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Abstract: Amplitude and phase of wavepackets encode the dynamics of quantum systems. 

However, the rapidity of electron dynamics on the attosecond timescale has precluded their 

complete measurement in the time domain. Here, we demonstrate that spectrally-resolved electron 

interferometry reveals the amplitude and phase of a photoelectron wavepacket created through a 

Fano autoionizing resonance in helium. Replicas obtained by two-photon transitions interfere with 

reference wavepackets formed through smooth continua, allowing the full temporal reconstruction, 

purely from experimental data, of the resonant wavepacket released in the continuum. This in turn 

resolves the buildup of the autoionizing resonance on attosecond timescale. Our results, in 

excellent agreement with ab initio time-dependent calculations, raise prospects for both detailed 



investigations of ultrafast photoemission dynamics governed by electron correlation, as well as 

coherent control over structured electron wave-packets. 

One Sentence Summary: By monitoring the decay of an excited atom in real time, we reconstruct 

how photoelectron wavepackets are born and morph into asymmetric Fano profiles. 

 

Main Text:  

Tracking electronic dynamics on the attosecond (as) timescale and Ångström (Å) lengthscale is a 

key to understanding and controlling the quantum mechanical underpinnings of physical and 

chemical transformations (1). One of the most fundamental electronic processes in this context is 

photoelectron emission, the dynamics of which are fully encoded in the released electron 

wavepacket (EWP) and the final ionic state. The development of broadband coherent sources of 

attosecond pulses has opened the possibility of investigating these dynamics with attosecond 

resolution. On such a short timescale, few techniques (2-5) are able to provide access to both 

spectral amplitude and phase. The spectral derivative of the phase, the group delay, is a practical 

quantity for describing general wavepacket properties reflecting the ionization dynamics. 

Recently, photoemission delays have been measured in a variety of systems: rare gas atoms (6-8), 

molecules (9) and solids (10). In the gas phase, these attosecond delays give insight into the 

scattering of the electron in the ionic potential, and in the solid state, into the transport dynamics 

towards the surface. However, the physical significance of group delays is restricted to fairly 

unstructured wave-packets.  

The necessity to go beyond simple delays arises for more complex ionization dynamics when the 

broadband excitation encompasses continuum structures associated with, e.g., autoionizing states, 



shape resonances, and Cooper minima (11-13). These structures induce strong spectral variations 

of the amplitude and phase of the EWP corresponding to different timescales, e.g., ranging from 

the attosecond to the femtosecond domains. In general, the long-term evolution of the EWP 

amplitude, e.g., the lifetime of Fano autoionizing resonances (14), can be characterized directly in 

the time-domain (15), or in the spectral domain using conventional spectroscopic techniques (16). 

However, the EWP phase is required in order to reconstruct the full ionization dynamics. In 

particular, the short-term response associated with broadband excitation remains unexplored (17). 

It is mainly determined by the spectral phase variation over the resonance bandwidth, which has 

so far not been measured. An additional difficulty is that the characterization techniques usually 

involve strong infrared probe fields that: i) strongly perturb the resonant structures (18-20) so that 

the field-free intrinsic dynamics cannot be accessed, and ii) require elaborate theoretical input for 

decoding the electron spectrograms (21).  

 

Here, we extend attosecond photoionization spectroscopy to the full reconstruction of the time-

dependent EWPs produced by coherent broadband excitation through resonant structures. To this 

end, we develop a perturbative interferometric scheme enabling the direct measurement of the 

spectral amplitude and phase of the unperturbed resonant EWP. Interferences between the latter 

and a reference non-resonant EWP are achieved through two-photon replicas obtained by 

photoionizing the target with an XUV harmonic comb combined with the mid-infrared (MIR) 

fundamental field. This spectrally-resolved technique is easy to implement and offers 

straightforward access to the EWP characteristics without complex analysis or theoretical input. 

We apply it to the investigation of the doubly-excited 2s2p autoionizing resonance of helium, for 

which ab initio time-dependent calculations can be performed (22,23) providing a benchmark for 



our experimental study. Autoionization occurs when a system is excited in structured spectral 

regions where resonant states are embedded into a continuum. The system can then either directly 

ionize or transiently remain in the resonant bound state before ionizing. Coupling between the 

resonant state and continuum states of the same energy through configuration interaction leads to 

the well-known Fano spectral lineshapes (14). Particularly interesting is the autoionization decay 

from doubly excited states (16) that is a direct consequence of the electron-electron repulsion. 

Using our spectrally resolved technique, we directly access the complete ionization dynamics 

including interferences at birth time, and monitor the resonance buildup on a sub-fs timescale, a 

long-awaited endeavor of attosecond science (17, 24). 

