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Attractors for Damped Quintic Wave
Equations in Bounded Domains

Varga Kalantarov, Anton Savostianov and Sergey Zelik

Abstract. The dissipative wave equation with a critical quintic non-
linearity in smooth bounded three-dimensional domain is considered.
Based on the recent extension of the Strichartz estimates to the case
of bounded domains, the existence of a compact global attractor for the
solution semigroup of this equation is established. Moreover, the smooth-
ness of the obtained attractor is also shown.

1. Introduction

We consider the following damped wave equation:{
∂2

t u + γ∂tu − Δxu + f(u) = g,

u |t=0 = u0, ∂tu|t=0 = u′
0

(1.1)

in a bounded smooth domain Ω of R
3 endowed by the Dirichlet boundary

conditions. Here γ is a fixed strictly positive constant, Δx is a Laplacian with
respect to the variable x = (x1, x2, x3), the non-linearity f is assumed to have
a quintic growth rate as u → ∞:

f(u) ∼ u5 (1.2)

and to satisfy some natural assumptions, see Sect. 6 for the details, and the
initial data ξu(0) := (u0, u

′
0) is taken from the standard energy space E :

E := H1
0 (Ω) × L2(Ω), ‖ξu‖2

E := ‖∇xu‖2
L2 + ‖∂tu‖2

L2 .

Dispersive or/and dissipative semilinear wave equations of the form (1.1) model
various oscillatory processes in many areas of modern mathematical physics
including electrodynamics, quantum mechanics, non-linear elasticity, etc. and
are of a big permanent interest, see [2,7,19,27–30] and references therein.
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To the best of our knowledge, the global well-posedness of the quintic
wave equations in the whole space (Ω = R

3) has been first obtained by Struwe
[26] in the class of radially symmetric solutions and by Grillakis [12] for the
non-radially symmetric case and smooth initial data. Their proof is strongly
based on the explicit formulas for the solutions of the wave equation in R

3 as
well as on the so-called Morawetz–Pohozhaev identity.

The global unique solvability in Ω = R
3 for the initial data in the energy

space has been verified by Shatah and Struwe [24] (see also [25] and [14–
16]). This well-posedness is obtained in the class of solutions which possess
(together with the energy estimate) some extra space-time regularity (say,
u ∈ L4(t, t + 1;L12(Ω)) or u ∈ L8((t, t + 1) × Ω) or (u, ∂tu) ∈ L4(t, t + 1;
Ẇ 1/2,4(Ω) × Ẇ−1/2,4(Ω))) which follow from the Strichartz type estimates.
In the present paper we refer to the analogues of such solutions in bounded
domains as Shatah–Struwe solutions, see Sect. 2 for more details.

Again to the best of our knowledge, even in the case of the whole space
Ω = R

3 or in the case where Ω is a compact manifold without boundary, the
global attractors for equations of the type (1.1) have been constructed only
for the sub-quintic case f(u) ∼ u|u|4−ε, ε > 0, see [9,17], and their existence
in the quintic case was a longstanding open problem.

The case of bounded domains looked even more delicate since the
Strichartz type estimates have been not known for that case till recently and
based purely on the energy estimates, one can verify the global well-posedness
only for the cases of cubic or sub-cubic growth rates of the non-linearity f .
Therefore, for a long time, exactly the cubic growth rate of the non-linearity
f has been considered as a critical one for the case of bounded domains, see
[1,2,7,18,23,31,32] and references therein. In particular, the existence of a
compact global attractor for that case has been known only for the non-
linearity of the cubic growth rate and, for faster growing non-linearities, only
the versions of weak trajectory attractors (without compactness and unique-
ness) have been available, see [7,32] and references therein.

However, due to the recent progress in Strichartz estimates, see [4,5],
the suitable versions of Strichartz estimates are now available for the case
of bounded domains as well. Moreover, using also the proper generalization
of Morawetz–Pohozhaev identity to the case of bounded domains, the result
of Shatah and Struwe on the global well-posedness of quintic wave equations
is now extended to the case of smooth bounded domains, see [5,6]. Thus, it
becomes more natural to refer (similar to the case Ω = R

3) to the quintic
growth rate of the non-linearity f as the critical one and treat the sub-quintic
case as a sub-critical one. We will follow this terminology throughout the
paper.

