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We demonstrate that high-order harmonics generated by an atom in intense laser field form trains
of ultrashort pulses corresponding to different trajectories of electrons that tunnel out of the atom and
recombine. Propagation in an atomic jet allows us to select one of these trajectories, leading to a train

of pulses of extremely short duration.

PACS numbers: 32.80.Rm, 42.65.Ky

When an intense short-pulse laser is focused into a jet
of rare gases, high-order harmonics are generated. The
harmonic spectra present a decrease for the first harmonics,
followed by a broad plateau of almost constant conversion
efficiency, ending up by a sharp cutoff. Apart from the first
and last harmonics, the spectra look like a comb of peaks
with constant amplitudes, equally spaced in frequency by
twice the fundamental photon energy (only odd harmonics
are emitted, owing to the inversion symmetry). A question
raised almost immediately, after the first spectra had been
observed [1], was whether the harmonics were emitted
in phase. In the time domain, the emitted signal would
then consist of a train of pulses separated by half the laser
period, of duration in the attosecond range. There is a clear
analogy here with mode-locked lasers, where axial modes
oscillating in a laser cavity are locked in phase, leading
to the production of trains of short pulses [2]. This idea
attracted a lot of attention, but also scepticism. Indeed,
time-dependent numerical calculations for the single-atom
response showed that the harmonics were, in general, not
in phase. In addition, it was believed that propagation in
a macroscopic medium would destroy any possible phase
locking.

The understanding of physics involved in the genera-
tion of high-order harmonics made considerable progress,
owing to the elaboration of the so-called two-step model
[3]. In this quasiclassical description, an electron tun-
nels through the potential barrier formed by the combined
Coulomb and electromagnetic fields. It can then be re-
garded as a free particle oscillating in the laser field. When
it returns towards the nucleus, it can recombine to the
ground state, emitting high-energy photons. Quantum-
mechanical approaches [4,5] gave firm grounds to this in-
terpretation, expressing, in particular, the time-dependent
dipole moment (whose Fourier transform gives the har-
monic components) as a sum of contributions from the
different trajectories of the electron in the continuum. Fi-
nally, the fact that the phase of each harmonic component
of the dipole moment varies rapidly with the fundamental
intensity was found to be extremely important to under-
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stand propagation effects and the coherence properties of
the emitted radiation [6,7].

The problem of attosecond pulse generation was re-
cently discussed by Corkum et al. [8]. They proposed a
clever way of selecting one pulse from a train of pulses ob-
tained by phase-locked harmonics. Their idea is based on
the high sensitivity of harmonic generation to the degree of
ellipticity [9]. By creating a laser pulse whose polarization
is linear only during a short time, close to a laser period, the
emission could be limited to this interval. Thus, a single
attosecond pulse could be produced. Note that this idea
is based on the assumption that trains of attosecond pulses
could be generated in the case of linearly polarized light,
by appropriate filtering.

In the present Letter, we analyze the problem of the pro-
duction of attosecond pulse trains, with the much deeper
understanding brought about by the quasiclassical interpre-
tation and its quantum-mechanical formulation. We show
that, although the harmonics in the plateau region are not
strictly speaking phase locked, the time-dependent single-
atom emission consists of a train of ultrashort pulses, with
two dominant pulses per half cycle, corresponding to the
two main trajectories giving rise to harmonic emission.
Under certain geometrical conditions, only one of these
two contributions gets phase matched, leading to trains of
ultrashort pulses, with one pulse per half cycle. The du-
ration of the pulses is essentially that obtained by assum-
ing the harmonics to have the same phase and amplitude
(about 120 attoseconds for eleven harmonics of 825 nm
radiation).