 

The concept of the method is shown in Fig. 1A. We photoionize helium with a comb of mutually 

coherent odd harmonics derived from an optical parametric amplifier (OPA) MIR source. The 

harmonic of order 63 (H63) is driven into the 2s2p resonance, at 60.15 eV from the ground state, 

by tuning the OPA central wavelength OPA to 1295 nm. As the harmonic width (400 meV) is 

much larger than the resonance width (=37 meV), a broad resonant EWP with complex spectral 

amplitude 𝐴𝑅(𝐸) is produced. Simultaneously, non-resonant EWPs are created by the neighboring 

harmonics H61 and H65 in smooth regions of the continuum: each of these can serve as a reference, 

denoted 𝐴𝑁𝑅(𝐸), to probe the resonant EWP. In order to induce interference, we create replicas 

that spectrally overlap with each other, by means of two-photon transitions. A weak fraction of the 

fundamental MIR pulse, of angular frequency 0=2c/OPA, is superimposed on the harmonic 

comb with a delay . Its intensity (~2 1011 W/cm2) is sufficiently high to induce perturbative 2-

photon XUV-MIR transitions but is low enough to avoid transitions involving more than 1 MIR 

photon (e.g. depletion of the doubly excited state by multiphoton ionization (15), or distortion of 



the resonance lineshape (19)). Most importantly, the MIR spectral width (26 meV) is smaller than 

both the harmonic and resonance widths, ensuring that each EWP produced in the two-photon 

process is a faithful, spectrally shifted, replica of the unperturbed EWP produced in the XUV one-

photon process. Due to the frequency relation between the odd-harmonic XUV comb and the 

fundamental MIR laser, the resonant EWP up-shifted by absorption of a MIR photon, 𝐴𝑅+1(𝜏, 𝐸 + ℏ𝜔0) ∝ 𝐴𝑅(𝐸) exp 𝑖𝜔0𝜏, and the reference EWP down-shifted by stimulated 

emission of a MIR photon, 𝐴𝑁𝑅−1(𝜏, 𝐸 + ℏ𝜔0) ∝ 𝐴𝑁𝑅(𝐸 + 2ℏ𝜔0) exp[−𝑖𝜔0𝜏], coherently add 

up in the single sideband (SB64) that lies in between the lines associated with H63 and H65. 

Similarly, the resonant EWP down-shifted by emission of a MIR photon interferes in sideband 

SB62 with the EWP up-shifted by absorption of a MIR photon from  H61. We designate 𝐸 the 

photoelectron energy in the resonant EWP, and 𝐸̅ = 𝐸 ± ℏ𝜔0, the photoelectron energy of the 

resonant EWP replicas in  SB64 and SB62, respectively.  

The spectrum of these SBs is thus modulated by the interference between the resonant and non 

resonant replicas, depending on the XUV-MIR delay (25). For SB64, it gives (eq. 1): 

𝑆64(𝜏, 𝐸̅) = |𝐴𝑅+1(𝜏, 𝐸̅) + 𝐴𝑁𝑅−1(𝜏, 𝐸̅)|2 = |𝐴𝑅+1(𝐸̅)|2 + |𝐴𝑁𝑅−1(𝐸̅)|2                    +2|𝐴𝑅+1(𝐸̅)||𝐴𝑁𝑅−1(𝐸̅)|  × cos{2𝜔0𝜏 + 𝛥𝜑64(𝐸̅) + 𝛥𝜂𝑠𝑐𝑎𝑡(𝐸̅)} ,         (1) 

where the two contributions to the replicas’ relative phase are: i) 2𝜔0𝜏, the phase introduced by 

the absorption/emission of the MIR photon, and ii) the relative phase between the initial one-

photon EWPs. The latter is split into: Δ𝜑64(𝐸̅) = 𝜑65(𝐸̅ + ℏ𝜔0) − 𝜑63(𝐸̅ − ℏ𝜔0), the phase 

difference between the two ionizing harmonics, and 𝛥𝜂𝑠𝑐𝑎𝑡(𝐸̅) = 𝜂𝑠𝑐𝑎𝑡(𝐸̅ + ℏ𝜔0) − 𝜂𝑠𝑐𝑎𝑡(𝐸̅ −ℏ𝜔0), the difference between the non-resonant and resonant scattering phases of the two 

intermediate states. In our conditions, the variation over the SB width of both Δ𝜑64(𝐸̅) and 



𝜂𝑠𝑐𝑎𝑡(𝐸̅ + ℏ𝜔0) is negligible in comparison with that of the resonant scattering phase 𝜂𝑠𝑐𝑎𝑡(𝐸̅ −ℏ𝜔0) (25). The latter contains information on the scattering of the photoelectron by the remaining 

core, including strongly correlated scattering by the other electron close to the resonance. This is 

the observable addressed by our study. 