The main aim of the present paper is to develop the attractor theory for
the semilinear wave equation (1.1) in bounded domains for the non-linearities
of the quintic and sub-quintic (but super-cubic) growth rates. Note from the
very beginning that our results in the sub-quintic case are more or less straight-
forward extensions of the results [9] to the case of bounded domains based on
the new Strichartz estimates. So, we give the analysis of this case only for the
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completeness (see Sect. 4) and are mainly concentrated on the most interesting
case of the critical quintic growth rate.

The case of quintic growth rate is indeed much more delicate since the
global well-posedness theorem mentioned above gives only the existence and
uniqueness of the solutions with extra space-time regularity u ∈ L4(t, t +
1;L12(Ω)), but does not give any control of this norm in terms of the initial
data and, in particular, does not give any information on the behavior of such
norm as t → ∞. By this reason, the control of this norm may be a priori lost
when passing to the limit t → ∞. As a result, even starting from the regular
Shatah–Struwe solutions, we may a priori lose the extra space-time regularity
on the attractor. Since the uniqueness in the classes of solutions weaker than
the Shatah–Struwe ones is also not known, this is a crucial difficulty which
(again a priori) may destroy the theory.

To overcome this problem, we verify (in Sect. 3) that any Shatah–Struwe
solution can be obtained as a limit of Galerkin approximations and utilize the
results obtained in [32] on the weak trajectory attractors of the Galerkin so-
lutions. Namely, based on the finiteness of the dissipation integral, it is shown
there that even in the case of supercritical growth rate of f , every complete
solution u(t), t ∈ R, belonging to the weak attractor becomes smooth for suffi-
ciently large negative times, see Sect. 5. Combining this result with the global
solvability in the class of Shatah–Struwe solutions, we verify that, in the quin-
tic case, the weak attractor consists of smooth solutions which, in particular,
satisfy the energy identity. Using then the so-called energy method, see [3,22],
we finally establish the existence of a compact global attractor for the quintic
wave equation (1.1), see Sect. 6.

Thus, the following theorem is the main result of the paper (see Sect. 6
for more details).

Theorem 1.1. Let the quintic non-linearity f satisfy assumptions (3.25) and
(5.1) with p = 3 and let g ∈ L2(Ω). Then, the (Shatah–Struwe) solution semi-
group S(t) : E → E associated with Eq. (1.1) possesses a global attractor A in
E which is a bounded set in the more regular space

E1 := [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω).

The paper is organized as follows. The preliminary things, including the
key Strichartz estimates for the linear equation and various types of energy
solutions of (1.1) are discussed in Sect. 2. The key properties of the Shatah–
Struwe solutions including the local and global existence, uniqueness and fur-
ther regularity are collected in Sect. 3. Section 4 is devoted to the relatively
simple sub-critical case when the non-linearity f grows slower than a quintic
polynomial and the analogue of Theorem 1.1 for that case is obtained there.
The brief exposition of the trajectory attractor theory for the critical and su-
percritical wave equations developed in [32] is given in Sect. 5. Finally, the
existence of a compact global attractor for the quintic wave equation is proved
in Sect. 6.
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2. Preliminaries: Strichartz Type Estimates and Types of
Energy Solutions

In this section, we introduce the key concepts and technical tools which will
be used throughout of the paper. We start with the estimates for the solutions
of the following linear equation:

∂2
t v + γ∂tv − Δxv = G(t), ξv |t=0 = ξ0, v|∂Ω = 0. (2.1)

The next proposition is a classical energy estimate for the linear equation (2.1).

Proposition 2.1. Let ξ0 ∈ E, G ∈ L1(0, T ;L2(Ω)) and let v(t) be a solution of
Eq. (2.1) such that ξv ∈ C(0, T ; E). Then the following estimate holds:

‖ξv(t)‖E ≤ C

(
‖ξ0‖Ee−βt +

∫ t

0

e−β(t−s)‖G(s)‖L2 ds

)
, (2.2)

where the positive constants C and β depend on γ > 0, but are independent of
t, ξ0 and G.

Indeed, estimate (2.2) follows in a standard way by multiplying (2.1) by
∂tv + αv (for some α > 0) and applying the Gronwall inequality, see, e.g.,
[7,30] for the details.

The next proposition is, however, much more delicate and follows from
the recently proved Strichartz type estimates for wave equations in bounded
domains, see [4] (see also [5,6]).

