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Abstract

Graph convolutional networks (GCNs) are potentially

insufficient in the ability to learn hierarchical representa-

tion for graph embedding, which holds them back in the

graph classification task. To address the insufficiency, we

propose AttPool, which is a novel graph pooling module

based on an attention based mechanism, to remedy the

problem. It is able to select nodes that are significant for

graph representation adaptively, and generate hierarchical

features via aggregating the attention-weighted information

in nodes. Additionally, we devise a hierarchical prediction

architecture to sufficiently leverage the hierarchical repre-

sentation and facilitate the model learning. The AttPool

module together with the entire training structure can be

integrated into existing GCNs, and is trained in an end-to-

end fashion conveniently. The experimental results on sev-

eral graph-classification benchmark datasets with various

scales demonstrate the effectiveness of our method.

1. Introduction

Inspired by the success of Convolutional Neural Net-

works (CNNs) in recent years, many researchers have at-

tempted to extend convolution to graph-structured data,

such as social networks [2] and bioinformatics [31]. Un-

like grid-structured data, e.g., images and videos, graph-

structured data is often represented as the combination of

irregularly-arranged nodes and connection-indicated edges,

and therefore, the locality of graphs cannot be clearly de-

fined. To handle this challenge, various graph convolu-

tional networks (GCNs) have been proposed, which have

∗The authors have equal contribution to the work and are listed in al-

phabetical order.
†Corresponding author: Ge Li (email: geli@ece.pku.cn).

achieved remarkable successes for representation learning

on graphs [40, 20], especially for node-embedding learn-

ing based tasks, such as node classification [18, 37] and

link prediction [1, 43]. However, without the pooling strat-

egy, nearly all of existing GCNs are potentially lacking in

ability to learn hierarchical representation for graph em-

bedding, which holds them back in the graph classifica-

tion task. Hierarchical information is important for graph

classification. For example, in order to distinguish differ-

ent organic molecules, it is beneficial to consider both local

patch (e.g. individual atoms and their bonds) and coarse-

grained structure (e.g. groups of atoms and bonds rep-

resenting functional units in a molecule) rather than only

local patterns [42]. To remedy the problem, a few re-

searchers have tried to further generalize the pooling mech-

anism from CNNs to GCNs for hierarchical representation

learning [42, 16, 6, 11].

Early works perform graph pooling either via applying a

global pooling over all the node representations [16] or

through coarsening the graph into clusters with determinis-

tic assignment rules in prepossessing [6, 5]. Recently, learn-

able pooling layers are proposed in [11, 42] to obtain self-

adapting cluster assignments, which are data-driven and can

be trained in a differentiable way. Inspired by their work, in

this paper we present an attention-based novel pooling strat-

egy to generate hierarchical feature representations for input

graphs. The attention mechanism allows a model to focus

on task-relevant parts of the inputs, helping it to make bet-

ter decisions. More recently, there has been a growing in-

terest in incorporating the attention mechanism into encod-

ing relationships of neighboring nodes and promoting node-

embedding learning solutions [37, 35]. Unlike them, we

utilize a global attention mechanism to evaluate the impor-

tance for each node in the graph globally. Then, we adap-

tively select discriminative nodes to form multi-granularity
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graph structures that generate hierarchical graph embedding

for the classification. To prevent the attention from being

stuck in certain parts of the graph and sampling redundant

information, which is caused by the symmetric Laplacian

smoothing in GCNs [22], we further propose a novel local-

attention mechanism to keep the balance between the im-

portance and the dispersion of nodes during the subgraph

selection process. The proposed attention-based pooling,

which is referred as AttPool, is also differentiable, and can

be conveniently combined with various GCNs in a hierar-

chical way for an end-to-end training.