Using a high-resolution (~1.9%) 2m-long magnetic-bottle spectrometer, we have access to the 

photoelectron spectrogram –electron yield as a function of energy 𝐸 and delay  spectrally 

resolved within the harmonics and sidebands widths, as presented in Fig. 1B. Due to its large 

bandwidth, H63 produces a photoelectron spectrum exhibiting a double structure with a resonant 

peak and a smoother peak. This shape is replicated on each of the closest resonant SBs (SB62 and 

SB64). Strikingly the components of the double structure oscillate with different phases when  is 

varied, in both SB62 and SB64.  

These phase variations are further evidenced by a spectrally-resolved analysis: for each sampled 

energy within the SB width, we perform a Fourier transform of 𝑆63±1(𝜏, 𝐸 ± ℏ𝜔0) with respect to 

 to extract the amplitude and phase of the component oscillating at 2𝜔0 (see eq. 1 and Fig. 2). 

The SB62 phase shows a strong increase of ~1 rad within the resonant peak, followed by a sudden 

drop at the amplitude minimum (𝐸̅~34.75 eV), and a rather flat behavior under the smooth peak. 

The SB64 phase has a very similar shape and magnitude but with an opposite sign due to opposite 

configuration of the resonant and reference EWPs in the interferometer. This correspondence 

confirms the direct imprint of the intermediate resonance on the neighboring sidebands. 

The 2𝜔0 component of the resonant sidebands thus provides a good measure of the |𝐴𝑅(𝐸)| exp(𝑖𝜂𝑠𝑐𝑎𝑡(𝐸)) EWP that would result from 1-photon Fourier-limited excitation. This 

allows a detailed study of the temporal characteristics of resonant photoemission, in particular of 



the electron flux into the continuum, through the direct reconstruction of this EWP in the time 

domain (eq. 2): 

𝐴̃𝑅(𝑡) = 12𝜋 ∫ |𝐴𝑅(𝐸)|𝑒𝑖𝜂𝑠𝑐𝑎𝑡(𝐸)𝑒−𝑖𝐸𝑡ℏ 𝑑𝐸+∞−∞ .                (2)  

The temporal profile obtained from SB64 is shown in Fig. 3A. It presents a strong peak at the origin 

– given by the maximum of the Fourier transform of the non-resonant SB66 (25)– followed by a 

deep minimum around 4 fs and then a revival with a decay within ~10 fs. The presence of a fast 

phase jump (~2 rad within ~2 fs) at the position of the minimum indicates that it results from a 

destructive interference between two wave-packet components, the origin of which will be detailed 

further.  

 

To benchmark the measured data, we theoretically investigated the multicolor XUV+MIR 

ionization of He in the vicinity of the 2s2p resonance. Fully correlated ab initio time dependent 

calculations (22) were used to validate an analytical model of the two-photon transitions 

accounting for the actual pulses’ bandwidths (23). The simulated photoelectron spectrogram taking 

into account the spectrometer resolution remarkably reproduces the structured shape of the 

resonant SBs, as well as the dephasing between their two components (Fig. 1B). The analysis of 

the 2𝜔0 oscillations of SB62 and SB64 gives spectral phase variations in excellent agreement with 

the experimental data (Fig. 2). The temporal profile 𝐴̃𝑅(𝑡) obtained by Fourier transform (Fig. 3) 

is also well reproduced, with a smaller revival but a similar decay time of ~10 fs. This reduced 

effective lifetime is a direct consequence of the finite spectrometer resolution. When the latter is 

assumed infinite, the time-profile has the same behavior at short times but a longer decay, 

corresponding to the 17 fs lifetime of the resonance. Analytical calculations show that, in our 



conditions, the reconstructed EWP does mirror the one-photon resonant EWP (25). In summary, 

this confirms that, except for a faster decay of the long-term tail due to our current electron 

spectrometer resolution, the essential physics of the early time frame of EWP creation is directly 

accessed from purely experimental data. 

 

To further highlight the insight provided by this experimental technique, we undertook an in-depth 

analysis of the measured EWP characteristics in terms of Fano’s formalism for autoionization (14). 

