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Abstract In this paper we show how non-linear attractor

dynamics can be used as a framework to control teams of

autonomous mobile robots that should navigate according

to a predefined geometric formation. The environment does

not need to be known a priori and may change over time.

Implicit to the control architecture are some important fea-

tures such as establishing and moving the formation, split

and join of formations (when necessary to avoid obstacles).

Formations are defined by a formation matrix. By manipu-

lating this formation matrix it is also possible to switch for-

mations at run time. Examples of simulation results and im-

plementations with real robots (teams of Khepera robots and

medium size mobile robots), demonstrate formation switch,

static and dynamic obstacle avoidance and split and join

formations without the need for any explicit coordination

scheme. Robustness against environmental perturbations is

intrinsically achieved because the behaviour of each robot

is generated as a time series of asymptotically stable states,

which contribute to the asymptotic stability of the overall

control system.

Keywords Formation control · Multi-robot systems ·
Attractor dynamics

1 Introduction

When we have a set of moving robots that should travel ac-

cording to a desired pattern (all in the same places with re-
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lation to each other), we say that we are in the presence of a

formation control problem (Arai et al. 2002). Typically, each

robot should be able to keep constant the distance that sepa-

rates it from its neighbours, or the distance and direction to

only one neighbour.

There are many tasks that can benefit from the use

of a team of robots in formation. Some of the reported

in the literature are: payload transportation (Johnson and

Bay 1995), capturing/enclosing invaders (Yamaguchi 1999;

Hsieh et al. 2008), satellite cluster formation (Bauer et al.

1997), spacecraft formation (Ren and Beard 2002), envi-

ronment exploration/reconnaissance (Balch and Arkin 1998;

Honary et al. 2009), agricultural and construction appli-

cations (Hao and Agrawal 2005; Kwok et al. 2007) and

several marine applications (Kalantar and Zimmer 2007,

2009; Fahimi 2007). All of these applications have different

control requirements. Payload transportation, for instance,

needs highly rigid formations and does not allow obstacles

“inside” the formation. On the other hand, in an exploration

task, the formation can be more flexible, in terms of shape

maintenance, and it allows obstacles inside the formation.

The conclusion is that it is hard to build a control architec-

ture that suits the needs of several tasks, specially when they

have disjunct requirements.

Our purpose is to build a formation control architecture

for exploration type of tasks, or team translation (move a

team of robots from one location to the other, but in an or-

derly way). This type of tasks have some desired features:

(a) the ability to stabilize a formation from any initial situa-

tion; (b) avoid obstacles (either static or dynamic); (c) split

formations; (d) join formations after split; (e) switch the for-

mation shape, either if explicitly ordered or due to some

events; (f) be robust against robot failure.

There are many, and diverse, approaches to solve these

problems. Some of the most relevant reported results in the
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literature include the use of virtual structures (Lewis and

Tan 1997; Young et al. 2001), vision based approaches (Das

et al. 2002; Vidal et al. 2003), behaviour-based approaches

(Balch and Arkin 1998; Naffin and Sukhatme 2004), leader-

follower methods (Fredslund and Matarić 2002) and graph

theory (Olfati-Saber and Murray 2002). The projects re-

ported in literature usually focus only on some of the fea-

tures required above, or, have only been presented in simu-

lation. We present a formation control architecture that sub-

sumes the leader-follower and the behavior-based approach.

More specifically we use a leader-follower strategy to build

the formations, with the configuration geometry being ac-

complished by the chain of leaders and followers. The mo-

tor control of each robot relies on an attractor dynamics ap-

proach to behavior-based robotics, where we have formation

behaviors for each leader-follower desired geometry and ob-

stacle avoidance. At each moment only one formation be-

havior is active (dependent on the desired configuration) to-

gether with the obstacle avoidance behavior. Particular to

our approach, we use non-linear dynamical systems theory

to design and implement the behaviors. Specifically, the time

course of the control variables are obtained from (constant)

solutions of dynamical systems. The attractor solutions (as-

ymptotically stable states) dominate these solutions by de-

sign. The benefit is that overt behaviour of each robot is gen-

erated as a time course of asymptotically stable states, that,

therefore, contribute to the overall asymptotical stability of

the complete control system and makes it robust against per-

turbations.

We observe the desired features and document it with re-

sults from simulations and real robot implementations. One

of the important features of this work is the ability to switch

formations, that allows for the initial formation stabiliza-

tion independent of the initial configuration, and also trig-

gered formation changes. The other important feature, and

the most relevant contribution, is the implicit split and join

formations in the presence of obstacles. This is a very im-

portant characteristic, specially in cluttered environments,

which are usually the grounds of exploration tasks. Other

projects deal with this issue by explicitly splitting the for-

mations and joining afterwards, which in cluttered environ-

ments, places a lot effort at the coordination level. Usually

they are not demonstrated in these environments, but with

only one or two obstacles, or narrow passages.

The rest of the paper is structured as follows: Sect. 2

presents a brief overview of the related work; the attractor

dynamics approach is introduced in Sect. 3; we continue

to Sect. 4 where we detail our control architecture; Sect. 5

analyses some of the achieved results, both in simulation and

in real implementations; we finish by presenting discussion,

conclusions and future work, in Sect. 6.

2 Related work

Virtual structures are one of the solutions to the formation

control problem, that was very used a few years ago. Lewis

and Tan (1997) were one of the first to use it. In a sim-

ple way, the desired formation matches the geometry of the

virtual structure, and to each apex of it corresponds one

robot; then the virtual structure is successively moved in

small steps and the robots are actuated in such way to match

the position of the apex to which they belong. Beard et al.

(1999) subsumed it with leader–following and behavioural

approaches to a multi-vehicle coordination problem. As ex-

ample, they show the application to the design of a multi-

ple spacecraft interferometer in deep space, using a virtual

structure scheme. This scheme is augmented in Young et al.

(2001) by introducing formation feedback. These solutions

based on virtual structures, typically implement formations

of the rigid type, and typically are more centralized, and,

thus, suffer from the disadvantages of these. Some of these

disadvantages include extensive use of communication be-

tween the robots, poor or non-existent obstacle avoidance

implementation. Another centralized approach is presented

in Antonelli and Chiaverini (2006). They use a two stage

controller: the first being the central coordinator and the sec-

ond the local controller to each robot. Specifically, they de-

velop task functions for several different goals (rigid for-

mations, target escort, etc.) using inverse-kinematics. Kine-

matic equations are developed in Barfoot and Clark (2004)

that allow a team to maintain a formation. The motion plan-

ning is local to each robot, but relies on the information of a

pre-planned trajectory, that acts as reference trajectory free

of obstacles. Virtual structures are also used in Do and Pan

(2007) combined with path tracking. Here, the virtual struc-

ture approach is modified such that the formation shape can

vary. In Cruz and Carelli (2008) rigid formations are devel-

oped, allowing obstacle avoidance, that take in consideration

each robot dynamic model (which are of the unicycle type).

Opposite to the virtual structures approach, which is usu-

ally more of the centralized type because of the information

about the structure, i.e. about all the robots, is the behaviour-

based approach. In the later, typically, the solutions are of

the decentralized type. Balch and Arkin (1998) presented

such an approach where, using motor schemas, four for-

mation configurations (line, column, wedge and diamond)

and three types of robot references (leader referenced, unit

referenced and neighbour referenced) are introduced. Fred-

slund and Matarić (2002) also use a behaviour-based ap-

proach. Each robot maintains the formation by assuring that

its friend sensor (a pan only video camera) sees the leader

in the desired direction, and using laser scanners to mea-

sure the distance. The drawback of this approach is that it

is only able to perform certain types of formations, due to

the friend sensor. A different approach is used by Hong et
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al. (2001). They used fuzzy systems to control each robot

speed, and fuzzy-neuro systems to implement the obstacle

avoidance behaviour. Differential flat systems are utilized in

Pledgie et al. (2002) to model the robots behaviour. Kim

et al. (2001) use Petri-nets to model three control subtasks:

formation maintenance, identification and formation gener-

ation.

Two types of controllers for follower robots navigating in

a multi-robot formation are proposed in Desai et al. (2001):

distance-bearing, or l–φ, and distance to two leaders, or l–l.

Using the first, a follower tries to maintain fixed the dis-

tance and bearing to a leader, while in the second a follower

tries to maintain fixed the distance to two leaders. Control

laws for the followers are based on non-linear control the-

ory, while the geometry and type of relations between ro-

bots are based on graph theory. They also define a transi-

tion matrix that governs the addition and deletion of edges

to the control graph (which changes either the formation or

the relations between the robots). A similar solution appears

in Das et al. (2002). There, several control laws are defined:

leader–follower, leader–obstacle, for three robots, etc. These

controllers are then integrated in a coordination protocol, by

switching among them to the proper one, given the desired

formation (formulated as a control graph) and the world.

Gustavi and Hu (2005) also propose two controllers for a

leader–follower strategy: one for horizontal tracking (what,

here, we call line formations) and other for vertical tracking

(for formations other than line). They distinguish their work

from the previous by explicitly assuming sensor and actua-

tor constraints. However, they only present simulations (in

an obstacle free environment). A different approach by Vi-

dal et al. (2003), is based on omni directional vision. They

use motion segmentation techniques to estimate the position

and velocities of each leader and omni directional visual ser-

voing for tracking and collision avoidance. The formation is

specified in the image plane. Also in the leader–follower cat-

egory, Ren and Sorensen (2008) mixes a distributed cooper-

ative control strategy, based on consensus algorithms with

an arbitrary number of group leaders in the formation. In

Fahimi (2008) the l–φ approach is extended to 3D forma-

tions of small-sized helicopters, where the control laws are

designed by using sliding-mode control.