The hierarchical representation-learning architecture of the

paper is constructed as follows: stack the convolution mod-

ule over the pooling module, and repeat again. Based on

the node representation learned by the convolution module

at layer l, AttPool utilizes a trainable projection vector to

calculate soft-attention values, and selects the nodes of top-

k percent with largest values to build an attention-weighted

coarser graph that will be fed in convolution module at layer

l + 1. At each layer, we represent the graph embedding

via aggregating node information in a global pooling way.

We also add supervision classifiers at each layer to build a

hierarchical prediction structure in order to accelerate the

convergence of model studying and adequately leverage the

learned hierarchical graph representation. We indicate that

combing AttPool as well as the hierarchical training strat-

egy with existing GCNs can consistently boost state-of-the-

art performance on several benchmark datasets for graph

classification tasks.

In a nutshell, the contributions of this paper can be ad-

dressed as follows:

1. We introduce an attention-based pooling strategy to gen-

erate hierarchical representations for graph-structured data,

which is implemented as an independent module that can be

integrated into existing GCNs.

2. Apart from the naive global attention, we propose an al-

ternative attention mechanism, the local attention, for the

pooling module, which can be calculated conveniently with

graph-structured data and prevent the attention being stuck

in certain parts of the graph.

3. Combined with existing GCNs, our proposed hierarchi-

cal framework achieves state-of-the-art performance on sev-

eral graph classification datasets with various scales.

2. Related Works

Graph convolution networks Inspired by the great suc-

cess achieved by CNN on image-based tasks, a great deal

on research of generalizing convolution to graph-based data

has emerged recently. They broadly can be divided into

two categories: spectral- [5, 6, 18, 16, 23] and spatial-based

[15, 27, 30, 12] models. Based on spectral graph theory,

Bruna et al. [5] define a variant of graph convolution in

Fourier domain, which has defects of heavy computation

and non-locality property. Since then, a series of works have

been proposed to address the challenges. Kipf and Welling

[18] acquire a simplified model by introducing 1-st approx-

imation of the Chebyshev expansion in [6], which restricts

the convolution to operating locally and is also the backbone

network of this paper. Unlike spectral-based approaches

that operate on the entire graph concurrently and has dif-

ficulty in scaling to large graph, spatial-based models de-

fine convolution on the graph directly to generate node pre-

sentations via aggregating information from its close neigh-

bors. More recently, some researchers [15, 12] propose a

sampling strategy to calculate node embedding in a batch

fashion instead of taking the whole graph into considera-

tion, which yields impressive performances on large-scale

benchmarks.

Graph classification The goal of graph classification is

to predict a label for the entire graph, which dependeds on

the representation of the entire graph rather than node em-

beddings that are often directly obtained from GCNs. Pre-

vious works [8, 13, 30, 44] often tackle the problem via

aggregating node representations in a flat, non-hierarchical

manner. [6, 34, 9] seek to generate a hierarchical struc-

ture through running deterministic graph clustering algo-

rithms on node features. For example, [28] obtains clus-

ter assignments by applying k-means algorithm. However,

they are two-stage approaches, and cannot be learned in

an end-to-end fashion. In [44], Zhang et al. learn a sort-

ing rule to order the nodes whose representations are then

concatenated to feed into the final prediction architecture.

[42, 11] propose trainable pooling layers that adaptively

generate cluster assignments and can be learned in a differ-

entiable way. DiffPool [42] may assign two arbitrary nodes

to the same high-level node, which might be far away in the

graph. Compared with DiffPool, AttPool naturally incorpo-

rates structural constrains and retains local structures in the

pooled high-level graphs. Compared with GraphU-net[11],

which simply selects the top-k percents of nodes and treats

them as high-level nodes, AttPool generates more infor-

mative and abstractive high-level nodes and benets gradi-

ent back-propagation by the 1-hop aggregation. Therefore,

AttPool is easier to train, and achieves better performance.

Additionally, we propose a novel local-attention that pre-

vents redundant information sampling in graphs.