Consider N harmonics, all with the same amplitude and
phase. The intensity I(r) of the total signal emitted by
these harmonics reads

g=qo+N—1 ‘ 2 in2(Nwt
o] S erieerne [ SEN0D
= sin“(wt)

(1) is a periodic function with periodicity Ty /2 = 7/ w,
half the laser period (1.37 fs for the 825 nm wavelength
considered later on). It consists of a succession of sharp
peaks, with full width at half maximum AT = T /2N (=
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120 as for N = 11). As beautifully shown by Siegmann
[2] for the case of mode-locked lasers, the regular pulsed
structure of I(¢) is not much affected by any amplitude
variation of the different frequency sidebands. It is,
however, completely ruined if the frequency sidebands
are not phase locked. Note that phase locking does not
mean here that the harmonic components have the same
phase, but rather that the phase difference (¢) between
two consecutive harmonics is constant, so that a factor
exp[—i(2g + 1)¢] enters the sum in Eq. (1).

To examine whether harmonics are phase locked, we
calculated the phase difference between the harmonic
components for a neon atom exposed to a 825 nm wave-
length radiation, at an intensity of 4 X 10" W/ cm?, us-
ing the model described in Refs. [5,10]. The results are
shown in Fig. 1. The phase difference between two har-
monics is apparently completely random in the plateau
region. The cutoff [11] occurs for harmonic energies
higher than =/, + 3.2U, = 69/iw, where I, is the ion-
ization potential, U, the ponderomotive energy (propor-
tional to laser intensity), and w the laser frequency. This
result confirms the results of the earlier calculations [12],
namely that the harmonics in the plateau region are not
phase locked. The phase locking exhibited by the har-
monics in the cutoff is not very interesting, because
the harmonic amplitude decreases very rapidly with the
process order, so that only one or two harmonics really
contribute to I(z), leading to broad light pulses.

In Fig. 2, we plot in solid line the function
q=qo+N—1 2

> d(2q + Dw)e (@atDer 2)

9=90

I(r) =

over one optical cycle. d((2g + 1)w) denotes the (2¢g +
1)th harmonic component of the dipole moment. We
choose 11 harmonics, from the 41st to the 6l1st, in
the plateau region, and the same laser intensity and
wavelength as in Fig. 1. The linearly polarized electric
field is chosen proportional to cos w? so that its extrema

T T T T T T

w
T
L]
|

-
T
|

[av]
T
L]
]

Phase difference (radians)
w
T
L]
1

—_
T
L]
{

0 1 | I. 1 ] I
30 40 50 60 70 80 90

Harmonic order

FIG. 1. Phase difference between the hamonic components
for a neon atom exposed to a laser light of wavelength 825 nm,
and intensity 4 X 10'* W/cm?.

occur at t = *k7/w, with k integer. Surprisingly, the
train of pulses is not as irregular as one could have
expected on the basis of the phase variation shown in
Fig. 1. It consists of two dominant peaks (labeled by 7,
and 7,) and several less significant peaks (per half cycle).

In our theory, the atomic dipole moment is expressed as
a sum of complex contributions corresponding to processes
in which an electron tunnels to the continuum, undergoes
subsequent (quasi)free evolution under the influence of the
laser field, returns to the nucleus and recombines. In a re-
cent paper [7], we analyze the relevant trajectories leading
to harmonic emission, using a saddle-point method. The
trajectories are determined by the stationarity condition of
the quasiclassical action S(p,¢,7) — (2g + 1)wt with re-
spect to variations of the canonical momentum p, the time
t for harmonic emission, and the return time 7, i.e., the
time spent by the electron in the continuum. Physically,
it means that only those trajectories are selected for which
(i) the electron returns to the nucleus after time 7, (ii) its
kinetic energy at the moment of tuneling is negative and
equal to —1,, and (iii) its kinetic energy just before recom-
bination is determined by energy conservation and equal to
(2g + Dhw — I,. The atomic dipole moment is essen-
tially determined by two of these trajectories, which cor-
respond to the shortest return times 7, and 7,, within one
laser cycle. The two main peaks in Fig. 2 appear at the
emission times corresponding to these two trajectories. To
check that they can be interpreted as the two light bursts
emitted by the electron following these two trajectories, we
calculated the temporal profile [Eq. (2)] by taking into ac-
count only the contribution of return times smaller than one
cycle. The result is shown by the dashed curve in Fig. 2.
The two main peaks are almost unchanged, indicating that
they are due to processes occurring within a laser cycle,
whereas the smaller peaks disappear. Note that, for lower
intensities, such that the harmonics enter the cutoff region,

w >~
T

N

Time profile (arb. units)