Other types of team organization includes those that deal

with artificial potentials. In Leonard and Fiorelli (2001) a

different formation control approach, relying on virtual lead-

ers and artificial potentials, is defined. To each real robot

and virtual leader corresponds an artificial potential. Then,

virtual leaders are placed amongst the real robots to define

the formation. This framework is extended in Ogren et al.

(2002) by allowing formations to be translated, rotated, ex-

panded and contracted. Gazi (2005) integrates artificial po-

tentials and sliding-mode control in the control strategy to

drive swarms of robots, which can also be used in forma-

tions. Balch and Hybinette (2000) present a new class of

potential functions, called social potentials. Here the forma-

tion is specified by choosing each robot attachment sites,

that are the places that attract other robots. Similar to these

attachment sites (but not related to artificial potentials) is the

notion of local templates as presented in Krishnanand and

Ghose (2005). They enable the robots to self-assemble into

grid, line and wedge patterns. A different approach to forma-

tion definition is presented by Ge and Fua (2005). The con-

cept of queues, instead of nodes, is introduced to build the

formation. Examples of queues can be the sides of a poly-

gon, when dealing with polygon shaped formations. These

queues are user defined and can assume any form.

Sometimes, it is necessary that a team of robots divides

itself into two sub-teams. This can be caused by the neces-

sity of overtaking some obstacles, or go trough some nar-

row passages. Thus the importance of the ability to split and

join formations. Olfati-Saber and Murray (2002) present a

framework that enables formation split and join, by explor-

ing the properties of rigid graphs. An explicit split and join

(and vice-versa) maneuver is addressed in Ogren (2004).

The principle is that a vehicle should only travel in a for-

mation (rigid one) if it is suitable for it (has a common path

segment with its leader in the formation, for instance) and

there are no obstacles to avoid.

In the presented related work, there were several differ-

ent approaches, but, typically, there was a separate coor-

dination level (doing decision making, like obstacle avoid-

ance, breaking or joining the formation, etc.) and a con-

trol level (implementing the actions decided at the coordi-

nation level). We, instead, have only one layer, that pro-

vides control signals (like path velocity and rate of change

of heading direction) and also does dynamic decision mak-

ing, by using the so-called Nonlinear Attractor dynamics ap-

proach to behaviour generation. This framework (see next

section for an introduction on the basic principles) was first

presented in Schöner and Dose (1992) and Schöner et al.

(1995). Since then it has been demonstrated in several differ-

ent environments and performing different tasks. Steinhage

(1997) simulated it extensively and introduced methods for

action selection. Bicho extended the approach and made

it work in low-level (both computing and sensoring) vehi-

cle platforms (Bicho and Schöner 1997; Bicho et al. 2000;

Bicho 2000). The first example of cooperative navigation,

by two robots, heading to a target was simulated by Large

et al. (1999). To the best of our knowledge, the first ap-

proach to formation control using the attractor dynamics

approach, was made by us (Monteiro and Bicho 2002;

Bicho and Monteiro 2003; Monteiro et al. 2004). In paral-

lel we have extended this approach/work to the problem of

coordinating and controlling teams of autonomous mobile

robots that must transport a rigid object from an initial po-

sition to a final target destination (Soares and Bicho 2002;

Bicho et al. 2004; Soares et al. 2007), and to 3D formations

of lighter than air airships (Bicho et al. 2006).
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This paper results as a corollary and extension of our pre-

vious research in the formation control domain. The follow-

ing is a new contribution: (i) Lyapunov stability analysis that

have not been include before, and proves the asymptotic sta-

bility of the control laws. This is a positive feature com-

pared to typical behavior based approaches since, usually,

the control law is based only on the superposition of heuris-

tic functions for each behavior, and mathematically prov-

ing the asymptotic stability of the control laws is difficult

and sometimes impossible. (ii) We present, analyze and dis-

cuss a set of new results that have not yet been presented,

namely: (a) Our first implementations completely commu-

nication free. This result is important because by design the

control parameters (distance and bearing angle to leader)

were chosen in a way such that the approach does not need

communication (in order for the system to work properly)

as long as the robots are equipped with appropriate sensors

(e.g. the vision system) that provides estimates of these para-

meters. (b) Simulation results that show robustness against

robot failure. (c) Simulation results of teams navigating in

very cluttered and dynamic environment (i.e. moving ob-

stacles). (d) Simulation results with larger teams and more

complex formation shapes.

As a final note, it is important to stress that although

both the Potential Field approach and the Nonlinear Attrac-

tor Dynamics approach represent obstacles and target as re-

pellers and attractors, respectively, the two approaches are

quite different. In the potential field approach the gradient

of a scalar potential field is used to generate the robot’s tra-

jectory. Thus, the path is generated by the transient solu-

tions of a dynamical system. On the other hand, in the non-

linear attractor dynamics approach the path is generated by

a sequence of attractor solutions. Thus the transient solu-

tions of the potential field approach are replaced by a se-

quence of attractor solutions (i.e. asymptotical stable states)

of a dynamical system, that therefore contribute to the as-

ymptotical stability of the overall control system (for a com-

parison of these two approaches see e.g. Fajen et al. 2003;

Costa e Silva et al. 2006).

3 Basics of the nonlinear attractor dynamics approach

We start with a brief review of the basic ideas of the dynamic

approach to behaviour generation (Schöner and Dose 1992;

Schöner et al. 1995; Bicho and Schöner 1997; Steinhage

1997; Bicho et al. 2000; Bicho 2000): (1) Behavioural vari-

ables are used to describe, quantify and internally represent

the state of the robot system with respect to elementary be-

haviours. For an autonomous mobile robot moving in the

plane, the heading direction, φi (0 ≤ φi ≤ 2π rad), with re-

spect to an arbitrary but fixed world axis, and path velocity,

vi , are appropriate behavioural variables; (2) Behaviour is

generated by continuously providing values to these vari-

ables, which control the robot wheels. The time course of

each of these variables is obtained from (constant) solutions

of dynamical systems. The attractor solutions (asymptoti-

cally stable states) dominate these solutions by design. In

the present system, the behavioural dynamics of heading di-

rection, φi(t), and velocity, vi(t) (i = leader, follower) are

differential equations

φ̇i = fi(φi,parameters), (1)

v̇i = gi(vi,parameters). (2)

Task constraints define contributions to the vector fields.

Each constraint may be modelled either as a repulsive or

as an attractive force-let, which are both characterized by

three parameters: (a) which value of the behavioural vari-

able is specified? (b) how strongly attractive or repulsive

the specified value is?; and (c) over which range of values

of the behavioural variable a force-let acts? Thus, in isola-

tion, each force-let creates an attractor (asymptotically sta-

ble state) or a repeller (unstable state) of the dynamics of

the behavioural variables. An attractive force-let serves to

attract the system to a desired value of the behavioural vari-

able (e.g. the direction in which a target lies for the heading

direction or a desired velocity value for the path velocity).

A repulsive force-let is used to avoid the values of the be-

havioural variable that must be avoided (for example, the

directions in which obstacles lie are values that the heading

direction must avoid). The resultant dynamical systems are

non–linear and may have multiple stable states (attractors)

that change in time. By design, parameters are tuned such

that the behavioural variables are very close to one attrac-

tor of the resultant dynamics most of the time, i.e. the vari-

ables follow very closely one of the moving attractors. Thus

the behaviour of each robot is generated as a time series of

asymptotically stable states. The fact that only attractor so-

lutions matter can be used to design the layout of attrac-

tors and repellers using the qualitative theory of dynamical

systems. Qualitative changes in the behaviours are brought

about by means of bifurcations in the vector fields. Local bi-

furcation theory helps to design the dynamics such that these

qualitative changes are automatically made under the appro-

priate environmental conditions (e.g. sensory information or

shared information among the team of robots).

In the next section, we will build the behavioural dynam-

ics, i.e. we derive the vector fields of (1) and (2), for each

robot that generate formation control.

4 Building robot formations

We use a leader–follower strategy to organize the robot

team. Each team is composed of a Lead robot (Desai et
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Fig. 1 Example of hexagon

formation, showing the

leader–follower structure. Lead

robot is the darker one

al. 2001) (other authors also use the name conductor (Fred-

slund and Matarić 2002)) and several (at least one) follower

robots. The purpose of the Lead robot is to act as a team

leader. It knows where the team final destination, or target,

is and heads toward it. All the other robots, the followers,

follow the Lead robot, either directly or indirectly (through

another team mate, that, on its turn, follows the Lead robot).

Consider the example in Fig. 1, where a team with six

robots is organized in a hexagon formation. Here, robot R1,

is the Lead robot and all the other are followers. Robots R2,

R3 and R6 directly follow the Lead robot. R4 follows R2

that, on its turn, follows R1, so, it follows the Lead robot

indirectly. One step down in the chain of leadership is robot

R5 that follows R4. So, in our formations we have a chain

of leaderships, where one robot can be a leader to another

robot, while at the same time it is following another one. In

this type of organizational architecture we can envisage that

all robots are connected in leader–follower pairs, and we can

reduce the problem of formation control at team level to a set

of formations with only two robots. Here only the follow-

ers have the responsibility to maintain the formation (it is a

unidirectional relationship). One of the benefits is that com-

munication and sensorial requirements are highly reduced.