Attention models Inspired by the success of attention

models in deep learning communities[26, 3, 10, 36], re-

searchers have introduced attention mechanism into graph-

based model building, and various approaches have been

proposed [37, 24, 1, 35] in recent years. Although they have

different definitions of attention and use it for various pur-

poses, they share the same ground in that attention is uti-

lized to focus on most task-relevant parts for decision mak-

ing. Attention mechanism benefits graph neural networks

via aggregating information for nodes [37], integrating mul-
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tiple models [24], or guiding random-walk with importance

[1]. Here, attention module has two merits in our model:

1. it helps select discriminative nodes to form hierarchi-

cal graph structure; 2. it generates the graph representation

with attention-weighted pooling.

3. Methodology

In this section, we present our attention-based graph con-

volutional network for the classification task. We propose

two attention modules, global attention and local attention,

under a common framework, which not only empowers the

GCN model with the ability of learning hierarchical repre-

sentations of a graph, but also prompts it to concentrate on

significant task-related regions in graphs and makes better

decisions.

3.1. Preliminaries

Let G = (V,E) be a graph where V is the set of nodes

and E is the set of edges between the nodes in V . We denote

the adjacency matrix of G as A = [Aij ]. For an unweighted

graph, Aij = 1 if there exists an edge (υi, υj) ∈ E and

Aij = 0 otherwise. In the case that G is a weighted graph,

given a weight w ∈ R for edge (υi, υj) ∈ E, Aij = w.

A graph can be associated with node features F , where

F ∈ R
N×D is a matrix in which each row is a feature vector

corresponding to a node in V . Given a graph dataset, graph

classification task aims to learn a mapping from graphs to a

set of corresponding labels.

Graph Neural Networks (GNNs) are effective tools for han-

dling graph-structured data. We build our model upon a

typical spectral-based Graph Convolutional Network intro-

duced by Kipf and Welling [18], the core component of

which is the graph convolutional layer (refferd as “GCN

layer” for convenience) that operates message propagation

and aggregation in the graph, and it is defined as:

H l+1 = ReLU(ÂH lW l) (1)

Â = D̃−
1
2 ÃD̃−

1
2 (2)

Here, Â is the symmetric normalized adjacency matrix of

the graph. Ã = A + I is the adjacency matrix with self-

loop added to each node, and D̃ is a diagonal matrix where

D̃ii =
∑

j Ãij . H l is the input of the l-th GCN layer and

H0 is initialized with the node feature matrix F . W l ∈
R

Cl×Cl+1 is the matrix of learnable filters in layer l, where

Cl is the dimension of the input feature and Cl+1 is the

channel number of W l.

3.2. Graph Convolutional Network with Attention-
based Pooling

The GCN layer enables a model to learn node embedding

through propagating and aggregating information. How-

ever, with only the stacking of GCN layers, it is hard for

a model to learn hierarchical features that are crucial for

graph representation and classification. To remedy the lim-

itation, generalizing pooling mechanism that has been suc-

cessfully used in CNN to graph-structured data can be a so-

lution. But, unlike grid-structured data, e.g. images, there is

no natural notion of spatial locality in graph-structured data,

which impedes us in applying pooling operation directly to

graphs. Therefore, we propose the Attention-based Pooling

(AttPool) layer, which selects the most significant nodes in

the graph and operates information aggregation via the at-

tention mechanism. Additionally, it can be trained end-to-

end using stochastic gradient descent.

As shown in Fig. 1, AttPool operates down-sampling on

graph data in two steps: first, it adaptively selects the top

K-percent nodes from the current graph structure according

to calculated attention values, and then aggregates the infor-

mation from close neighbours to the selected nodes. We de-

note a graph processed by the l-th GCN as Gl :< H l, Al >,

where H l and Al are the current hidden states and adja-

cency matrix, respectively. We define an attention function

fatt(H
l) to generate a positive weight Atti for each node

υi in the graph, which can be interpreted as the relative im-

portance given to υi in the current graph. Then, the index

of k-largest nodes are selected, where k is a dynamic scalar

determined by down-sampling rate α. The process can be

formulated as:

Idx = fTopK(Att, k), (3)

k = max(1, ⌊αNl⌋), (4)

Att = fatt(H
l), Att ∈ R

Nl×1, (5)

where fTopK(·) is a sorting function and produces indexes

of the largest k nodes, and ⌊·⌋ is the operation of rounding

down.