Proposition 2.2. Let the assumptions of Proposition 2.1 hold. Then, v ∈ L4

(0, T ;L12(Ω)) and the following estimate holds:

‖v‖L4(0,T ;L12(Ω)) ≤ CT (‖ξ0‖E + ‖G‖L1(0,T ;L2(Ω))), (2.3)

where C may depend on T , but is independent of ξ0 and G.

Indeed, for γ = 0 this estimate is established in [4] and the case γ 
= 0 is
reduced to the case γ = 0 due to the control of the L2-norm of ∂tv via energy
estimate (2.2).

Remark 2.3. Combining energy estimate (2.2) with the Strichartz estimate
(2.3), we get a bit stronger dissipative version of (2.3):

‖ξv(t)‖E + ‖v‖L4(max{0,t−1},t;L12(Ω))

≤ C

(
‖ξ0‖Ee−βt +

∫ t

0

e−β(t−s)‖G(s)‖L2 ds

)
, (2.4)

where positive constant β and C are independent of v and t ≥ 0.
Note also that, due to the interpolation inequality

‖v‖
L

4
θ (0,T ;L

12
2−θ (Ω))

≤ C‖v‖θ
L4(0,T ;L12(Ω))‖v‖1−θ

L∞(0,T ;H1(Ω)) (2.5)

and energy estimate (2.2), we have the control of the L4/θ(L12/(2−θ))-norm of
the solution v for all θ ∈ [0, 1]. Most important for what follows will be the
case θ = 4

5 which controls the L5(L10)-norm of the solution.
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The next elementary fact will be used below for verifying the local exis-
tence of weak solutions.

Corollary 2.4. Let K ⊂ E × L1(0, T ;L2(Ω)) be a compact set. Then, for every
ε > 0 there is T (ε) > 0 such that

‖v‖L4(0,T (ε);L12(Ω)) ≤ ε (2.6)

for all solutions v of problem (2.1) with (ξ0, G) ∈ K.

Indeed, this assertion is an immediate corollary of estimate (2.3) and the
Hausdorff criterium.

Remark 2.5. It is not difficult to show, using, e.g., the scaling arguments that
the assertion of Corollary 2.4 is false in general if the set K is only bounded
in E × L1(0, T ;L2(Ω)).

We now turn to the non-linear problem (1.1) with the non-linearity of
quintic growth rate:

|f ′(u)| ≤ C(1 + |u|4) (2.7)
and discuss several classes of weak solutions for it. The most straightforward
definition is the following one.

Definition 2.6. A function v(t) is a weak (energy) solution of problem (1.1) if
ξv ∈ L∞(0, T ; E) and Eq. (1.1) is satisfied in the sense of distributions. The
latter means that

−
∫ T

0

(ut, φt)dt − γ

∫ T

0

(u, φt)dt +
∫ T

0

(∇u,∇φ)dt +
∫ T

0

(f(u), φ)dt

=
∫ T

0

(g, φ) dt, (2.8)

for any φ ∈ C∞
0 ((0, T ) × Ω). Here and below (u, v) stands for the usual inner

product in L2(Ω). Then, due to the growth restriction (2.7),

f(u) ∈ L∞(0, T ;H−1(Ω))

and from (1.1), we conclude that ∂2
t u ∈ L∞(0, T ;H−1(Ω)). Thus,

ξu(t) ∈ C(0, T ; E−1), E−1 := L2(Ω) × H−1(Ω)

and the initial condition ξu(0) = (u0, u
′
0) is well defined.

However, these solutions are extremely difficult to work with. Indeed,
most part of estimates related with Eq. (1.1) are based on energy type esti-
mates and this requires multiplication of (1.1) by ∂tu, but the regularity of
energy solutions is not enough to justify this multiplication if f(u) has faster
than cubic growth rate. Thus, to the best of our knowledge even the basic
energy estimate is not known for such solutions if f grows faster than u3.

At least two alternative ways to overcome this problem have been used
in a literature. One of them consists of requiring additionally a weak solution
to satisfy most important energy equalities or inequalities (see [7,20,21] and
reference therein). The other one poses the extra condition that a weak solution
is obtained as a limit of smooth solutions of the properly chosen approximation
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problems. Then the desired estimates are obtained by passing to the limit
from the analogous estimates for the approximating solutions, see, e.g., [21,
32] and reference therein. In this paper we will use the so-called Galerkin
approximations for that purposes.