0 0.2 0.4 0.6 0.8 1.0
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FIG. 2. Train of pulses of 11 harmonics (from 41st to 61st)
emitted by a neon atom. Laser parameters same as in Fig. 1.
The dashed line corresponds to return times smaller than one
cycle.
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the atomic dipole is dominated by a single contribution,
corresponding to the (complex) return time 7.

The properties of the two dominant trajectories are
summarized in Fig. 3. Here we show the ionization and
recombination times as a function of intensity. The solid
curves correspond to the 41st harmonic alone, the dashed
curves, to the 61st harmonic, whereas the solid dots are the
intensity-dependent positions of the dominant peaks in the
train of pulses of Fig. 2. They represent the cumulative
results for the filtered atomic response [Eq. (2)]. As
expected, the positions of the bursts in the cumulative
response fall between the emission times for the 41st
and 61st harmonics. Also, for small intensities, the two
dominant peaks merge together, and only one of them (7;)
remains significant.

For the trajectory labeled by the index 2, the ionization
time is =0, when the electric field is maximal and the tun-
neling process most probable. The probability amplitude
of the harmonic emission process is, however, reduced sig-
nificantly by quantum diffusion, since the return time 7,
is relatively long. For the first trajectory, tunneling takes
place later, when the electric field has a smaller amplitude,
with a lower probability. However, quantum diffusion is
not as important for this process, since the return time 7 is
smaller. The probability amplitudes for these two emission
processes are actually comparable and interfere very effi-
ciently, leading to apparently random phases (see Fig. 1)
as well as harmonic strengths. By analyzing the emission
process in the ftime rather than in the frequency domain,
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FIG. 3. Ionization times (lower branch) and recombination
(harmonic emission) times (upper branch) for the two dominant
trajectories i = 1,2 as a function of laser intensity. Solid lines
correspond to 41st harmonic, dashed lines to 61st harmonic, and
solid dots represent dominant peak positions for the cumulative
response of the atom [Eq. (2)].
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the two processes are naturally separated. They give rise
to regular trains of attosecond pulses, with two bursts per
half laser cycle.

To determine the signal emitted by a macroscopic
medium, one calculates first the harmonic fields
E(2g + )w,r) at the exit of the medium, by solv-
ing propagation (Maxwell) equations [10]; r is here
the radial coordinate. The source term that enters the
propagation equation for a given harmonic field is the
laser-induced polarization at the harmonic frequency,
proportional to the single-atom response and to the atomic
density. The laser pulse is modeled as a Gaussian beam
with a confocal parameter » = 5 mm. The peak intensity
at the focus is 6.6 X 10'* W/cm?. We consider two
cases: (a) the 1 mm long atomic gas jet is placed 2 mm
after the laser focus, and the intensity at the center of
the medium is therefore equal to 4.4 X 10" W/cm?; (b)
the gas jet is centered at the laser focus. Note that since
the harmonic field E((2¢g + 1)w, r) is obtained through
the integration of a propagation equation, it accounts au-
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FIG. 4. Time profile of the filtered harmonic signal including
41st-61st harmonics (solid line) emitted by the macroscopic
medium located at (a) before (z = —2 mm), or (b) at the
focus (z = 0 mm), generated by a laser pulse of intensity
6.6 X 10'"* W/cm?. The dashed line denotes the corresponding
single-atom response.
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tomatically for the effect of phase matching. In Figs. 4(a)
and 4(b) we plot in solid line the total signal (integrated
over the radial coordinate r) for the two cases (a) and (b),