With the attention vector Att, the hidden state of the graph

can be updated as:

Hattl = Att⊙H l, Hattl ∈ R
Nl×Cl (6)

where ⊙ denotes element-wise product.

With the index, a subgraph that consists of significant parts

of the model can be extracted, whose adjacent matrix is

noted as:

A
′

i = Âl
Idx(i), A

′

∈ R
k×Nl (7)

A softmax function is then applied to A
′

in a row-wise fash-

ion for the purpose of normalization.

Then, with the selected nodes, we pool the information from

Hattl to H l+1 as:

H l+1 = A
′

Hattl , H l+1 ∈ R
k×Cl . (8)

The pooling process is actually an attention-based informa-

tion aggregation procedure that updates the hidden state of
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AttPool Module

Figure 1. An illustration of the AttPool module. The AttPool module takes Gl as input and pick out nodes that are significant for graph pre-

sentation according to their attention coefficients calculated by function fatt(·). Then, attention-weighted information will be aggregated

from the neighbours of each selected nodes to them.

current graph to a higher-level representation. The process

retains more gradient back-propagation paths from subse-

quent layers to the attention function fatt(·) via aggregating

features from neighbouring nodes that may not be selected,

which helps the training of the attention module. Mean-

while, in some cases, if the important nodes are removed,

the feature aggregation process would ensure important in-

formation is preserved to some extent.

As in [42], we take the distance between clusters, each of

which consists of the 1-hop neighbors of a selected node in

Gl, as the distance between the nodes in Gl+1, and update

the adjacency matrix for the subgraph as:

Âl+1 = A
′

ÂlA
′T , Âl+1 ∈ R

k×k, (9)

H l+1 and Âl+1 are then fed into next GCN module to learn

higher-level patterns for the graph.

3.3. Learning Global Attention vs Local Attention

In this section we propose two alternative implementa-

tions for the attention function fatt(·), i.e. global attention

and local attention.

3.3.1 Global Attention

The attention mechanism allows a model to focus on task-

relevant parts of the inputs, helping it to make better de-

cisions. Naturally, we can leverage an attention model to

learn a series of normalized weights that can be interpreted

as the relative importance given to each node. When we

take all the nodes in a graph into account, that is what we

call global attention. In practice, we compute the global

attention coefficients as follows:

Atti = softmaxi(H ×W ) =
exp(Hi ×W )∑

j∈N exp(Hj ×W )
,

(10)

where × denote matrix multiplication. W ∈ R
C×1 is a

shared linear transformation that is applied to every node.

The softmax function is utilized to normalize the attention

vector, which makes the attention coefficients comparable

across different nodes.

3.3.2 Local Attention

Before the introduction of local attention mechanism, let us

take a closer look to equation (1). According to equation

(1), for a node υi, the output of GCN at layer l is computed

by:

H l+1
i = ReLU(

∑

j∈1−hop(i)

ÂijH
l
jW

l) (11)

The equation (11) shows that the GCN layer computes the

new features of a vertex as a linear transformation of the

weighted-average features from itself as well as its 1-hop

neighbours, where

ÂH = (D̃−
1
2 ÃD̃−

1
2 )H (12)

is actually a special form of Laplacian smoothing - sym-

metric Laplacian smoothing [22]. It reveals that the mes-

sage in one node is propagated among itself and the 1-

hop connected neighbours, which leads to the features of

nodes within each connected component of the graph to be

smoothed. That is to say, nodes staying close to each other

tend to catch similar attention. As a result, a bunch of nodes

sharing redundant information could be selected out, while

nodes located at other parts of the graph, which also contain

discriminative information, may be suppressed. Fig (4.a)

and Fig (4.c) are two visualized samples for the “parochial

selection”.