If each set is in formation, i.e. if each follower is in the ex-

act location regarding its leader, then a global formation is

achieved. In the next subsections we show the behavioural

dynamics to build a formation with only two robots (i.e. we

derive the vector fields in (1) and (2)), and then generalize

to a formation with N-robots.

4.1 Formations with two robots

When we only have two robots travelling in a formation,

where the distance between them should be kept constant,

one of three situation occurs: they should either travel one

behind the other, or side by side or diagonally at a desired

angle. To these three situations we call, respectively, column

formation, line formation and oblique formation.

In order to try to avoid communication, and make the task

easier for real world implementations, we will attempt to

build the controllers only with information that each robot

can directly (and easily) collect. Information about others

behaviour, like velocity and, specially, heading direction is

Fig. 2 Example of notation used in this paper

highly restricted. This is why heading direction controllers

will not be dependent on the leader’s heading.

Before we proceed we will introduce the notation used

throughout this paper (Fig. 2 shows an example for clarity):

Robotj : leader robot;

Roboti : follower robot;

li : the actual distance of Roboti to its leader (li,d is the

desired distance);

φj : heading direction of the leader;

φi : heading direction of the follower;

ψobs: direction at which an obstacle is sensed;

�ψobs: angular difference between the leader heading di-

rection, φj , and the direction at which it senses ob-

stacles, ψobs;

ψi : direction at which the follower sees the leader;

�ψi,d : desired angular difference between heading direc-

tion of the follower, φi , and the direction at which

it sees the leader, ψi ;

ψi,d : desired follower heading, i.e., the heading that

keeps the follower in formation.

All the angles are measured with respect to the robot ex-

ternal reference frame, which is fixed, but can be arbitrarily

chosen. Please note that the robots in the team do not need

share the same reference frame.

Now, we continue by detailing, for each formation type,

how to design the controller dynamics.

4.1.1 Column formation

Roboti is said to drive in column formation with Robotj if it

drives behind it at a desired distance (see Fig. 3).

This type of formation is important in tasks involving

convoying (Bom et al. 2005; Hu and Zeigler 2004). Even if

the robots are organized in other formation shapes, it might

be useful to switch to a column shape, prior to pass through

a narrow corridor. Traffic flow is also improved by making

agents organize and travel in columns (AGV delivery in a

plant, or traffic in roads, for instance).

To be in column formation, the follower (Roboti ) must

drive behind its leader (Robotj ), i.e. it must steer to the di-

rection where it sees the leader with respect to the external
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Fig. 3 Two robots in column formation. For column formation ψi is

the desired value for φi

reference frame. This means that the desired relative angle

between the leader and the follower is zero (�ψi,d = 0) and

thus the desired value for the heading direction of Roboti is

ψi (ψi,d = ψi ). A simplest dynamical system for Roboti ’s

heading direction that generates navigation in column for-

mation taking its leader as a reference point is

φ̇i = fcol,i = −λcol sin(φi − ψi) (3)

which erects an attractor for φi directly at the direction at

which the leader lies as seen from the current position of

the follower (i.e. ψi ). λcol (> 0) is the strength of attraction

to the attractor and corresponds to the relaxation rate to that

attractor (i.e. inverse of the local relaxation time).

Besides heading direction, in order to ensure the for-

mation stabilization and maintenance, one must also adjust

path velocity. In the case of column formation, path veloc-

ity is dependent on the distance between the follower and

the leader: the follower should have a lower velocity than

the leader if it is closer than desired, or a larger velocity

otherwise. This can be accomplished by setting the desired

velocity, vi,d , equal to

vi,d =
{

vj − (li,d − li)/T� if li ≥ li,d

−vj − (li,d − li)/T� else
(4)

where vj is the reference velocity, li is the actual, or mea-

sured, distance between the robots and T� is a parameter

that smooths the robot movement, by controlling its ac-

celerations and decelerations. The reference velocity is the

leader’s velocity, if available, or the cruise velocity (the ve-

locity at which the leader travels when not in the presence

of obstacles) that is a mission parameter and known by all

robots. The dynamical system that generates the time series

for the robots path velocity is a linear dynamical system, of

the type

v̇i = g(vi) = −αi(vi − vi,d) (5)

that erects an attractor at the desired path velocity, vi,d .

αi (> 0) controls the relaxation rate to that attractor.

Fig. 4 Two robots in an oblique formation. �ψi,d is the desired rela-

tive angle between the follower (Roboti ) and its leader (Robotj )

Our decision to change the sign of vj was because it al-

lows eventually the follower robot to move backwards when

it is too close to its leader. Please note that (4) is setting

the attractor value (stable equilibrium point) for the path ve-

locity of the follower, not directly the velocity command.

Thus, although the attractor value may change discontinu-

ously (which happens when it changes sign from positive

to negative, if the distance from the follower to its leader

is shorter than the desired one, or vice-versa) the values for

the path velocity, vi , will always change smoothly and con-

tinuously in time because it asymptotically converges to the

attractor value, as defined by the 1st order dynamical system

(see (5)). See also Appendix A.

4.1.2 Oblique formation

We say that Roboti drives in oblique formation with respect

to Robotj when during its motion it maintains fixed (equal

to a pre-defined angle �ψi,d ) the direction at which it sees

Robotj (see Fig. 4).

This type of formation enables us to build formations like

echelons, wedges or V-type formations that are most use-

ful in tactical or military operations (Balch and Arkin 1998;

Edwards et al. 2004), or, when in 3D, also enables effi-

cient energy expenditure at team level (Seiler et al. 2002;

Fowler and Andrea 2002; Nangia and Palmer 2007).

A dynamical system for the heading direction of Roboti
that generates “oblique” formation taking Robotj as a refer-

ence point is

φ̇i = foblique(φi)

= fapproach(φi) + fdivert(φi) (6)

where each term defines an attractive force (see Fig. 5)

fk(φi) = −λobliqueλk(li) sin(φi − ψk) (7)

with k = approach, divert, where the first contribution,

fapproach, erects an attractor at a direction

ψapproach = ψi + �ψi,d − sign(�ψi,d)γ (8)
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Fig. 5 Heading direction of the two forces acting on a follower, when

generating the oblique formation

Fig. 6 This figure shows the two contributions to the “oblique” for-

mation dynamics and their superposition for the three different physi-

cal situations: robots further than desired (li > li,d ), closer than desired

(li < li,d ) and at the desired distance (li = li,d )

in which γ represents the separation between both attractors

fapproach(φi) and fdivert(φi), or the range of values that the

desired heading can take (actually the separation is 2γ ).

The strength of this attractor (λobliqueλapproach(li) with

λoblique fixed), increases with distance, li , between the two

robots:

λapproach(li) = 1/(1 + exp (−(li − li,d)/μ)). (9)

The second contribution, fdivert, sets an attractor at a di-

rection pointing away from the leader,

ψdivert = ψi + �ψi,d + sign(�ψi,d)γ (10)

with a strength (λobliqueλdivert(li)) that decreases with dis-

tance, li , between the robots,

λdivert(li) = 1 − λapproach(li). (11)

Because these two attractive forces are overlapping only one

attractor results from their superposition. The direction at

which the resulting attractor emerges depends on the dis-

tance between the two robots. This is illustrated in Fig. 6.

In this example γ = π/4. If the distance between the two

robots is larger than the desired one, then the attractive force

erected at direction ψapproach is stronger than the attractive

set at direction ψdivert. Their superposition leads to an attrac-

tor at a direction still pointing toward the direction of the

leader robot (see left plot). Conversely, when the distance

between the two robots is smaller than the desired distance

(situation depicted in the middle plot), the reverse holds, i.e.

Fig. 7 Two robots in a line formation. Robotj is the leader of Roboti
which must drive such that it sees its leader perpendicularly (i.e.

ψi,d = ψi +π/2 if Roboti is to the left or ψi,d = ψi −π/2 if Roboti is

to the right) and simultaneously keep a desired distance, li,d , between

them

the attractive force set at direction ψapproach is now weaker

than the attractive force at direction ψdivert. The resulting

oblique formation dynamics exhibits an attractor at a direc-

tion pointing away from leader’s direction. In the right plot

the robots are now at the desired distance. The two attrac-

tive forces have the same strength which leads to a resultant

attractor at the direction ψi,d = ψi + �ψi,d , which is the

desired one.

Path velocity is controlled exactly in the same way as for

column formation.

4.1.3 Line formation

Two robots are said to be in line formation if they drive side-

by-side at a desired distance (see Fig. 7).

Line formations are useful in tasks that deal with effi-

cient coverage of environments. Typical examples are those

of outdoors exploration or reconnaissance, sweeping (Sud-

sang 2002) or mowing the lawn.

A behavioural dynamics for the heading direction of

the follower, Roboti , that generates line formation taking

Robotj as a reference point is given by the same dynam-

ical systems as for “oblique” formation. The difference is

that �ψi,d = ±π/2 (depending on the desired location of

the leader being on the right or the left of the follower) in

(8) and (10).