Resonant ionization can be described as the interference between two distinct paths: the direct 

transition to the continuum and the resonant transition through the doubly-excited state that 

eventually decays in the continuum through configuration interaction within the resonance lifetime 

(Fig. 3B). The normalized total transition amplitude can then be written as the coherent sum of 

two contributions, a constant background term and a Breit-Wigner amplitude for the resonance 

(eq. 3):   

𝑅(𝐸) = ϵ+qϵ+i = 1 + q−iϵ+i ,                                               (3) 

where ϵ = 2(𝐸 − 𝐸𝑅) Γ⁄  is the reduced energy detuning from the resonance at energy 𝐸𝑅, in units 

of its half width Γ/2. The Fano parameter q (-2.77 for the He(2s2p) resonance (16)) measures the 

relative weight of the two paths. Their interference leads to the well-known asymmetric Fano 

lineshape |𝑅(𝐸)|2 and to the resonant scattering phase: 𝜂𝑠𝑐𝑎𝑡(𝐸) = arg 𝑅(𝐸) = atan (𝜖) + 𝜋/2 −𝜋Θ(𝜖 + 𝑞) where Θ is the Heaviside function. This phase is experimentally accessed here (Fig. 2).  

The spectral amplitude of an EWP created by Gaussian harmonic excitation 𝐻(𝐸) is given by 𝑅(𝐸)𝐻(𝐸). Its temporal counterpart is 𝐴̃𝑅(𝑡) = [𝑅̃ ∗ 𝐻̃](𝑡), where 𝑅̃(𝑡) and 𝐻̃(𝑡) are Fourier 

transforms of the spectral amplitudes, in particular (eq. 4) (24): 



𝑅̃(𝑡) = δ(t) − i Γ2ℏ (𝑞 − i)𝑒−(𝑖𝐸𝑅ℏ + Γ2ℏ)𝑡 Θ(𝑡)                       (4) 

The temporal profile 𝐴̃𝑅(𝑡) thus decomposes into a Gaussian non-resonant term and a resonant 

contribution, like our experimental data (Fig. 3A). The destructive temporal interference between 

the two terms leads to the amplitude minimum and phase jump identified around t = 4 fs. 

To illustrate how the interference between the two paths governs the formation of the resonance 

lineshape, Wickenhauser et al. (17) introduced a time-frequency analysis based on the limited 

inverse Fourier transform (eq. 5): 

𝑊(𝐸, 𝑡𝑎𝑐𝑐) = ∫ 𝐴̃𝑅(𝑡)𝑒𝑖𝐸𝑡/ℏ 𝑑𝑡𝑡𝑎𝑐𝑐−∞    (5) 

showing how the spectrum builds up until accumulation time 𝑡𝑎𝑐𝑐. The result of this transform 

applied to the experimental EWP shown in Fig. 3A is presented in Figs. 3C-D. The chronology of 

the resonance formation can be nicely interpreted within Fano’s formalism. In a first stage until 

~3 fs, a close-to-Gaussian spectrum reflecting the ionizing harmonic spectral shape emerges: the 

direct path to the continuum dominates. Then the resonant path starts contributing as the populated 

doubly excited state decays in the continuum: interferences coherently build up until ~20 fs, 

consistent with the temporal profile in Fig. 3A, to eventually converge towards the asymmetric 

measured spectrum. The resonance growth can thus be decomposed in two nearly consecutive 

steps governed by fairly different time scales. 

The build-up of the resonant profile reveals the presence of a notable point around 𝐸 = 35.6 eV 

where, as soon as the direct ionization is completed, the spectrum barely changes with 𝑡𝑎𝑐𝑐 any 

longer. This can be explained by splitting the |𝑅(𝐸)|2 spectrum from eq. 3 into three terms (27) 

(eq. 6): 



 |𝑅(𝐸)|2 = 1 + q2+1ϵ2+1 + 2 qϵ−1ϵ2+1                                      (6)      

At this isosbestic-like point, i.e. for ϵ = (1/q − q)/2, the bound (second) and coupling (third) 

contributions ultimately cancel each other, leaving only the direct continuum contribution (first 

term). This point thus gives a useful landmark in the resonant lineshape, e.g., for cross section 

calibration or reference purposes. 