Therefore, to prevent the attention from being stuck in a

narrow region of the graph, we propose local attention to

keep a balance between the importance and the dispersion

during the sub-graph selection. As with global attention, we
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Figure 2. The illustration of a model with 3 AttGCN layers. The first AttGCN takes the original graph G0 as input, while the second and

third AttGCN layers take the sub-graphs generated by first and second modules as input, respectively. Each AttGCN layer is appended

with a MLP that takes the graph embedding as input and predicts the label of the graph. ⊕ indicates that the loss and the predictions of

different stages are added up to get the overall classification loss and final prediction, respectively.

first learn a shared linear transformation W ∈ R
C×1. Af-

ter applying the linear transformation, we compute 1-hop

attention for every node within its 1-hop neighbours rather

than all of the nodes, simultaneously and independently:

Att
1−hop
i =

Âiiexp(Hi ×W · τ)
∑

j∈N (Âijexp(Hj ×W · τ))
, (13)

It is actually a weighted softmax function with a learn-

able scalar τ that adjusts the sensitivity of the function.

With equation (13), the attention coefficient of the node is

rescaled via taking the importance (Hj ×W ) as well as the

distance (Âij) of its neighbours into account. Then, for each

node, we finally calculate the local attention coefficient by:

Atti = Att
1−hop
i ·

∑

j∈N

Âij (14)

where the attention value of each node is multiplied by its

degree in order to eliminate the bias caused by the number

of nodes’ 1-hop neighbors for the fair comparison globally.

3.4. Hierarchical Prediction Architecture with
AttPool

By stacking multiple GCN layers with AttPool layers in-

serted, we can construct an end-to-end trainable model for

graph classification. To further boost the training process

and fully utilize the hierarchical features, we adopt the in-

termediate supervision strategy [39, 29] and propose a hier-

archical prediction architecture that is illustrated in Fig.(2).

For convenience, we name the AttPool appended GCN lay-

ers AttGCN. For each AttGCN layer, it takes a graph as

input, and outputs a sub-graph and the hidden state of the

input graph. The sub-graph is taken as the input for the

analysis in the next stage, i.e. another AttGCN layer, while

the hidden state is added up across each node as the graph

embedding and utilized for graph classification. The ad-

vantages of the architecture are two fold: in the training

phase, attention-based node selection and graph representa-

tion learning for classification are mutually correlated and

thus can reinforce each other and accelerate the conver-

gence of the model. In the test phase, we can make a more

reliable prediction via taking an comprehensive considera-

tion of results with various receptive fields.

4. Experiments

4.1. Datasets

We conduct comprehensive experiments on several

datasets commonly used for graph classification, which in-

clude real-world samples in different domains and various

scales. Specifically, we apply our model on bio-infomatics

datasets that consist of NCI1 [38], D&D [7] and PRO-

TEINS [4], the scientific collaboration dataset COLLAB

[21], and the social network datasets, namely REDDIT-

BINARY and REDDIT-MULTI-12K [41]. According to the

average node numbers for each graph as presented in Table

3, these datasets can be grouped into small (NCI1, PRO-

TEINS), medium (COLLAB, D&D ), and large (REDDIT-

BINARY, REDDIT-MULTI-12K) scale datasets. To better

justify the efficacy of our method, we will discuss the ex-

perimental results for each of the different groups.

4.2. Experimental Setups

In our experiments, we set a 3-layer GCN as our base-

line, and compare our method with both the state-of-the-art
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Figure 3. Visualization of graph embedding from GCN baseline and each AttGCN layer of AttPool-L model on COLLAB (left) and

REEDIT-BINARY (right). “AttGCN-i” indicates the result of the i th layer in the model. Points of different colors indicate graph samples

with different labels. The visualization is done with t-SNE [25].

