (7)

where � ∈ R is the distance from the rotors to the center of
mass of the quadrotor and � ∈ R and ! ∈ R are two positive
parameters depending on the density of air, the radius of the
propeller, the number of blades and the geometry, li�, and
drag coe�cients of the blades [34].
e reaction torque�� ∈ R

in (5) generated in free air by themotor�� due tomotor drag
is given by

�� = !�2� . (8)

Moreover, the four-control input of the attitude system is ��,� = 1, 2, 3, 4, which denotes the torques produced by the
rotors.

2.2. Problem Statement. Given any initial attitude Q and
angular velocity�, the control objective to be achieved can be
stated as: consider the quadrotor UAV attitude dynamics
described by (2) and (5); design an control law �� for themotor��, � = 1, 2, 3, 4, to stabilize the resulting closed-loop attitude
system; that is,

lim
	→∞

Q (%) = [1 0 0 0]�, lim
	→∞
� (%) = [0 0 0]�. (9)

3. Attitude Stabilization Control Design

Dene new state variables as x1 = [1 − |0| q�]�, x2 = �, and
x3 = [�21 �22 �23]�. 
en, the attitude system equations (2)–
(5) can be rewritten as follows:

ẋ1 = [− sgn (0) ̇0 q̇�]� (10)

Iẋ2 = −S (x2) Ix2 − G� + u (11)

I�ẋ3 = X (� − f) , (12)

where I� = diag(��1, ��2, ��3), X = diag(2�1, 2�2, 2�3), � =[�1 �2 �3]�, f = [�1 �2 �3]�, and sgn(&) is dened as the
nonzero sigum function as follows:

sgn (&) = {−1, & < 0
1, & ≥ 0. (13)

For the transformed system equations (10)–(12), back-
stepping control technique will be applied in this section to
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Figure 2: 
e control structure of the quadrotor UAV.

design attitude controller, and the following change of coor-
dinates will be rstly introduced:

z1 = x1 (14)

z2 = x2 − �1 (15)

z3 = x3 − �2, (16)

where �1 ∈ R
3 and �2 ∈ R

� are virtual control inputs to be
designed later.

Based on the preceding coordinates changes, the follow-
ing procedures can be followed to design a controller to
stabilize the attitude of the considered quadrotor UAV.

Step 1. Westartwith (14) by considering x2 as the control vari-
able. It is obtained from (2), (3), and (10) that

ż1 = 12[sgn(0)q��[0E3 + S (q)]���]�

= 12 [ sgn (0) qT0E3 + S (q)]�
= P (Q)�,

(17)

where P(Q) = (1/2) [ sgn(0)q�
0E3+S(q)

].

e task in this step is to design a virtual control law �1

to guarantee lim	→∞z1(%) = 0. Choose a Lyapunov candidate

function as 81 = (1/2)z�1 z1, and design the virtual control �1
as �1 = −91P�(Q)z1, where 91 ∈ R is a positive scalar. 
en,
applying (15) and (17) yields

8̇1 = z
�
1P (Q)�

= z
�
1P (Q) (z2 − 91P� (Q) :1)

= −91z�1P (Q)P� (Q) z1 + z
�
1P (Q) z2.

(18)

Hence, if z2 = 0, then 8̇1 = −91z�1P(Q)P�(Q)z1 =
−91‖P�(Q)z1‖2 < 0 for all P�(Q)z1 ̸= 0. By using Lyapunov
stability theory [35], it can prove that

lim
	→∞

?????P� (Q) z1????? = 0. (19)

On the other hand, it can be obtained from the denition
of P(Q) that

P
� (Q) z1 = 12[

sgn (0) q�0E3 + S (q)]
�[1 − @@@@0@@@@ q�]�

= 12 sgn (0) q.
(20)

Hence, it leaves (19)-(20) as lim	→∞ sgn(0)q = 0. 
en,
using (13) leads to lim	→∞q = 0.


e quadrotor UAV actually is an underactuated system
because it has six degrees of freedom while it has only four
inputs. 
e collective input (or throttle input) is the sum of
the thrusts of each motor. Hence, the control structure of an
rigid quadrotor is illustrated in Figure 2. Position control and
attitude control are included. Assumed that the desired total
thrust supplied by the position control is A, which is gener-
ated by the four rotors and given by

A = � 4∑
�=1

�2� . (21)

Accordingly, the desired speed of the four motors can be
obtained from (7) and (21); that is, � = Nx3 with � =
[�1 �2 �3 A]� and

N = [[[
[

0 �� 0 −���� 0 −�� 0! −! ! −!� � � �
]]]
]
, (22)

where N is nonsingular as long as ��! ̸= 0.
Step 2. From (22), one has u = ΞNx3, where

Ξ = [[[
[

1 0 0 00 1 0 00 0 1 00 0 0 0
]]]
]
. (23)

We now di�erentiate the second error, z2, using (15) to give

Iż2 = Iẋ2 − I�̇1 = −S (x2) Ix2 − G� + ΞNx3 − J�̇1. (24)

Choose another Lyapunov candidate function 82 = 81 +(1/2)z�2 Iz2, and design the virtual control law �2 as

�2 = (ΞN)† [S (x2) Ix2 − P
� (Q) z1 − 92z2 + G� + I�̇1] ,

(25)
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where 92 ∈ R is a positive constant and (⋅)† denotes the pseudo
inverse of a full-row rank matrix.