Path velocity is controlled by a set of heuristic rules that

give the desired value for the robot’s velocity, vi,d,line, i.e.

the attractor for the velocity dynamics (see (5)) is given by

Soares and Bicho (2002)

vi,d,line = DE1 · vj (1 − | sin(ψi)|)

+ DE2 · vj (1 − | cos(ψi)|)

+ AC1 · vj (1 + Kv| sin(ψi)|)

+ AC2 · vj (1 + Kv| cos(ψi)|) (12)

where DE1, DE2, AC1 and AC2 are mutually exclusive acti-

vation variables that reflect the relative attitude of the leader

regarding the follower. They are activated by testing φi and

ψi in the way depicted by Fig. 8 and by using the following
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Fig. 8 Two trigonometric circles representing the activation of log-

ical variables. Left: results from testing the direction at which

the follower sees the leader ψi . If 0 ≤ ψi < π/2 then Aψ = 1

and Bψ = Cψ = Dψ = 0. If π/2 ≤ ψi < π then Bψ = 1 and

Aψ = Cψ = Dψ = 0, and so on. Right: results from testing the heading

direction of the follower (φi )

boolean functions.

DE1 = AψBφ + BψCφ + Aφ(Cψ + Dψ ) (13)

DE2 = AψCφ + DψBφ + Dφ(Bψ + Cψ ) (14)

AC1 = Aψ (Aφ + Dφ) + Cψ (Bφ + Cφ) (15)

AC2 = Bψ (Aφ + Bφ) + Dψ (Cφ + Dφ). (16)

When the situation requires that the follower’s velocity is

increased over the leader’s velocity, then AC1 or AC2 are ac-

tivated. Essentially, this happens when the follower is behind

the leader. Otherwise, DE1 or DE2 are activated instead.

4.2 Generalizing to N-robots formations

Here we show how to extend the solutions presented in pre-

vious sections to build teams of N-robots and also present

examples of maintaining particular geometric configura-

tions.

Teams of robots with more than two robots are built by

specifying pairs of leader–follower teams and stating the

particular configuration to achieve. A complete team speci-

fication is accomplished by means of a formation matrix as

follows

S =

⎛

⎜

⎜

⎝

L1 �ψ1,d l1,d

L2 �ψ2,d l2,d

· · · · · · · · ·
LN �ψN,d lN,d

⎞

⎟

⎟

⎠

. (17)

This matrix codes the shape of the formation in the fol-

lowing way: Row i (= 1,2,3, . . . ,N ) defines the pose of

robot Ri in the formation. It is a vector Si = (Li �ψi,d li,d),

where Li (Li �= Ri ) identifies the leader robot for Robot i,

�ψi,d is the desired relative angle between Robot i and its

leader and li,d the desired distance to its leader.

When Robot i is the Lead Robot the parameters for its

dynamics are Li = 0, �ψi,d = 0 and li,d defines the distance

at which it must stop from the target location.

Fig. 9 Hexagon formation as

determined by Shexagon

For example, one formation matrix that determines the

shape of a hexagon formation (see Fig. 9) is

Shexagon =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 150

1 π/3 150

1 −π/3 150

2 0 150

4 −π/2 260

1 0 300

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

We assume that Robot R1 is the Lead robot (i.e. moves

toward the target location), and that the desired distance be-

tween the robots is 150 cm. Robot R1 is the Lead Robot,

Robot R2 follows R1 on the left side and maintaining an

oblique formation, Robot R3 follows R1 on the right side

and maintaining an oblique formation. Robot R4 follow Ro-

bot R2 in a column formation. Robots R5 follow Robot R3

maintaining a line formation on the right. Robot R6 follows

R1 in column formation. Figure 1 shows a representation of

the referred hexagon pattern.

It is important to note that there are many formation ma-

trices that generate the same geometric configuration for

the formation. This is an important feature of our approach

since it permits to cope with robot failure (cf. Sect. 5.1.4).

Throughout this paper we assume that the shape of the for-

mation, defined by the S matrix, is determined by a higher

level controller, or external user, and that it can be changed at

any time. Nevertheless we have started to work on this topic

and already have some preliminary work (Monteiro and Bi-

cho 2008). Other important references on the allocation of

robots to places in the formation issue are Fredslund and

Matarić (2002), Kostelnik et al. (2002), Brimble and Press

(2003), Archibald and Frost (2007), Kaminka et al. (2008).

4.3 Behaviours integration

The behaviours described in the previous subsections are in-

tegrated together with an obstacle avoidance behaviour into

a single vector field, both at the level of heading direction

dynamics and path velocity dynamics.

The obstacle avoidance dynamics at the level of the head-

ing direction is defined as (see Bicho and Schöner 1997; Bi-

cho 2000 and Bicho et al. 2000 for more details):

φ̇i = Fobs,i =
∑

s

fobs,s,i(φi) (19)
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where fobs,s,i are repulsive “force-lets”, for robot Ri , de-

fined around each direction in which obstructions (either due

to static obstacles or due to the other robots) are sensed.

These are characterized by (a) the direction, ψobs,s , to be

avoided, (b) the strength of repulsion, λobs,s , and (c) the

range, σobs,s over which repulsion acts. These repulsive

force-lets can be straightforwardly erected by the distance

sensors:

fobs,s,i(φi) = λobs,s(φi − ψobs,s) exp

(

−
(φi − ψobs,s)

2

2σ 2
obs,s

)

.

(20)

We integrate the behaviours by adding each contribution

to the same vector field:

φ̇i =
∑

s

fobs,s,i(φi) + γcol,ifcol,i(φi)

+ γoblique,ifoblique,i(φi)

+ γline,ifline,i(φi) + fstoch (21)

where γcol,i , γoblique,i and γline,i are mutually exclusive

boolean variables that determines which configuration is de-

sired for the formation. The vector field is augmented with

a stochastic contribution, fstoch, that guarantees escape from

repellers, because due to a bifurcation in the vector field, it

may happen that the attractor in which the system was sited

becomes a repeller, and simultaneously, in simulation, mod-

els perturbations.

In terms of path velocity, a similar approach is followed.

The velocity dynamics vector field is given by

v̇i = γobs,igobs,i(vi) + γcol,igcol,i(vi)

γoblique,igoblique,i(vi) + γline,igline,i(vi) (22)

where each contribution defines simply a linear dynamical

system for the path velocity:

v̇i = gk(vi) = −αk(vi − vi,d,k) (23)

with k = {obs, line, col,oblique}, that sets an attractor at the

desired path velocity, vi,d,k , with a relaxation rate controlled

by αk (> 0).

The desired path velocity, vi,d,k , is a function of whether

or not obstacles are sensed and by the requirement to keep a

desired distance to the follower robot.

When the followers’ heading direction is inside the re-

pulsion range created by sensed obstructions then the ob-

stacle avoidance term dominates (i.e. γobs,i = 1, γline,i = 0,

γcol,i = 0 and γoblique,i = 0) and in this case the desired path

value for the path velocity is:

vi,d,obs = dmin/T2c,obs (24)

which tries to stabilize a particular time to contact, T2c,obs,

with the obstacle. dmin is the minimum distance given by

the distance sensors. Reversely, when no obstructions are

sensed or the robot’s heading direction is outside the repul-

sive effect of obstacle contributions then the particular de-

sired value for the velocity depends on the desired configu-

ration for the formation.

To detect whether the heading direction of the robot is

inside the repulsion range, or not, created by the obstacles,

we use the potential function of the obstacle avoidance dy-

namics, Fobs,i , as given by

Uobs,i(φi) =
∑

s

λobs,sσ
2
s

[

exp

(

−
(φi − ψs)

2

2σ 2
s

)

−
1

√
e

]

.

(25)

For a given heading, φi , positive values of the potential func-

tion indicate that it is inside the repulsion range of the senses

obstacles. If the value is negative, then either the repulsion

is very weak, or it is outside the repulsion range (see Bicho

2000 or Bicho et al. 2000 for more details).

When sensorial information changes attractors move. In

order to ensure the stability of the control system, i.e., that

the system always relaxes to an attractor as they shift and

also to ensure that the obstacle avoidance behaviour has pre-

cedence over the maintain formation behaviour, the follow-

ing hierarchy of relaxation rates has to be observed (with

k = {col,oblique, line}):

λk ≪ αk, λobs ≪ αobs, λk ≪ λobs. (26)

4.4 Stability analysis

The analysis of stability is relatively simple. For the non-

linear dynamical system of (21), that governs the heading

direction of each robot, φi , we can consider the following

Lyapunov function

Vi(φi) = Vobs,i(φi) + γcol,iVcol,i(φi)

+ γoblique,iVoblique,i(φi)

+ γline,iVline,i(φi) + Kpot (27)

where Kpot ∈ R and

Vobs,i(φi) =
∑

s

λobs,sσ
2
s exp

(

−
(φi − ψs)

2

2σ 2
s

)

(28)

Vcol,i(φi) = −λcol cos(φi − ψi) (29)

Voblique,i(φi) = −λobliqueλapproach cos(φi − ψapproach)

− λobliqueλdivert cos(φi − ψdivert) (30)

Vline,i(φi) = −λlineλapproach cos(φi − ψapproach)

− λlineλdivert cos(φi − ψdivert). (31)
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Choosing appropriate values for Kpot we may guarantee the

following condition:

Vi(φi) > 0, ∀φi ∈ [0,2π[.