Table 1. Comparisons of classification accuracy achieved by dif-

ferent AttGCN layers in our models. “AVG” means to fuse the

prediction results via averaging the classification scores of differ-

ent AttGCN layers.

NCI1 COLLAB
REDDIT-

BINARY

LAYER G L G L G L

GCN 75.74 68.18 85.20

1ST 76.40 77.06 72.36 70.31 86.60 91.10

2ND 78.93 78.27 75.96 77.31 88.30 91.15

3RD 77.93 78.18 75.52 78.09 87.40 92.30

4TH 77.32 77.37 75.00 77.40 86.90 91.65

AVG 80.58 81.68 77.04 79.66 90.30 93.15

kernel-based approaches [33, 41, 19, 32] and graph neural

networks based approaches [15, 30, 44, 42]. For a fair com-

parison [42, 44], we run every different experiment with 10-

fold cross validation, and the model at the epoch with the

best cross-validation accuracy averaged over the 10 folds

was selected. For the datasets preprocessing, we follow

the official code of the SortPool [44]. Our models have 4

AttGCN layers with 64 hidden units for NCI-1, COLLAB

and REDDIT datasets. We set the layer number to 3 and

halve the hidden units for D&D and PROTEINS, which

have fewer training samples, to prevent over-fitting. We

use GCN as our backbone network. The first AttGCN layer

uses 3 GCN layers while subsequent AttGCN layers use 1

GCN layer for basic reasoning. In our main experiments,

the pooling ratio is set to 0.5. We use a 2-layer MLP with

100 hidden units for all datasets. We utilize Xavier nor-

mal distribution[14] for weight initialization, and use cross-

entropy loss for training. For all datasets, we train the net-

works for 500 epochs using Adam Optimizer [17] with a

learning rate of 0.001 and set the batch size to 20. More im-

plementation details and codes can be accessed in the sup-

plementary materials1.

1https://github.com/hjjpku/Attention in Graph

4.3. Hierarchical Representation for Graph Classi-
fication

In this subsection, we justify the effectiveness of the hi-

erarchical representation for graph classification tasks via

studying the performance of each AttGCN layer in our mod-

els. As shown in Table.(1), the first AttGCN layers of both

the AttPool-G and AttPool-L models perform slightly better

than the GCN baseline on the three datasets, which demon-

strates that gradients from deeper AttGCN layers are of

benefit to the training of shallow AttGCN layers. Mean-

while, we can observe that accuracy of deeper layers is al-

ways higher than that of the first layer, while the location

of peak points varies depending on datasets. It reveals that

different levels of graph embedding have different repre-

sentation capabilities, and the most effective representation

emerges at different layers according to datasets. Addition-

ally, we find that when we fuse the predictions of different

AttGCN layers by averaging the scores, better performance

can be achieved than that of any single AttGCN layer. The

result suggests that hierarchical information is significant

for graph classification tasks. To make the discussion more

concrete, we visualize graph embedding from GCN base-

line and different AttGCN layers of our model on COLLAB

and REDDIT-BINARY datasets. In Fig.(3), points of dif-

ferent colors indicate graph samples with different labels.

We can see that embedding from the 3rd layer of AttPool-L

models show better discriminability than the other layers,

which is consistent with the results in Table.(1).

4.4. Comparisons with Other Pooling Methods

To evaluate the efficacy of the AttPool module, we set the

GCN model as baseline, and compare our AttPool against

another two differentiable graph pooling mechanisms, i.e.