Let λ1 ≤ λ2 ≤ · · · be the eigenvalues of the operator −Δx with homoge-
neous Dirichlet boundary conditions and e1, e2, . . . be the corresponding eigen-
functions. Then, they form an orthonormal base in L2(Ω) and since the domain
Ω is smooth, they are also smooth: ei ∈ C∞(Ω). Let PN : L2(Ω) → L2(Ω) be
the orthoprojector to the linear subspace spanned by the first N eigenfunctions
{e1, . . . , eN}. Then, the Galerkin approximations to problem (1.1) are defined
as follows:{

∂2
t uN + γ∂tuN − ΔxuN + PNf(uN ) = PNg, uN ∈ PNL2(Ω),

ξuN
(0) = ξN

0 ∈ [PNL2(Ω)]2.
(2.9)

Remind that (2.9) is a system of ODEs of order 2N with smooth (at least
C1) non-linearity, so it is locally uniquely solvable and under some natural
dissipativity assumptions on f (e.g., (3.25)) the blow up is impossible and the
solution is globally defined as well. Moreover, since all of the eigenvectors ei

are smooth, the solutions uN (t, x) are C∞-smooth in x and give indeed the
desired smooth approximations to (1.1). This justifies the following definition

Definition 2.7. A weak solution u(t), t ∈ [0, T ] (in the sense of Definition 2.6)
is called Galerkin (weak) solution of problem (1.1) if it can be obtained as a
weak-star limit in L∞(0, T ; E) of the Galerkin approximation solutions uN of
problems (2.9):

ξu = lim
N→∞

ξun
, (2.10)

where the limit is taken in the weak-star topology of L∞(0, T ; E). Note that
this convergence implies only that

ξuN
(0) ⇀ ξu(0) (2.11)

in E and the strong convergence of the initial data in the energy space is not
assumed, see [32] for more details.

Although the Galerkin solutions are a priori more friendly than the gen-
eral weak solutions, their uniqueness is known only for the non-linearities grow-
ing not faster than u3, so for faster growing non-linearities, one should use the
so-called trajectory attractors for study their long-time behavior, see [21,32]
and also Sect. 5 below for more details.

The uniqueness and global well-posedness problem for the case Ω = R
3

has been resolved by Shatah and Struwe [24] (see also [14,15]) in the class
of weak solutions satisfying additionally some space-time regularity estimate
(e.g., u ∈ L4(0, T ;L12(Ω))). This result is strongly based on Strichartz esti-
mates for the linear wave equations as well as the Morawetz identity for the
non-linear equation. The analogues of that results for the case of bounded do-
mains have been recently obtained in [4,5], so analogously to the case Ω = R

3,
one can give the following definition (see [4,5]).



Vol. 17 (2016) Quintic Wave Equation 2561

Definition 2.8. A weak solution u(t), t ∈ [0, T ] is a Shatah–Struwe solution of
problem (1.1) if the following additional regularity holds:

u ∈ L4(0, T ;L12(Ω)). (2.12)

Remark 2.9. As we will see below, the introduced Shatah–Struwe solutions
is a natural class of solutions where the global well-posedness, dissipativity
and asymptotic smoothness can be established. However, to verify the exis-
tence of a global attractor, we will essentially use the Galerkin solutions as an
intermediate technical tool.

Note also that the ideal situation, where all three introduced above classes
of weak solutions are in fact equivalent, is not a priori excluded. To the best
of our knowledge this is rigorously proved only for the nonlinearities growing
not faster than u3. Some results in this direction for quintic non-linearities and
Ω = R

3 are obtained in [20].

3. Properties of Shatah–Struwe Solutions

The aim of this section is to discuss the well-posedness, dissipativity and
smoothness of Shatah–Struwe solutions of problem (1.1). Although most of
these results are not new or follow in a straightforward way from the known
results, they are crucial for what follows; so for the convenience of the reader,
we give their proofs here.

We start with the local existence result.

Proposition 3.1. Let g ∈ L2 and the non-linearity f satisfy the growth as-
sumption (2.7). Then, for any initial data ξ0 ∈ E , there exists T = T (ξ0) > 0
such that problem (1.1) possesses a Shatah–Struwe solution u(t) on the interval
t ∈ [0, T ].