Next, since

V̇i(φi) =
dVi(φi)

dt
= −[fi(φi)]2 < 0, ∀φi ∈ [0,2π[\{φ̃i}

(32)

with

fi(φi) =
∑

s

fobs,s,i(φi) + γcol,ifcol,i(φi)

+ γoblique,ifoblique,i(φi) + γline,ifline,i(φi) (33)

where φ̃i are the fixed points of (21), that is, are the zeros

of fi(φi). Thus, by the Lyapunov direct method, the dynam-

ical system for the heading direction is asymptotically sta-

ble.

Path velocity is controlled by a linear dynamical sys-

tem (see (23)). It can be easily proven, trough linear sta-

bility theory, that it is also asymptotically stable because
dgk(vi )

dvi
= −αk < 0.

5 Results

In this section we will present a selection of important re-

sults that highlight the main characteristics of our approach.

The results are presented into two separate subsections. The

first contains results from computer simulations and the sec-

ond contains real implementation results (with real robots).

For each experiment we will show robots’ trajectories

evolution, formation errors evolution and sample snapshots

for the experiments with real robots. Trajectories evolution

is self-explanatory: consists of an X–Y plot with the path

travelled by each robot.

Some authors characterize the performance of formations

by analyzing the error between pairs of robots (Fierro and

Alur 2002). This is a valid metric when the controllers are

designed taking in consideration the leader’s heading. Be-

cause we don’t use the leader’s heading, analyzing the for-

mation between pairs of robots does not capture how well

the formation is performing (see Fig. 10).

To characterize the whole formation we have to take, at

least, the lead robot’s heading direction into account. Since

we assume we don’t have this information online, we can

only compute this error after running the experiment as a

way to characterize the performance of the formation. For

this same reason, we cannot use the formation error as online

formation feedback.

In order to analyze the formation performance we com-

pute, for each robot, the distance error between its actual

Fig. 10 (a) Desired pattern formation described by the distance, d2,

and bearing, θ2, robot R2 should keep to R1, and the distance, d3, and

bearing, θ3, robot R3 should keep to R1. (b) In this situation both R2

and R3 are at the same distances and bearings to the Lead robot as

in (a), but the team is not in the desired pattern formation. (c) The

team in the darker locations is not with zero formation error, although

distance and bearing errors are zero

position and the expected position that it should occupy in

the correct formation. For robot Ri the distance error, or po-

sition error, �d,i is given by

�d,i =
√

(xi − xl + dil cos(η))2 + (yi − yl + dil sin(η))2

η = φl − θil (34)

where xl , yl , φl are the lead robot’s x and y coordinates and

heading direction, respectively. xi , yi , φi are the x and y

coordinates and heading direction, respectively, of Roboti .

θil is the desired difference between the heading of Roboti ,

if it would be in the correct position, and the direction at

which it sees the Lead robot. dil is the desired distance be-

tween Roboti , if it was in the correct position, and the Lead

robot. θil and dil can be understood as the parameters �ψi,d

and li,d in a new formation matrix (see (17)) where each fol-

lower robot follows directly the Lead robot. This new for-

mation matrix, can be calculated from the original one, to

which is equal in shape. The only purpose of this new ma-

trix is to aid in the calculation of the formation error, �d,i ,

because this error is Lead robot referenced.

In the large robot experiments (c.f. Sect. 5.3), because we

don’t have the Cartesian coordinates of the robots, we re-

wrote (34) to the situation where the distances between the

robots and the angles can be measured. The position error,

using the law of cosines, can be written as (see Fig. 11):

�d,i =
√

l2
i + l2

i,d − 2li li,d cos(�ψl) (35)

where li and li,d are the actual and the desired distance be-

tween the follower and the leader, and �ψl = ψl +�ψi,d −
3π/2. ψl is the direction at which the follower appears, in
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Fig. 11 Formation error. The

lead robot is the darker robot.

The error is computed in the

lead robot’s reference frame

the leader’s reference frame. Please note that this value is

not necessary while running the formation. We only use it to

compute the formation error, which is done after the experi-

ment.

If all robots have null �d,i , then the desired pattern for-

mation is achieved. The formation error is computed as an

average of the sum of the position errors of all robots:

formation error =
1

N − 1

∑

�d,i . (36)

In practice, for the analysis of error formations, we consider

as an evaluation criteria, a good formation if the average

�d,i is below a certain threshold (we use 10% of the desired

inter-robot distance because this also accounts for measur-

ing errors).

5.1 Simulation results

A software simulator written in MATLAB was used to eval-

uate the proposed approach performance. The robotic plat-

forms were modeled based on the following physical charac-

teristics: a circular differential drive robot (30 cm diameter),

with one caster wheel and nine infra-red distance sensors,

positioned around the front of the robot. They are separated

by 30°, to model each sensor field of view (which is approx-

imately 30°). Distance sensors are simulated through an al-

gorithm reminiscent of ray-tracing, with limited range (up

to 60 cm). In the simulation the robots are represented as

triplets (xi, yi, φi) (i = 1,2, . . . ,N ), consisting of the corre-

sponding two Cartesian coordinates and the heading direc-

tion. Cartesian coordinates are updated by a dead-reckoning

rule (ẋi = vi cos(φi), ẏi = vi sin(φi)) while heading direc-

tion, φi , and path velocity, vi , are obtained from the corre-

sponding behavioral dynamics. All dynamical equations are

integrated with a forward Euler method with fixed time step,

and sensory information is computed once per each cycle.

The target information is defined by a goal position in space.

We assume that the obstacles are shallow and hence do not

interfere in the ability of a follower to acquire information

about the distance and orientation to its leader.

5.1.1 Establishing and moving the formations

Two of the fundamental features that a team of robots should

exhibit is the ability to establish a formation starting from

random initial positions, and to move it from one location

to another. In our approach, these features are implicit and

treated simultaneously.

Figures 12 and 13 demonstrate the ability to establish and

move different formations, starting from different positions,

and challenged by the presence of obstacles, either static

or dynamic (robots can be obstacles to other robots). The

corresponding evolution of formation error is presented in

Figs. 14 and 15. Formation errors show that the team con-

verges to the desired geometric pattern, with a formation er-

ror that, although not always zero, is sufficiently small.

The same geometric configuration can be achieved by

different inter-robot relations, represented by different for-

mation matrices. As an example, we will focus now on a

hexagon formation. Both matrices Shex1 (in (37)) and Shex2

(in (38)) specify the same pattern—an hexagon (Shexagon in

(18) is another example). In Shex1 each robot follows the one

immediately in front of it (or one that is near). In Shex2 all the

robots follow the same robot, which is also the team leader.

Shex1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 150

1 π/4 150

1 −π/4 150

2 0 150

3 0 150

5 π/4 150

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (37)

Shex2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 150

1 π/4 150

1 −π/4 150

1 π/8 277

1 −π/8 277

1 0 362

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (38)

Figure 16 and Fig. 17 show the simulations of each sit-

uation, respectively. The analysis of position and formation

errors is reported in Fig. 18 for Shex1 and in Fig. 19 for Shex2.

Although specifying the same geometric pattern, the path

traveled by each robot can be different depending on the

leader-follower relations, i.e. on the formation matrices.

Finding out which formation matrix is best suited for each

task is not trivial, and is out of the scope of this paper. The

purpose is to highlight the importance that a proper matrix

design has in the overall formation performance. Using the

first matrix, Shex1, and analysing the X–Y plot in Fig. 16, it

looks like the formation approaches an hexagon shape faster

than when using Shex2 (compare the evolution of robot R6,

which is the one that closes the formation). It is possible to

confirm this impression by comparing the respective forma-

tion errors, in Figs. 18 and 19. The average formation error
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Fig. 12 Examples of multi-robot teams establishing formations. The

lead robot, depicted by a circle, heads to its target (cross mark). The

robots in the team are placed initially in random locations and, as they

start to move, stabilize the desired formation

Fig. 13 Other initial locations, but establishing the formation in

Fig. 12(a)

decays faster in the first situation than in the second. A closer

look, specifically to each robot error, reveals that robots that

are more distant to their leader’s tend to have higher (and

lasting) formation error.

Figure 20 shows the performance of robot R6, in the first

situation in terms of controller stability. It is possible to see

that the system is well tuned, because it is able to follow the

attractor evolution very closely (φi , the heading direction,

is always near Attractor 1). When a bifurcation occurs (in

this case, the appearance of a second attractor, when path

obstructions are sensed) it is also fast in the decision making

process of which attractor to follow.

5.1.2 Two formations in a collision route

Here we present an experiment where two teams, of three

robots each, travel in opposite directions and in collision

route. Near halfway the destination the two formations will

encounter and avoid each other in order to proceed to their

targets. A plot of the travelled path of each robot in the ex-

periment is shown in Fig. 21. The formation matrix of both

teams is

Striangle =

⎛

⎝

0 0 20

1 π/4 150

1 −π/4 150

⎞

⎠ . (39)
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Fig. 14 Position error for each robot and formation error (bold line)

for the examples presented in Fig. 12

This example illustrates the ability to avoid dynamic obsta-

cles, as the robots in one team serve as obstacles to the robots

in the other.