Di�erentiating both sides of 82 and inserting (24) and
(25) yield

8̇2 = 8̇1 + z
�
2 Iż2

= −91z�1P (Q)P� (Q) z1 + z
�
1P (Q) z2

+ z
�
2 [−S (x2) Ix2 − G� + ΞN (z3 + �2) − I�̇1]

= −91z�1P (Q)P� (Q) z1 − 92z�2 z2 + z
�
2ΞNz3.

(26)

Again, if z3 = 0, one has 8̇2 = −91‖P�(Q)z1‖2 − 92‖z2‖2, and
thus both z1 and z2 will converge to zero asymptotically.

According to the analysis in Steps 1 and 2, if z3 can be
driven to zero by designing an appropriate controller, then z1
and z2 will also be governed to zero, and thus the quadrotor
attitude will be stabilized. In the following theorem, we sum-
marize our control solution to drive z3 to zero by incorporat-
ing backstepping-based control action.

�eorem 1. Consider the quadrotor attitude system described
by (2)–(5); design a nonlinear backstepping controller as fol-
lows:

� = X
−1 [−(ΞN)�z2 − 93z3 + I��̇2] + f , (27)

where 93 ∈ R is an positive control gain. �en, the closed-loop
attitude system is asymptotically stable; that is, lim	→∞q(%) =[0 0 0]�, lim	→∞�(%) = [0 0 0]�.
Proof. It can be obtained from (12) and (16) that

I�ż3 = I�x3 − I��̇2 = X (� − f) − I��̇2. (28)

Consider another candidate Lyapunov function83 as follows:
83 = 82 + 12z�3 I�z3. (29)

Di�erentiating (29) and inserting (26) and (28) result in

8̇3 = 8̇2 + z
�
3 I�ż3

= −91z�1P (Q)P� (Q) z1 − 92z�2 z2
+ z
�
2ΞNz3 + z

�
3 [X (� − f) − I��̇2] .

(30)

With the developed controller equation (27), (30) can be
simplied into the following form:

8̇3 = −91z�1P (Q)P� (Q) z1 − 92z�2 z2 − 93z�3 z3 ≤ 0. (31)

Investigating of 83 in (29) shows clearly that 83 > 0 for all z�,� = 1, 2, 3 and also that 83 → ∞ when z� → ∞. 
erefore,
in accordancewith LaSalle-Yoshizawa’s theorem [35], 8̇3 from
(31) fullls

8̇3 ≤ −G(z1, z2, z3) ≤ 0, (32)

where G(z1, z2, z3) is a continuous function. 
en, all solu-
tion z�(%) are uniformly globally bounded and

lim
	→∞

G(z1, z2, z3) = 0. (33)

Hence, the controller is uniformly globally asymptotically
stable since additionallyG(z1, z2, z3) > 0. Moreover, it can be
concluded from (31)–(33) that

lim
	→∞

z� (%) = 0. (34)

To this end, it can be obtained from (14)–(16), the deni-
tion of �1 and �2, and (34) that

lim
	→∞

q (%) = [0 0 0]�, lim
	→∞
� (%) = [0 0 0]�. (35)

Summarizing the above analysis, it can come to the conclu-
sion that the closed-loop attitude system of the considered
quadrotor UAV is asymptotically stable. 
ereby the proof is
completed here.


e result obtained from
eorem 1 can only be guaran-
teed when the quadrotor UAV is free of external disturbance.
However, this case will never be true in practical �ying,
especially when the quadrotor �ies outdoor. Assume that the
external disturbance torque acting on the quadrotor is u� ∈
R
3; then the dynamics of the quadrotor equation (4) or (11)

will be changed as follows:

Iẋ2 = −S (x2) Ix2 − G� + u + u�. (36)

Although the disturbance torque u� is inevitable, it is
always bounded in practice. Hence, it is reasonable to assume
that there exists a positive scalar �max ∈ R such that ‖u�‖ ≤�max.

�eorem 2. Consider the quadrotor attitude system described
by (2)–(5) in the presence of external disturbance torque u�,
with application of the controller equation (27); suppose that
the control gain 92 is chosen to satisfy

92 − H > 0, (37)

where H ∈ R is a positive scalar speci�ed by the designer. �en,
the closed-loop attitude system is uniformly ultimately bounded
stable.

Proof. Using the almost the same analysis as in the proof of

eorem 1, one has

8̇2 = −91z�1P (Q)P� (Q) z1 − 92z�2 z2 + z
�
2ΞNz3 + z

�
2u�.