Proof. We construct the desired solution u by passing to the limit N → ∞ in
the Galerkin approximations (2.9). To this end, it suffices to obtain a uniform
with respect to N estimate for the L4(0, T ;L12)-norm of the solutions uN (t).
To obtain such an estimate, we fix the initial data ξuN

(0) = ξN
0 := PNξ0. This

guarantees that

ξN
0 → ξ0

strongly in E . Then, we split the solution uN = vN + wN where vN solves the
linear problem

∂2
t vN + γ∂tvN − ΔxvN = PNg, ξuN

(0) = PNξ0 (3.1)

and wN is a reminder which satisfies

∂2
t wN + γ∂twN − Δxwn = −PNf(vN + wN ), ξwN

(0) = 0. (3.2)

Note that the set of data {(ξN
0 , PNg)}∞

N=1 is a compact set in
E × L1(0, 1;L2(Ω)). Therefore, due to Corollary 2.4, for any ε > 0, there
exists T = T (ε) > 0 (which is independent of ε) such that

‖ξvN
(t)‖E ≤ C, ‖vN‖L4(0,t;L12(Ω)) ≤ ε, t ≤ T (ε), (3.3)
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where C is independent of N . Then, due to the growth restriction (2.7) and
interpolation inequality (2.5) with θ = 4/5, we have

‖PNf(vN + wN )‖L1(0,t;L2(Ω))

≤ C(t + ‖vN‖5
L5(0,t;L10(Ω)) + ‖wN‖5

L5(0,t;L10(Ω)))

≤ C(t + ε4 + ‖wN‖5
L5(0,t;L10(Ω))). (3.4)

Applying now estimate (2.4) to Eq. (3.2) and using interpolation inequality
(2.5) with θ = 4/5 again, we end up with

‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)) + ‖wN‖L4(0,t;L12(Ω))

≤ C(t + ε4) + C(‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)))5. (3.5)

Thus, denoting YN (t) := ‖ξwN
(t)‖E + ‖wN‖L5(0,t;L10(Ω)), we end up with the

inequality

YN (t) ≤ C(t + ε4) + CYN (t)5, t ≤ T (ε), YN (0) = 0,

where the constant C is independent of N , t and ε. Moreover, obviously YN (t)
is a continuous function of t. Then, the last inequality gives

YN (t) ≤ 2C(t + ε4)

if ε and T (ε) is chosen in such way that

C(2C(t + ε4))5 ≤ C(t + ε4), t ≤ T (ε).

Thus, fixing ε and T = T (ε) being small enough to satisfy the last inequality,
we get the uniform estimate

‖ξwN
‖C(0,T ;E) + ‖wN‖L5(0,T ;L10(Ω)) ≤ C1

which together with (3.3) and (3.5), gives the desired uniform estimate

‖ξuN
‖L∞(0,T ;E) + ‖uN‖L4(0,T ;L12(Ω)) ≤ C2.

Passing then in a standard way to the weak limit N → ∞, we end up with a
Shatah–Struwe solution of (1.1) and finish the proof of the proposition. �

Remark 3.2. Obviously, the lifespan T = T (ξ0) of a Shatah–Struwe solution u
depends a priori on the initial data ξ0 and since it is greater than zero for all
ξ0 ∈ E , one may expect that T depends on the E-norm of ξ0 only:

T = T (‖ξ0‖E). (3.6)

In that case, the global solvability problem would be reduced to the control of
the energy norm of a solution u(t). Since such a control follows immediately
from the energy estimate (see below), the global solvability would also become
immediate.

Unfortunately, (3.6) is not true in the critical quintic case (as we will
see in the next section, it is indeed true in the subcritical case) and, by this
reason, one needs a lot of extra efforts in order to establish the desired global
solvability.
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However, (3.6) remains true even in the critical quintic case under the
extra assumption that the energy norm ‖ξ0‖E is small:

‖ξ0‖E ≤ ε1  1.

Indeed, in that case, the key estimates (3.3), follow directly from the smallness
of the energy norm of ξ0 and estimate (2.4) and no compactness arguments of
Corollary 2.4 are required. This simple observation not only leads for the global
solvability for small initial data in the case where the smallness of the energy
of a solution follows from the energy estimate, but also plays a crucial role in
the proof of global solvability for all initial data via the non-concentration of
the energy norm, see [5,24].

At the next step, we check that a Shatah–Struwe solution satisfies the
energy equality.