In Fig. 22 the results of an analysis of the formation error

evolution is plotted. In these plots it is possible to see that

the robots are not in formation at start. Establishing the for-

mation starts right at the beginning. At t ≈ 12 s team leaders

become in each other range of detection and start an avoid-

ance maneuver (you can see this by an increase in the fol-

lowers (robot 2) distance error. At t ≈ 16 s the followers

Fig. 15 Formation error for the examples presented in Fig. 13

Fig. 16 Six robots establishing and moving a hexagon formation ac-

cording to the hierarchical relations defined in Shex1

meet and have to avoid other team’s followers. This is more

dramatic for robots R2 and R6, that are the ones that get a

larger error. It is also, clearly seen in Fig. 23, in the case of

robot R2, that due to this obstacle (robot R5) a pitchfork bi-

furcation in the dynamics appears. The number of attractors

in the system changed to two which reflect the two possibili-

ties (i.e. either by the left or the right) to avoid collision with
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Fig. 17 Six robots establishing and moving a hexagon formation ac-

cording to the hierarchical relations defined in Shex2

Fig. 18 Position error for each robot and formation error for the sim-

ulation presented in Fig. 16

Fig. 19 Position error for each robot and formation error for the sim-

ulation presented in Fig. 17

robot R5. Later, the obstacles are overtaken and the forma-

tion is stabilized again.

5.1.3 Navigating in a cluttered environment

The ability to maintain a formation when crossing an envi-

ronment with a high density of obstacles, is a fundamental

one in a framework targeted to exploration tasks. Figure 24

shows such an environment. There, a team of robots, orga-

nized according to formation matrix Shex1 (in (37)), starts on

Fig. 20 Stable fixed point evolution of robot R6, performing the for-

mation defined in SHex1. Attractor 1 and Attractor 2 are the stable fixed

points. φi is the current heading direction. As can be seen φi is follow-

ing one of the attractors very closely

Fig. 21 A simulation with two formations heading in opposite direc-

tions and in collision route. Team A is composed by robots R1, R2

and R3. R1 is the Lead robot and moves from left to right, toward the

target (cross at the right). The trajectory of each robot is depicted by

the thin solid line. Team B is composed by robots R4, R5 and R6. R4 is

the lead robot and moves from right to left, toward the target (cross at

the left). The trajectory of each robot is depicted by the thin dotted line

Fig. 22 Formation error analysis for the simulation in Fig. 21. (Left

plot) Team that starts on the left, composed by R1, R2 and R3; (Right

plot) Team that starts on the left, composed by R4, R5 and R6

the left and aims to travel to the target on the right (marked

with an X). In their way they find a collection of obstacles

(blue rectangles and squares) which they have to traverse. As

can be seen in the figure, the robots avoid collisions with ob-

stacles, and each robot as soon as no obstruction is sensed re-

turns to the formation. What is to emphasize here is the abil-

ity to maneuver in these environments without an explicit

coordination scheme controlling these formation changes.

This smooth behaviour switch is one of the key-benefits of
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Fig. 23 Evolution of the stable fixed points (attractors) over time for

robot 2, in simulation depicted in (21). It is possible to see that the

system is always near an attractor and when bifurcations occur, it gets

stable again (near one attractor) rather quickly

Fig. 24 Six robots navigating in a cluttered environment, while trying

to preserve an hexagon formation. To make the figure clear, the robots

are not represented to scale (they appear larger than the reality). The

team starts on the left and heads to the target on the right. The ob-

stacles are organized in four barriers. While avoiding obstructions the

team looses formation, but it stabilizes it as soon as the obstacles are

overtaken

Fig. 25 Position error for each robot and formation error for the sim-

ulation of six robots navigating in a cluttered environment. The three

large spikes correspond to the traversal of the three rightmost barriers

of obstacles (see Fig. 24), where it is not possible to keep the correct

formation configuration

the attractor dynamics approach, that on the present frame-

work can be understood as an implicit switch-and-join of

formations. It is possible to confirm the good performance

of the formation in Fig. 25. There, one can see an usually

low error, except for three large spikes that correspond to the

traversal of the three rightmost obstacle barriers. As soon as

each obstacle barrier is overtaken the formation stabilizes

again and the error decreases to acceptable values.

Fig. 26 A representation of the

formation defined by Shex3 in

(40). R1 had a failure and

leadership was given to R2

5.1.4 Re-establishing a formation after leader failure

Here, we test how the presented architecture reacts to a fail-

ure in one of the robots. To make the situation harder, the

robot that will fail is the lead robot. Unless the robot that

fails is an ending robot, i.e. a robot that does not lead any

other robot (is at the end of the chain), it is mandatory an

update to the formation matrix, such that all the inter-robot

relations are updated accordingly. Currently, this update is

not performed automatically.

Two scenarios are considered when updating the forma-

tion matrix. If, for instance, pursuing an hexagon formation

and the team leader fails, then, the leadership is assigned to

another robot. The subsequent options include either the re-

maining robots continue with the same shape formation (but

with the place occupied by the failing robot empty) or a for-

mation shape switch is commanded. How to proceed in this

situation is dependent on the mission objectives, thus is not

treated here, but see Monteiro and Bicho (2008).

In the first scenario, only the leadership is changed. The

team of six robots starts in a line configuration and stabilize

an hexagon formation, represented in Shex1 (37), during the

first 40 seconds (see Fig. 27). At that time the leader fails

and a new formation matrix is assigned:

Shex3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− − −
0 0 150

2 −π/2 212

2 0 150

3 0 150

4 π/4 150

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(40)

which maintains the shape of the “hexagon”, except that

the location occupied by the failing robot is empty (see

Fig. 26).

If the formation matrix is updated as soon as the robot

fails the formation reacts quite well. Actually, looking only

at the error diagram (see Fig. 28) it is almost impossible to

distinguish when the formation switch happens.

In the second scenario the team starts in a line configura-

tion and stabilizes the formation Shex1. Then the Lead robot
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Fig. 27 Path travelled by six robots in an hexagon formation. They

start in a line configuration, but around 40 s after their start (see

Fig. 28), the Lead robot fails. Then a new Lead robot is assigned (R2),

and the formation matrix is updated accordingly

Fig. 28 Position error for each robot and formation error for the simu-

lation presented in Fig. 27. The robots take about 15 s to 20 s to estab-

lish a good formation. The Lead robot fails at time 40 s. Because the

formation shape is not changed after the Lead robot fails, the formation

remains stable throughout the experiment

stops due to some malfunction. After Lead robot failure de-

tection, a new formation matrix, defining a new formation

pattern, is given to the team

Spenta =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− − −
0 0 150

2 −3π/10 176

2 3π/10 176

3 π/10 176

4 −π/10 176

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(41)

which is represented in Fig. 29 (with the travelled path in

Fig. 30). Here, since there is also a change in the shape of

the formation, a higher error is observed at that moment (see

Fig. 31).

5.2 Implementations in Khepera robots

This control architecture has been implemented first in a

team of three Khepera I robots. These are small sized ro-

bots (about 6 cm diameter) equipped with six infra-red dis-

tance sensors (from 2 to 5.5 cm range) and have as process-

ing unit a Motorola 68000. This processing unit is respon-

sible for making all computations necessary to determine

Fig. 29 A representation of the

formation defined by Spenta in

(41)

Fig. 30 Path traveled by six robots in an hexagon formation. After

Lead robot failure, the remaining robots switch to a pentagon forma-

tion, with a new Lead robot

Fig. 31 Position error for each robot and formation error for the simu-

lation presented in Fig. 30. By loosing R1, a formation switch is com-

manded at t = 40 s, thus causing an increase in the error at that time

its (the Khepera) behaviour. There is no off-board process-

ing. In these experiments one external computer was used

to centralize the information regarding the formation, mak-

ing the interface with an user more easy. Its purpose was to

allow a user to input the desired geometric formation, con-

struct the corresponding formation matrix, and then com-

municate to each robot its desired pose within the forma-

tion. While actually running the experiments there was no

intervention from this computer. Since our Kheperas are

not equipped with vision they can’t locate their team-mates

and have to rely on communicated information, thus using

a global coordinate system. As a turnaround to not being

able to detect other robots (except via IR and treated as ob-

structions), when the starting order is given, the team leader

starts, then, to broadcast to its followers its actual position.

We use a lower-layer that provides the behavioral dynamics
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Fig. 32 A plot of the evolution of the stable fixed points (attractors)

for some of the robots. It is possible to see that the architecture is quite

stable, and even when formation switches occur, internally, it also sta-

bilizes fast

with estimates of distance, li,j =
√

(xi − xj )2 + (yi − yj )2,

and direction to the follower, ψi,j = atan2(yj −yi, xj −xi).

Where (xi, yi) and (xj , yj ) are the robot Cartesian coordi-

nates, of the follower and leader respectively, updated by

a dead-reckoning rule (ẋi = vi cos(φi) and ẏi = vi sin(φi))

and with the leader (j index) communicating its position to

the follower (i index). Heading direction, φi , and path ve-

locity, vi , are obtained from the corresponding behavioural

dynamics. All dynamical equations are integrated with a for-

ward Euler method with time step equal to the actual com-

putation time. Sensory information and leader’s position are

updated once per each cycle. The target information is de-

fined by a goal position in space (i.e. (xtar, ytar)) using the

global coordinate system.