Graph U-net pool [11] and DiffPool [42]. Specifically, we

replace the AttPool module in our model with the pool-

ing modules of Graph U-net and DiffPool, and keep the

backbones and other parts of the networks all the same (we
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（a） （b） （c） （d）

Figure 4. Visualization of attention based node selection in first AttPool layer, using two samples from COLLAB. 50% of nodes are selected

for sub-graph construction and labeled in red. The figure (a), (b) and figure (c), (d) are two pairs of samples where (a), (c) are the outputs

of the global attention based pooling module while (b), (d) are the outputs of the local attention based pooling module.

denote these two modified networks as Graph U-net* and

DiffPool*). For consistency with the original DiffPool ap-

proach, we use a 3-layer GCN for assignment matrix gen-

eration in each DiffPool layer, and the maximal number of

nodes after DiffPool layer is set to 2 times of the average

node number of each dataset. For a fair comparison, we do

not adopt auxiliary methods (e.g. auxiliary link prediction

objective [42] and graph connectivity augmentation [11])

for neither our method nor the compared methods.

As shown in Table 2, compared with the baseline, our

AttPool achieves superior performances on all of the three

datasets. For Graph U-net* and DiffPool*, they bring about

performance benefits on NCI1 and COLLAB datasets, but

scores relatively moderately on REDDIT-BINARY com-

pared with the GCN model. From the comparison of differ-

ent pooling mechanisms, we can find that AttPool and Diff-

Pool*, both of which perform information aggregation dur-

ing the pooling operation, achieve better performance than

Graph U-Net*. It reveals that the information aggregation

can be helpful for graph representation learning, especially

on medium and large scale datasets.

Table 2. Comparisons of classification accuracy of models with

different attention modules. * indicates the models with our im-

plementations of Graph U-net pool layer or DiffPool layer.

MODULE

DATASET
NCI1 COLLAB

REDDIT-

BINARY

GCN 75.74 68.18 85.20

GRAPH U-NET* 79.52 69.42 70.25

DIFFPOOL* 78.32 76.18 83.75

ATTPOOL-G 80.58 77.04 90.30

ATTPOOL-L 81.68 79.66 93.15

4.5. Hierarchical Prediction Architecture V.S. Con-
ventional Classification Architecture

In this subsection, we validate the efficiency of the

hierarchical prediction architecture that utilizes multi-

granularity features to predict the graph label and leverages

multi-layer classification losses to train the model. We com-

pare the proposed learning architecture against the conven-

tional classification architecture that only appends an MLP

to the head of the model. Additionally, to show the gener-

ality of this architecture, we also present contrasting results

for the Graph U-Net* and DiffPool*.

The experimental results are presented in Table 4. Mod-

els with the hierarchical prediction architecture are denoted

by w/ H, while w/o H denotes the models with conven-

tional classification architecture. As shown in Table 4,

when compared with Graph U-Net* w/o H, the hierarchical

prediction architecture gives Graph U-Net* significant im-

provement on NCI1 and REDDIT-BINARY. For DiffPool*

and AttPool-G, better results can be achieved on NCI1 and

COLLAB with the proposed architecture. AttPool-L w/

H consistently outperforms AttPool-L w/o H on the three

datasets and achieves best performance among the methods

mentioned in Table 2.

4.6. Global Attention V.S. Local Attention

In this subsection, we discuss the performance of the

two alternative attention mechanisms proposed in this pa-

per. We report the results of the AttPool-G and the AttPool-

L in Table 3. We find that on small scale and medium scale

datasets, global attention and local attention have compet-

itive performance. For the two large scale datasets, lo-

cal attention performs 2.85% better than global attention

on REDDIT-BINARY, and gives 2.9% improvements on

REDDIT-MULTI-12K. The results illustrate that local at-

tention can be a better choice for the representation learning

on large graphs.

To further conceptualize the difference of global attention

and local attention, we visualize the attention-based node

selections with two graphs from COLLAB. For each graph,

50% of nodes from the first AttPool module are selected in

our models. As shown in Fig 4, we can find that global at-
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Table 3. Comparisons of classification accuracy of different graph models. The bold fonts denote the best accuracy on each dataset. *

indicates our implementation of GCN.