Proposition 3.3. Let g ∈ L2(Ω), the non-linearity f satisfy the growth restric-
tion (2.7) and u(t), t ∈ [0, T ] be a Shatah–Struwe solution of Eq. (1.1). Then
the functions t → ‖ξu(t)‖E and t → (F (u(t)), 1) are absolutely continuous and
the following energy identity

d
dt

(
1
2
‖ξu(t)‖2

E + (F (u(t)), 1) − (g, u(t))
)

+ γ‖∂tu(t)‖2
L2 = 0 (3.7)

holds for almost all t ∈ [0, T ]. In particular, ξu ∈ C([0, T ], E).

Proof. Indeed, due to the definition of a Shatah–Struwe solution, growth re-
striction (2.7) and interpolation inequality (2.5), we have

‖f(u)‖L1(0,T ;L2(Ω)) ≤ C(1 + ‖u‖L5(0,T ;L10(Ω))) ≤ CT . (3.8)

Therefore, since ∂tu ∈ L∞(0, T ;L2(Ω)), f(u)∂tu ∈ L1([0, T ] × Ω), then ap-
proximating the function u by smooth ones and arguing in a standard way, we
see that for every 0 ≤ τ ≤ t ≤ T ,

(F (u(t)), 1) − (F (u(τ)), 1) =
∫ t

τ

(f(u(s)), ∂tu(s)) ds

and, consequently, t → (F (u(t)), 1) is absolutely continuous and
d
dt

(F (u(t)), 1) = (f(u(t)), ∂tu(t)) (3.9)

for almost all t ≥ 0.
We are now ready to finish the proof of energy equality. To this end,

we take uN (t) := PNu(t), where PN is the orthoprojector on the first N
eigenvalues of the Laplacian. Then, this function solves

∂2
t uN + α∂tuN + γ∂tuN − ΔxuN = −PNf(u) + PNg.

Multiplying this equation by ∂tuN and integrating in space and time, we get
the following analogue of energy equality:

1
2
‖ξuN

(t)‖2
E − 1

2
‖ξuN

(τ)‖2
E − (g, uN (t)) + (g, uN (τ))

+
∫ t

τ

γ‖∂tuN (s)‖2
L2 ds = −

∫ t

τ

(PNf(u(s)), ∂tuN (s)) ds. (3.10)
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Since, obviously, ξuN
(t) → ξu(t), ξuN

(τ) → ξu(τ) and ∂tuN → ∂tu in L2(τ, t;
L2(Ω)) strongly and PNf(u) → f(u) weakly star in L1(τ, t;L2(Ω)), we may
pass to the limit N → ∞ in (3.10) and with the help of (3.9) obtain that

E(u(t)) − E(u(τ)) + γ

∫ t

τ

‖∂tu(s)‖2
L2 ds = 0, (3.11)

where

E(u) :=
1
2
‖ξu‖2

E + (F (u), 1) − (g, u).

It remains to note that (3.11) is equivalent to (3.7) and the energy equality is
proved. The continuity of ξu(t) as a E-valued function follows in a standard
way from the energy equality. �

Corollary 3.4. Let the assumptions of Proposition 3.3 hold. Then the Shatah–
Struwe solution u(t), t ∈ [0, T ] is unique.

Proof. Indeed, let u(t) and v(t) be two Shatah–Struwe solutions of Eq. (1.1)
on the interval t ∈ [0, T ] and let w(t) = u(t) − v(t). Then this function solves

∂2
t w + γ∂tw − Δxw + [f(u) − f(v)] = 0. (3.12)

Multiplying this equation by ∂tw and integrating over x ∈ Ω (which is justified
exactly as in Proposition 3.3), we end up with

1
2

d
dt

‖ξw(t)‖2
E + γ‖∂tw(t)‖2

L2 + (f(u) − f(v), ∂tw) = 0. (3.13)

Using the growth restriction (2.7), the Sobolev embedding H1
0 ⊂ L6 and the

Hölder inequality, we estimate the last term at the left-hand side of (3.13) as
follows:

|(f(u) − f(v), ∂tw)| ≤ C((1 + |u|4 + |v|4)|w|, |∂tw|)
≤ C(1 + ‖u‖4

L12 + ‖v‖4
L12)‖w‖L6‖∂tw‖L2 ≤ C(1 + ‖u‖4

L12 + ‖v‖4
L12)‖ξw‖2

E .