Computation time per each cycle is greatly dependent on

the desired formation that the robot is performing. Thus, if

one robot is performing a column formation, in these robots,

its computation time is typically between 40 ms and 50 ms

per cycle. This time increases to values between 65 ms to

85 ms in the cases of either oblique or line formation. This

means that, in principle, when doing column formation the

observed results, in terms of dead reckoning, should be more

precise than for the other two formation behaviours. It also

means that, although the parameters are tuned such that the

relaxation rates are adapted automatically as a function of

the computation cycle, it is hard to find a compromise for

these parameters because of the range that the computation

cycle can take. The only cause of this iteration time variabil-

ity is the use of trigonometric functions and exponentials in

a processor that does not support them. Thus, they have to be

implemented by software, with higher times per operation.

In implementations in robots equipped with processors with

more computing power, this problem is negligible. We prove

this with the implementations in our larger robots, where the

cycle time is almost invariable (cf. Sect. 5.3).

In the next subsections we show two of the conducted

experiments with Khepera robots and an analysis of the re-

sults.

Fig. 33 Video snapshots of three Kheperas switching from a column

to a triangle formation. Up left: shows the robots starting position,

which is in column with 150 mm separation from each other. Up right:

at t = 2 s the leader, robot R1 is moving toward the goal and the fol-

lowers try to position themselves. Because robot R3 is moving faster,

almost hits R2. Down left: at t = 16 s the team is almost in forma-

tion, only the distances are slightly larger than desired. Down right: at

t = 19 s the team is now in formation

5.2.1 Three robots switching from a column formation

to a triangle formation

Figure 33 shows a sequence of video snapshots of three

Kheperas switching from a column to a triangle formation.

This can be seen in the upper left panel. This example serves

to show the implicit ability to stabilize a desired formation.

They start in a line formation with the formation matrix

given by

Scolumn =

⎛

⎝

0 0 20

1 0 125

1 0 125

⎞

⎠ . (42)

Upon start the formation matrix is changed to Striangle in

(43) (with distances in mm).

Striangle =

⎛

⎝

0 0 20

1 π/4 150

1 −π/4 150

⎞

⎠ . (43)

In Fig. 34 the results of an analysis of the formation error

evolution is plotted. This plot is shown for the two followers.

As expected, as time evolves, the position error comes closer

to zero, meaning that the robots are closer to the desired

formation.

Robot R2 attractors evolution is depicted in Fig. 35.

There, we can see that this robot over-turned between t ≈ 6 s

and t ≈ 14 s, because the actual heading direction is larger

than the desired one (current stable fixed point). This is

main-ly caused by high variance in the cycle-time that our

implementation in these robots have. For larger cycle times,

the relaxation rates decrease (see Appendix B), thus the con-
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Fig. 34 Position and formation error analysis for the experiment with

three Kheperas switching from column to triangle formation

Fig. 35 Evolution of the stable fixed points, for robot R2. At all times,

only one attractor exists

trol variable takes longer to converge to the attractor state as

it moves.

5.2.2 Three robots in a line formation

Figure 36 shows a sequence of video snapshots of three

Kheperas driving in a line formation and avoiding an ob-

stacle. The formation matrix is given by

Sline =

⎛

⎝

0 0 20

1 π/2 150

1 −π/2 150

⎞

⎠ . (44)

In Fig. 37 the results of an analysis of the formation evo-

lution are plotted. Here only robot R3 senses the obstacle.

This example illustrates the ability of the control architec-

ture to integrate other behaviours besides formation control

(in this case, obstacle avoidance). Regarding the formation

control behaviour, it exhibits its implicit capacity to split

and join formations. Split formation starts when obstacles

are detected. At that time another vector field has to be ac-

counted for: the one regarding obstacle avoidance. This vec-

tor field places an unstable fixed point at the direction where

the obstacle lies, causing this way the robot to go around

the obstacle. When the obstacle is overtaken, the resultant

vector field is only governed by the formation behaviour,

Fig. 36 Video snapshots of three Kheperas moving in line formation.

Up left: shows the robots starting position. The Lead robot is robot R1.

Up right: at t = 4 s the robots approach the obstacles. Robot R3 does

not have space to pass without leaving formation, thus will have to

avoid the obstacle. Down left: at t = 10 s, after overtaking the obstacle

the robot R3 starts to rejoin the formation. Down right: at t = 18 s the

robots are again almost in formation

Fig. 37 Error analysis for the experiment with three Kheperas stabi-

lizing a line formation, with obstacles

Fig. 38 Evolution of the stable fixed points of robot R3. At all times,

only one attractor exists

causing the formation to stabilize to the one specified by the

formation matrix, i.e. a formation join is performed.

Figure 38 shows the attractor evolution for robot R3. For

the same reasons of the previous experiment, the robot dy-

namical system takes longer to stabilize to the attractor, al-

though it is able to successfully maneuver around the box.
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Fig. 39 The Gusmao robot

5.3 Implementations in robots equipped with vision

Here we present some preliminary tests that confirm the

good results observed in simulation and in previous Khepera

implementations.

The robots used in these experiments were developed in-

house (see Fig. 39). They are differential drive robots, kine-

matically equivalent to the Kheperas, with 30 cm diame-

ter and height. On top, each robot has an omni-directional

vision system (AISVision from the Fraunhoffer Institute),

that allows it to locate other robots in its neighbourhood (as

used by Das et al. 2002; Vidal et al. 2003). It also has 9

distance to obstacle sensors, based on the infra-red princi-

ple (Sharp GP2D12). In terms of computing, it is equipped

with a single-board computer in a mini-itx form factor, with

a 1 GHz Intel compatible (VIA C3) processor. The image

processing was based on color blob extraction. The size and

location of the blob, followed by an ad-hoc calibration, al-

lowed us to compute an estimate of the distance and rel-

ative direction of the leader. All this in real time (up to

26 frames/second) and with a maximum error of 5% in di-

rection and 10% in distance in our arena.

Since we only have two robots available, we will show

only two robots formations, (see Fig. 40). Here no dead-

reckoning, nor explicit communication are used. The output

of the vision system is an estimate of the distance between

the follower and its leader, li , and the angle φi − ψi , that

can be directly used in the equations that shape the heading

direction dynamics vector field ((3) for column and (7) for

line and oblique). Since the follower locates its team mate

by using a vision system, no global reference frame is nec-

essary, thus no dead-reckoning is also necessary. These are

two major benefits over the Khepera implementations (or

other implementations based on dead-reckoning), where er-

rors in the integration of the coordinates and heading direc-

tion cause an increasing degradation of the observed results

with time. Here, the only error is introduced by the estima-

tion method, associated with the vision system, but is con-

stant all the time.

Fig. 40 A photo of the two robots in formation. The robot, in the

top-right corner of the photo, is the leader. The other robot is the fol-

lower. The follower estimates the distance, li , and relative direction to

the leader, φi − ψi using the vision system

We present the results of two experiments: the first with a

column formation, and the other with an oblique formation.

Since no communication is used, the follower does not know

its leader velocity, vj , which is necessary in (4). One way

to overcome this problem is to consider vj as the desired

cruise velocity of the leader, which can be set before the

experiment and is known to all robots.

In the first experiment (see Fig. 41), the desired configu-

ration is a column formation at 100 cm (li,d = 100 cm and

�ψi,d = 0 deg). The robots start side-by-side, in a line con-

figuration. They are inside a square area with walls. The

leader moves in front while avoiding collisions with the

walls. This translates into a semi-circular path of the leader.

Figure 42 shows the formation error, as defined by (35).

When the follower starts, it quickly reduces the formation

error. Near the 18th sec the estimated error is between 10 cm

and 20 cm. At this time the leader turns to avoid a wall,

thus causing an increase in the formation error. The follower

takes about 15 secs to stabilize the formation again. The sec-

ond large spike in the formation error, is, again, caused by

an abrupt alteration in the leader’s heading when avoiding

a wall. At the 70th sec, the leader is stopped. The follower

does not stop completely, but moves back and forward in

the close vicinity of the desired distance. During the time

the leader is stopped the formation error variates slightly,

but does not increase, being nearly stationary. As soon as

the leader is restarted the follower also restarts (remember

that there is no explicit communication between the robots).

Near the 100th sec, the leader is caught in a corner, and turns

back. To accommodate the formation, the follower starts

moving backwards. 20 secs later the follower can start mov-

ing forward and, again, stabilizes the formation In terms of

dynamical system stability, represented in Fig. 43, the sys-
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Fig. 41 (Color online) Snapshots of the column formation stabiliza-

tion experiment (parameters are �ψi,d = 0 deg and li,d = 100 cm).

The blue robot is the leader. Arrows indicating each robot’s heading

direction were added to the snapshots, for clarity purposes

tem is well tuned, because heading direction is able to track

closely the moving attractor of the dynamics.

In the second experiment, the follower has to stabilize an

oblique formation, at 45 degrees and 100 cm from the leader

(see Fig. 44). They start out of formation and the follower is

initiated first. During the first 10 seconds of the experiment,

the leader remains stopped in the same place. During this

time, the follower moves in order to stabilize the desired

Fig. 42 Position error evolution of a team of two robots navigating

in a column formation (with snapshots in Fig. 41). Approximately at

t = 100 sec the leader approaches a corner, turns and heads in the fol-

lower’s direction. With the purpose of keeping the inter-robot distance,

the follower moves backwards (until, approximately, t = 119 sec).