Spectrally-resolved electron interferometry thus provides insight into the ultrafast strongly 

correlated multielectron dynamics underlying autoionization decay. Given the generality and wide 

applicability of the Fano formalism (see, e.g. (27)), we anticipate that our approach combined with 

progress in attosecond pulse production and particle detection (e.g., access to photoelectron 

angular distributions) will open prospects for studies of complex photoemission dynamics close to 

resonances and, more generally, structured EWP dynamics in a variety of systems, from molecules 

(28-30) and nanostructures (27) to surfaces (10). Furthermore, the well-defined amplitude and 

phase distortions induced by the resonance offer a means for shaping the broadband EWP, bringing 

opportunities for coherent control in the attosecond regime. 
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Fig. 1. Principle and resulting trace of spectrally-resolved attosecond electron interferometry 

for the complete characterization of resonant EWPs. (A) Principle of the electron 

interferometry technique: resonant 𝐴𝑅 and reference non-resonant 𝐴𝑁𝑅 EWPs are produced by 

successive coherent harmonics. Replicas of these EWPs are created at the same final energy by 2-

photon transitions induced by a weak fundamental MIR field, where the atom absorbs a MIR 

photon leading to the 𝐴𝑅+1 EWP, or emits a MIR photon, leading to the 𝐴𝑁𝑅−1 EWP. The 

spectrally-resolved interferences measured in a time-of-flight electron spectrometer as a function 

of the XUV-MIR delay 𝜏, controlled with interferometric accuracy, provide access to the spectral 

phase of the resonant 𝐴𝑅 EWP, considering the non-resonant 𝐴𝑁𝑅 as a reference. (B) Experimental 

and (C) theoretical spectrograms in the 33 to 39 eV region for a 1295-nm OPA wavelength 

(¡Error! No se encuentra el origen de la referencia.). H63 overlaps the 2s2p resonance of helium 

located 60.15 eV above the ground state (𝐸𝑅=35.55 eV). Single-photon ionization by the odd 

harmonic orders results in main lines spaced by twice the MIR photon energy, 2ℏ𝜔0 =1.92 eV. 

In-between appear sidebands corresponding to 2-photon ionization. The oscillations of the two 

sidebands on both sides of the resonant H63, i.e. SB62 and SB64, encode the spectral phase of the 



resonant EWP. A blow-up of one SB62 beating shows the structured shape of this resonant EWP 

and the dephasing of the oscillations of the different spectral components.  

 

Fig. 2. Resonant EWP in the spectral domain. Spectral amplitude (upper panels) and phase 

(lower panels) of the 2𝜔0 component of SB62 (left), SB64 (middle), and SB66 (right) from the 

spectrograms in Figs. 1B-C. The phase origin is set to 0 by removing the linear variation due to 

the ionizing harmonic radiation (atto-chirp) (¡Error! No se encuentra el origen de la 

referencia.). The experimental data (purple curves) are compared to the simulations (dashed black 

lines), showing very good agreement. The resonance position shifted by one MIR photon is 

indicated in grey. The measured spectral amplitudes and phases of the resonant SB62 and SB64 are 

easily related to the amplitude |𝐴𝑅(𝐸)| and phase 𝜂𝑠𝑐𝑎𝑡(𝐸) of the resonant one-photon EWP (see 

eq. 1). The main limitation comes from the current spectrometer resolution (in our conditions, a 

relative resolution of ~1.9% resulting in ~190-meV width at 10 eV) that broadens the resonant 

peak and its phase variations. The non-resonant SB66 exhibits a Gaussian amplitude, which mostly 

reflects the ionizing XUV spectral profile, and a smooth close-to-linear phase. This provides a 

temporal reference for the ionization dynamics.  

 

Fig. 3. Resonant EWP in the time domain and time-resolved reconstruction of the resonance 

build-up. (A) Temporal profile of the resonant EWP obtained by Fourier transform of the SB64 

data: i) from the experimental spectrogram (solid purple), and corresponding temporal phase 

(dashed purple), ii) from the simulated spectrogram taking into account (dotted orange) or not (dot-

dashed black) the finite spectrometer resolution. The latter fully coincides with the one-photon 

resonant EWP profile from a direct analytical calculation (solid grey) (¡Error! No se encuentra 



el origen de la referencia.), demonstrating the validity of our interferometric technique. (B) 

Illustration of the formation dynamics of the resonant spectrum resulting from interference 

between the two paths in the Fano autoionization model.  (C) Reconstruction of the time-resolved 

buildup of the resonant spectrum using the time-energy analysis introduced in eq. 5. The 

photoelectron spectrum is plotted as a function of the upper temporal limit (accumulation time tacc) 

used for the inverse Fourier transform. (D) Lineouts of (C) every 1 fs. This figure evidences first 

the growth of the direct path until a maximum is reached at ~3 fs (blue), and then the increasing 

spectral interference with the resonant path that finally results in the Fano lineshape (red). At 35.6 

eV, an isosbestic-like point is crossed by all curves from 3 fs onwards (black circle), evidencing a 

position in the final lineshape where only the direct path contributes. 
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