(3.14)

Since the L4(0, T ;L12(Ω))-norms of u and v are finite by the definition of the
Shatah–Struwe solutions, inserting the obtained estimate into equality (3.13)
and applying the Gronwall inequality, we see that ξw(t) ≡ 0 and the corollary
is proved. �

Corollary 3.5. Let the assumptions of Proposition 3.3 hold and let, in addition,
the non-linearity f satisfies the following dissipativity assumption:

f(u)u ≥ −C, u ∈ R. (3.15)

Then the Shatah–Struwe solution u(t), t ∈ [0, T ] of problem (1.1) satisfies the
following dissipative estimate:

‖ξu(t)‖E ≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2), t ∈ [0, T ], (3.16)

where the monotone function Q and positive constant α are independent of t,
T and u.
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Indeed, the energy estimate (3.16) follows in a standard way by multipli-
cation of Eq. (1.1) by ∂tu+βu, where β is a properly chosen positive constant,
and integration in x (the validity of that is verified in Proposition 3.3) followed
by application of the Gronwall type inequality, see [2,7,32] for more details.

The next corollary shows that Shatah–Struwe solutions can be obtained
as a limit of Galerkin approximations.

Corollary 3.6. Let the assumptions of Proposition 3.3 hold, the non-linearity
f satisfy the dissipativity assumption (3.15) and let u(t) be a Shatah–Struwe
solution of problem (1.1). Assume also that the initial data ξuN

(0) ∈ PNE for
the Galerkin approximations uN (t) are chosen in such way that

ξuN
(0) → ξu(0)

strongly in E. Then, the Galerkin solutions uN (t) converge to the solution u(t):

ξuN
(t) → ξu(t) (3.17)

strongly in E for every t ∈ [0, T ]. In particular, any Shatah–Struwe solution is
a Galerkin solution of problem (1.1).

Proof. Indeed, due to the energy estimate (3.16) for the Galerkin approxi-
mations uN (t), we know that the L∞(0, T ; E)-norms of these solutions are
uniformly bounded. Thus, we may assume without loss of generality, that
uN (t) → ū(t) weakly star in L∞(0, T ; E), where ū(t) is a weak energy solution
of Eq. (1.1). Moreover, arguing in a standard way, we see that

ξuN
(t) ⇀ ξū(t) (3.18)

in E for every t ∈ [0, T ]. In addition, from the proof of Proposition 3.1, we
know that ū(t) is a Shatah–Struwe solution for t ∈ [0, T1] for some small, but
positive T1. Then, by Corollary 3.4, u(t) = ū(t), t ∈ [0, T1]. Introduce the time

T ∗ := sup{t ∈ [0, T ], u(s) = ū(s), s ≤ t}.

We need to prove that T ∗ = T . To this end, we note that

ξuN
(T ∗) → ξu(T ∗).

The weak convergence follows from (3.18) and to verify the strong convergence,
we check that

‖ξuN
(T ∗)‖E → ‖ξu(T ∗)‖E . (3.19)

Assume that (3.19) is wrong, then without loss of generality, we may assume
that

‖ξuN
(T ∗) − ξu(T ∗)‖E ≥ ε0 > 0. (3.20)

Then, we want to pass to the limit in the energy equality

1
2
‖ξuN

(T ∗)‖2
E + (F (uN (T ∗)), 1) − (g, uN (T ∗)) + γ

∫ T ∗

0

‖∂tuN (t)‖2
L2 dt

=
1
2
‖ξuN

(0)‖2
E + (F (uN (0)), 1) − (g, uN (0)) (3.21)
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for Galerkin approximations uN . Indeed, since we have the strong convergence
ξuN

(0) → ξu(0), the right-hand side of (3.21) tends to the analogous expression
for u. To pass to the limit in the left-hand side, we use the inequality

‖ξu(T ∗)‖E ≤ lim inf
N→∞

‖ξuN
(T ∗)‖E (3.22)

which is valid due to the weak convergence (3.18), and

(F (u(T ∗), 1) ≤ lim inf
N→∞

(F (uN (T ∗), 1), (3.23)

due to the fact that uN (T ∗) → u(T ∗) almost everywhere, assumption (3.15)
and the Fatou lemma. Thus,

1
2
‖ξu(T ∗)‖2

E + (F (u(T ∗), 1) − (g, u(T ∗)) + γ

∫ T ∗

0

‖∂tu(t)‖2
L2 dt

≤ 1
2
‖ξu(0)‖2

E + (F (u(0), 1) − (g, u(0)). (3.24)

On the other hand, u(t) is a Shatah–Struwe solution and, by this reason,
it satisfies the energy equality. Thus, the inequality in (3.24) is actually the
equality which is possible only when both (3.22) and (3.23) are also equalities.