During this time, the leader and follower are pointing in (almost) op-

posite directions, which causes a large position error

Fig. 43 Fixed point evolution of the follower robot, when stabilizing

a column formation. The environment is obstacle free, except for the

walls

configuration. When the formation leader starts to move, the

formation error increases, because the follower takes some

time to catch up with the leader. Near the 20th sec, the for-

mation error already stopped to increase, but then, the leader

was faced with a wall and had to turn, thus breaking the for-

mation, and increasing even further the error. The same hap-

pens at the 50th and 90th sec (approximately). The control

system shows to be stable, as depicted in Fig. 46. The sec-

ond attractor in the dynamics appears when the follower also

detects the walls.

6 Discussion

We have shown how non-linear attractor dynamics can be

used as a framework to generate controllers that allow a team

of N-robots to navigate according to a prescribed geometric

formation while doing obstacle avoidance. The environment

is not known a-priori and it can change over time.

Three controllers have been developed for a leader–fol-

lower strategy. These allow one robot (follower) to maintain



Auton Robot (2010) 29: 331–355 351

Fig. 44 (Color online) Snapshots of the oblique formation stabiliza-

tion experiment (parameters are �ψi,d = 45 deg and li,d = 100 cm).

The blue robot is the leader. Arrows were added to each snapshot to

indicate each robot’s heading direction

a desired pose regarding another robot (leader). They allow

three different particular situations: column formations (fol-

lower behind the leader), line formations (follower side-by-

side with the leader) and oblique formations (otherwise).

Fig. 45 Position error evolution when a follower navigates in an

oblique formation with its leader (with snapshots in Fig. 44). Dur-

ing the first 10 seconds the leader remains in the same spot. Between

t = 27 and t = 32 sec the follower moves backwards, because the dis-

tance to the leader is smaller than the desired one (this was caused by

the leader’s wall avoidance maneuver, that caused it to approach the

follower)

Fig. 46 Fixed point evolution of the follower robot when stabilizing an

oblique formation (with snapshots in Fig. 44). During the first 10 sec-

onds the leader remains in the same spot

The formation pattern is aggregated in a matrix, the forma-

tion matrix, that contains the information for each robot in

the team: its leader, the distance and orientation to it. By

manipulating this matrix it is possible to change the desired

formation.

Perhaps the most closely related work to ours, in terms of

team organization, is the one reported in Desai et al. (2001).

They also use leader–follower strategy, but with two types

of controllers (feedback controllers), that control either the

position and orientation of the robot to a leader, or the po-

sition relative to two robots. In terms of team structure they

use the concepts of transition matrix and control graphs, ex-

plicitly switching formations in the presence of obstacles.

In our approach, the formations are flexible in the presence

of obstacles, i.e., the formation will adapt itself and maneu-

ver between the obstacles without explicitly switching for-

mations (i.e. without changing the formation matrix). An-

other fundamental difference is that while they specify the

formation under the leader’s reference frame, and taking in

consideration the leader’s heading, we do so under the fol-
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lower’s reference frame, without using the leader’s heading

(which is difficult to estimate based on on-board sensors) in

our controllers specification.

Because we assume the lead robot’s heading direction

is not known at runtime we cannot compute the formation

error while running the experiments. Thus we cannot in-

clude it as feedback to improve the quality of the forma-

tion. A consequence is that only when all the robots have the

same heading direction, which only happens when the leader

is moving in a linear path, the formation error can really

converge to zero. However, even when that is not the case

the geometric shape exhibited by the formation approaches

closely the desired one, except for the formation orientation.

Another consequence, of not knowing the heading direction

of the leader/lead, is that the team of robots is not able to

perform maneuvers that absolutely require the knowledge of

the leader’s heading. Such a maneuver is e.g. the formation

acquisition problem (Arai et al. 2002): the lead robot stands

still in an assigned position and the remaining robots have

to position themselves in specific positions (the vertices of

the geometric configuration that defines the formation) and

with a specific orientation (i.e. the orientation of the lead

robot). To the best of our knowledge this is a common prob-

lem to all approaches that do not rely on the leader’s heading

direction. Certainly, if we would have used the lead’s head-

ing direction we could have written control laws that would

generate formation acquisition.

Several simulation results have been presented, that de-

monstrate the features of our controllers: the ability to es-

tablish and move a given formation; the ability to change

the formation shape at runtime by an explicit change in the

formation matrix; the implicit ability to split and join for-

mations in the presence of obstructions due either to static

or moving obstacles, thus reducing the coordination effort.

These are inherent to the framework, that is there no need

to trigger these features explicitly. It is important to strength

that some of the results are presented in simulation only be-

cause we are limited in practice by the number of robots we

had available (only 3 Kheperas and 2 large robots).

We have also presented implementation results in teams

of Khepera robots performing a line formation and switch-

ing from column to triangle formation. Although we have

presented our results with only three robots, this framework

scales naturally to teams with more robots without extra

computation costs (the computation cost per robot only de-

pends on the controller it is implementing and not on the

number of the robots on the team). Due to the limited senso-

rial resources of the Kheperas we had to rely on a dead-

reckoning mechanism so that each robot locates itself (it

is necessary a common reference frame) and radio-link to

communicate the leader position to followers. A degrada-

tion of the results is visible which limits the extent of the

experiments. This is mainly because of the difficulty to align

all the robots in the same reference frame combined with po-

sitioning by dead-reckoning. We have shown that this prob-

lem can be overcome if one uses robots equipped with vi-

sion. In the larger robots the omnidirectional vision system

provides directly estimates of the bearing angle, φi −ψi , and

distance. Thus neither communication nor dead-reckoning is

necessary. In fact each robot does not need to know its pose

(location and heading direction) neither the pose of other

team mates.

Going from a simulation to a real implementation is very

straightforward. Only some fine-tuning was necessary, spe-

cially on parameters that adjust path velocity and that deal

with sensor measures (because of the sensor range).

We have shown that even if the formation matrix is

chang-ed at runtime (e.g. due to a robot failure) the control

system is able to stabilize the new formation shape. One re-

maining issue, relates to the automatic generation/change of

the formation matrix, or, more specifically, given a desired

formation shape that is dependent on the task (for terrain

sweep, the shape could be a line; for moving a team, the

shape could be a grid, or a column; etc.) and an assigned

Lead robot, how to distribute the remaining robots in that

formation (Fredslund and Matarić 2002; Brimble and Press

2003)? We have some preliminary work done (Monteiro and

Bicho 2008) using the concept of cost function minimization

to assign robots to locations in the formation, and taking into

account the maximum allowable distance from a follower to

a leader (dependant on the follower visibility range). This

approach is valid both when the formation is explicitly trig-

gered (establishing the initial formation at start, or chang-

ing the formation at runtime) or the change is due to an

alteration of the number of robots in the formation (a de-

crease caused by the failure of robots, or an increase by

adding more robots to the formation). An additional crite-

rion to build the formation matrix could be to consider the

shortest possible chains of leader–follower robots, because

in principle this would lead to a reduction of the propagated

formation error. One should also consider each robot sensor

constraints, when building the formation matrix, in order to

ensure that a follower is able to see its leader.

How to deal with problems of occlusion and missing

sensory information (e.g. follower temporarily does not see

its leader) is another important topic that needs to be ad-

dressed (see e.g. Renaud et al. 2004; Asama et al. 2009).

In our approach these problems can be overcome in two

distinct ways: (1) via re-definition of the formation matrix

whenever necessary, and taking into account robots visi-

bility; (2) by endowing the robots with cognitive capabili-

ties (e.g. detection, memory, forgetting, predictive percep-

tion and anticipation), which can be generated using dy-

namic neural fields that represent information about the di-

rection at which the leader robot may lie (Bicho et al. 2000;

Erlhagen and Bicho 2006). It is important to strength that
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this will not imply changing the controllers, only a dynamic

neural field that allows to estimate and memorize the direc-

tion, ψi , at which the leader is needs to be introduced. This

will be the focus of our work in the near future.
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Appendix A: Robot kinematics

The path velocity, v, and angular velocity, ω, of our plat-

forms are controlled by setting the linear speeds of the two

driving wheels as follows (l = left, r = right):

vr = v +
Dwheels

2
ω, (45)

vl = v −
Dwheels

2
ω (46)

where Dwheels is the distance between the two driving

wheels. ω = dφ
dt

is obtained directly from the behavioral

dynamics for the heading direction, (21), and v results

from integrating (23), by following a Euler method, i.e.,

v = v + dt.g(v), with dt being the time step.

Appendix B: Parameters used in the experiments

Parameter Simulation Kheperas Large robots

β1: 20 1/(4dt) 1/(5dt)

β2: 20 25 25

λcol: 1.5 1/(40dt) 1/(20dt)

λlin: 1.5 1/(40dt) 1/(20dt)

λobl: 1.5 1/(40dt) 1/(20dt)

T�: 4 sec 7dt 6

αobs: 4.5dt dt

αcol: 4.5dt 5dt

αlin: 4.5dt 5dt

αobl: 4.5dt 5dt

γ : π/4 π/4 π/4

μ: 15 100 10

Kv: 6 4 –

T2c,obs: 4 sec 115dt 100dt

dt : 20 ms min = 40 ms min = 51 ms

max = 80 ms max = 55 ms
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