(38)


en, it leaves 8̇3 in (30) as

8̇3 = −91z�1P (Q)P� (Q) z1 − 92z�2 z2 − 93z�3 z3 + z
�
2u�. (39)

Applying the Young’s inequality, the following inequality can
be established:

z
�
2u� ≤ H????z2????2 + 14H????u�????2 ≤ H????z2????2 + 14H�2max. (40)
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Table 1: Quadrotor UAV model parameters.

Parameters Description Value Units

I Gravity 9.81 m/s2

J Mass 0.468 kg

� Distance 0.225 m

���, � = 1, 2, 3 Rotor inertia 3.4 × 10−5 kgm2

�� Roll inertia 4.9 × 10−3 kgm2

�� Pitch inertia 4.9 × 10−3 kgm2

�� Yaw inertia 8.8 × 10−3 kgm2

M� Motor resistance 0.67 Ω
O� Motor constant 4.3 × 10−3 Nm/A

O� Gear ratio 5.6

� Proportionality constant 2.9 × 10−5
! Proportionality constant 1.1 × 10−6

It is thus obtained from (40) that 8̇3 is bounded by

8̇3 = −91z�1P (Q)P� (Q) z1 − 92z�2 z2 − 93z�3 z3 + z
�
2u�

≤ −91z�1P (Q)P� (Q) z1 − (92 − H) z�2 z2 − 93z�3 z3 + 14H�2max.
(41)

With the choice of control gains in (37), it leads to

8̇3 ≤ −2983 + �2max4H , (42)

where 9 = min{91Pmin(P(Q)P�(Q)), (92 − H)/Pmax(I),93/Pmax(I�)}, Pmin(⋅) and Pmax(⋅) denote the minimum and
themaximum eigenvalue ofmatrix, respectively. Using
eo-
rem 4.18 (page 172) in [35], it can be concluded from (42) that83 is uniformly ultimately bounded togetherwith the states z�,� = 1, 2, 3. More precisely, there exists a nite-time %0 ∈ R+
such that ‖z�(%)‖ ≤ H∗1 , ‖z�(%)‖ ≤ H∗1 for any H∗1 > �max/2√9H
and % ≥ %0, � = 1, 2, 3. In other words, the closed-loop attitude
system is uniformly ultimately bounded stable. Hence, the
proof of 
eorem 2 is completed.

4. Numerical Example

In this section the properties of the proposed attitude stabil-
ization approach is evaluated and simulated numerically by
the quadrotor model presented in [5]. 
e physical param-
eters of this model are listed in Table 1. At time % = 0, the
initial attitude of the quadrotor isΘ(0) = [35 −45 18]�deg,
corresponding to the unit quaternion values q(0) =
[0.3315 −0.3170 0.0242]�; the initial angular velocity is of

�(0) = [0 0 0]� rad/sec.
e control gains for the controller
equation (27) are chosen as 91 = 0.02, 92 = 0.075, and 93 =0.008. Moreover, attitude and angular velocity sensor noises

(T2�): 0.0001(1T) aremodeled as zero-meanGaussian random

variables with variance T2�.
In the ideal case that the quadrotor is free of external dis-

turbance torques, with application of the controller equation
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(27), it leads to the control performance shown in Figures 3–5.
It is observed from the response of the unit quaternion and
the Euler attitude angles shown in Figures 3 and 4, respec-
tively, that the attitude is successfully accomplished, while the
resulted angular velocity is illustrated in Figure 5.

For a quadrotor �ying outdoor, it is always under the
e�ect of external disturbances such as induced by wind.

erefore, simulation is further carried out in the presence of
external disturbances. Here, disturbances are introduced on
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external disturbances.

the pitch, roll, and yaw at the 3th, 6.5th, and the 8th seconds,
respectively.
e attitude control performance obtained from
the developed controller equation (27) is shown in Figures 6–
8. From Figures 6-7, it is known that the disturbance torque
has little e�ect on the performance of the attitude and that is
because the controller equation (27) is able to guarantee the
uniformly ultimately bounded stability of the closed-loop
system in the presence of disturbance. It is seen in Figure 8
that although there exists some overshoot for the angular
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Figure 7: 
e response of Euler attitude angles in the presence of
external disturbances.
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Figure 8: 
e angular velocity � in the presence of external
disturbances.

velocity when disturbance is introduced to the quadrotor, the
angular velocity can be stabilized soon.

5. Conclusions

In this work, the design of a quadrotor UAV attitude stabi-
lization controller using quaternion feedback and integrator
backstepping was presented. With appropriate choice of
integrator backstepping variables, both equilibrium points in
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the closed-loop system are proved to be asymptotically stable.
Furthermore, taking external disturbance torque into consid-
eration, the attitude and the angular velocity of the quadro-
tor were governed to be uniformly ultimately bounded by
the proposed controller. Simulations of a quadrotor UAV
were also presented to illustrate the performance of the con-
troller and that the attitude of the UAV was regulated to the
closest equilibrium point. Future work will emphasize the
position or path following control of the quadrotor even in
the presence of external disturbance.
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