Model NCI1 PROTEINS COLLAB D&D REDDIT-BINARY REDDIT-MULTI-12K

NUM. OF GRAPHS 4110 1113 5000 1178 2000 11929

AVG. NUM. OF NODES 30 39 74 284 430 391

AVG. NUM. OF EDGES 32 73 2458 716 498 457

GRAPHLET 62.49 71.39 64.66 74.38 – 21.73

DGK 80.31 75.68 73.09 – 78.04 32.22

WL 84.46 73.76 78.61 74.02 80.8 39.03

PSCN – 75.00 72.6 76.27 – 41.32

GRAPHSAGE – 70.48 68.25 75.42 – 42.24

SORTPOOL 74.44 75.54 73.36 79.37 – –

DIFFPOOL – 76.25 75.48 80.64 – 47.08

GCN* 75.74 71.08 68.18 72.07 85.20 44.67

ATTPOOL-G 80.58 76.50 77.04 79.20 90.30 46.53

ATTPOOL-L 81.68 75.14 79.66 76.07 93.15 49.40

Table 4. Comparisons of classification accuracy of models with

the hierarchical prediction architecture (w/ H) and conventional

classification architecture (w/o H). * indicates the models with our

implementations of Graph U-net-pool layer or DiffPool layer.

MODULE

DATASET
NCI1 COLLAB

REDDIT-

BINARY

GRAPH U-NET* W/O H 68.02 71.65 51.8

GRAPH U-NET* W/ H 79.52 69.42 70.25

DIFFPOOL* W/O H 77.73 75.00 82.44

DIFFPOOL* W/ H 78.32 76.18 83.75

ATTPOOL-G W/O H 76.93 75.70 90.40

ATTPOOL-G W/ H 80.58 77.04 90.30

ATTPOOL-L W/O H 77.80 77.64 91.80

ATTPOOL-L W/ H 81.68 79.66 93.15

tention tends to focus on the main part of the graph while

local attention tends to retain the hyper-architecture of the

graph with a more sparse node-selection strategy.

4.7. Comparisons with Other Graph Classification
Models

We compare the graph classification performance of our

model against other representative GNN-based methods,

namely GCN [18], GraphSage [15], PSCN [30], SortPool

[44], DiffPool [42], as well as some well-known kernel-

based methods, such as Graphlet [33], WEISFEILER-

LEHMAN subtree kenerl (WL) [32] and Deep Graph Ker-

nel (DGK) [41]. The performance comparison can be seen

in Table 3. Our method brings about a significant improve-

ment to the GCN baseline, which arrives an average of

6.91% over all the 6 datasets. Additionally, we achieve

the best results on 4 out of 6 benchmarks and improve the

state-of-the-art performance, especially on the large scale

datasets (i.e., REDDIT). It can be observed that previous

state-of-the-art models usually have varied performances

over different datasets. For example, the performances of

WL method is significantly ahead of other previous meth-

ods in the NCI1 and COLLAB datasets, but falls behind the

DiffPool by a large margin in the PROTEINS, D&D and

REDDIT-MULTI-12K datasets. Compared with previous

models, the AttPool behaves more consistently over various

datasets, which shows our proposed attention mechanism

can extract better representation for a wide family of graph-

structured data.

5. Conclusion

In this paper, we present learning the hierarchical fea-

ture representation for a graph via a novel attention-based

pooling mechanism. The devised attention-pooling layer

selects discriminative nodes based on calculated attention

values to build the coarser graph. Meanwhile, the graph

embedding at each layer is generated via aggregating the

node representation in an attention-weighted manner. We

also design a hierarchical prediction-learning structure for

the graph classification task. The attention pooling module

together with the hierarchical learning strategy can be com-

bined with existing GCNs and be trained end-to-end. We

test the proposed hierarchical learning framework on sev-

eral graph-classification benchmark datasets, and achieve

superior or comparable results compared with other repre-

sentative methods.
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