q=qo+N~—1 2
1(1) =f > E(2q+ Dw,r)e Vet 2mp gy
q9=4q0

3)
over one optical cycle. The filter applied (selecting har-
monics from the 41st to the 61st) is the same as in Fig. 1.
We show the single-atom response obtained at the same
intensity in dashed line. In case (a), in order to compare
single- and many-atom responses in a meaningful way, we
have accounted for a (weak) geometrical phase shift [=0.1
in the units of Fig. 2(a)] of the fundamental.

The key result of this Letter is that propagation selects
here 1 and only 1 attosecond pulse per half cycle with no
additional broadening. The propagated harmonic compo-
nents are locked in phase, so that the macroscopic signal
contains a train of well defined 120 as pulses. In the condi-
tions of Fig. 4(a), the selected peak is the one correspond-
ing to the shortest trajectory, with the return time 7. All
other contributions (with the return time 7, or longer than
one period) practically vanish. InFig. 4(b), another trajec-
tory is selected. In that case, the peak selected corresponds
to the contribution of the trajectory with the return time 7,.
Other contributions are considerably reduced, giving rise
to small and broad background pulses in between the dom-
inant ones.

To understand the role of propagation, we recall [6] that
phase matching between the nonlinear polarization in the
medium and the generated harmonic field is essentially
determined by the interplay between the phase variation
(6Wseo) induced by the geometrical phase shift of the
fundamental across the focus and the variation of the
total dipole phase in the nonlinear medium (following the
distribution of laser intensity). In the present work, we
separate the contributions from the different trajectories
by analyzing the temporal output of the nonlinear medium
for a selection of harmonics. The effect of propagation on
the two main trajectories can be understood by considering
the phase variation (6'¥;) induced by each of them. As
illustrated in Fig. 3, the return times 7; and 7, have
a different intensity dependence. As the laser intensity
increases, 7, increases, whereas 7| decreases. The phases
corresponding to the two contributions (approximately
equal to —U,7;; see [7]) vary differently with the laser
intensity, and consequently in the nonlinear medium. This
affects phase matching dramatically. Depending on the
geometrical conditions, i.e., on the behavior of 6Wgco,
the contribution of one trajectory can be enhanced (if
0Wyeo + 0, is small) and the others reduced. When the
laser is focused before the gas jet, for example, as is the
case of Fig. 4(a), the phase variation induced by focusing is
small and the selected trajectory is the one with the slowest
phase variation (7).

In summary, we have shown that a single atom generates
harmonics in the form of a train of attosecond pulses,

even though the Fourier components of the atomic dipole
moment are not locked in phase. There are, in general,
several pulses per half period corresponding to various
energetically allowed electronic trajectories. Propagation
selects only one of these trajectories, and locks harmonics
in phase. The temporal output of the medium then consists
of a train of sharp pulses, with only one pulse per half
cycle. This selection can be controlled by changing the
position of the atomic jet relative to the laser focus.

This result is very important for two reasons. First,
it opens the route towards the production and utilization
of attosecond pulses. Trains of attosecond pulses can
be used to probe phenomena with the same periodicity
(e.g., induced by the same laser). Second, by considering
ten harmonics (forming a train of attosecond pulses) in-
stead of only one, the intensity of the radiation increases
by a factor of 100. Typical numbers for a harmonic of
energy =50 eV, are 10° photons [13] with a measured
100 fs pulse duration [14], and an estimated focal spot of
~1 wm?. The mean intensity of a single harmonic pulse
may thus reach 10" W/cm?. The intensity corresponding
to a train of pulses combining ten such harmonics would
then be =10'> W/cm?. There are several fascinating ap-
plications of such an intense extreme ultraviolet radiation
in the area of strong field laser-atom physics.
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