In particular, for some subsequence Nk, we have ‖ξuNk
(T ∗)‖E →

‖ξu(T ∗)‖E and together with (3.18), we have the strong convergence ξuNk
(T ∗)

→ ξu(T ∗) which contradicts (3.20). Thus, the strong convergence ξuN
(T ∗) →

ξu(T ∗) is proved.
Finally, using this strong convergence and arguing as in Proposition 3.1,

we see that ū(t) is a Shatah–Struwe solution on the interval [T ∗, T ∗ + T2], for
some positive T2 and, therefore, should coincide with u(t) on that interval as
well. This contradiction shows that, actually, T ∗ = T and u(t) = ū(t) for all
t ∈ [0, T ]. The convergence (3.17) can be then proved based on the energy
equality exactly as it was done before for the case t = T ∗. Corollary 3.6 is
proved. �

Remark 3.7. Arguing in a bit more accurate way, one can show that, under
assumptions of the previous corollary, ξuN

→ ξu strongly in C(0, T ; E) as well.

We are ready to state the main result of the section on the global existence
of Shatah–Struwe solutions.

Theorem 3.8. Let g ∈ L2(Ω) and the non-linearity f satisfy assumptions (2.7)
and (3.15). Assume also that the following extra dissipativity assumptions are
satisfied {

1. F (u) ≥ −C + κ|u|6, κ > 0,

2. f(u)u − 4F (u) ≥ −C.
(3.25)

Then, for any ξ0 ∈ E there exists a unique Shatah–Struwe solution u(t) de-
fined for all t ∈ R+ and this solution satisfies (3.16) as well as the following
Strichartz type estimate:

‖u‖L4(0,T ;L12(Ω)) ≤ Q(ξ0, T ), T ≥ 0 (3.26)

for some function Q monotone increasing in T .
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Indeed, it only remains to prove the global solvability for (1.1) in the
class of Shatah–Struwe solutions. The proof of this fact was given in [5] for
the particular case f(u) = u5 and γ = 0, g = 0 and is based on proving the
energy non-concentration for u(t) via the Morawetz type identities adapted to
the case of bounded domains. The general case can be treated by repeating
verbatim the arguments of [5] and is left to the reader. Note also that the extra
dissipativity assumptions (3.25) do not allow the function f(u) to grow slower
than u5, however, it is actually not a big restriction since the most difficult is
exactly the case of critical quintic growth rate and as we will see in the next
section, we do not need Theorem 3.8 to treat the subcritical case.

We are now ready to define the solution semigroup S(t) : E → E associ-
ated with Eq. (1.1):

S(t)ξ0 := ξu(t), (3.27)

where u(t) is a unique Shatah–Struwe solution of (1.1). Then, according to
Theorem 3.8, this semigroup is well defined (and even locally Lipschitz con-
tinuous in E , see the proof of Corollary 3.4) and is dissipative:

‖S(t)ξ0‖E ≤ Q(‖ξ0‖E)e−αt + Q(‖g‖L2). (3.28)

Remark 3.9. The long-time behavior of the solution semigroup S(t) will be
studied in the next sections. However, it worth to note here that we have
the dissipative estimate for the energy norm only and Theorem 3.8 gives us
no control of the Strichartz norm as T → ∞ (its proof is a typical proof ad
absurdum which gives no bounds on the function Q in estimate (3.26)). By
this reason, the Strichartz estimate may a priori disappear when passing to
the limit t → ∞ and the attractor may consist not only of Shatah–Struwe
solutions. The proof that it is actually not the case is one of the main tasks of
the present paper.

We conclude this section by one more result which shows that a Shatah–
Struwe solution is more regular if the initial data are smoother.

Proposition 3.10. Let the assumptions of Theorem 3.8 hold and let, in addition,
the non-linearity satisfy the following condition:

f ′(u) ≥ −K (3.29)

and the initial data be more smooth, i.e.,

ξ0 ∈ E1 := [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω). (3.30)

Then, the corresponding Shatah–Struwe solution is more regular as well:

ξu(t) = (u(t), ut(t)) ∈ E1 (3.31)

for all t ≥ 0.

Proof. We give below only the formal proof which can be justified using
Galerkin approximations and Corollary 3.6. Indeed, let v(t) := ∂tu(t). Then,
as not difficult to check using Eq. (1.1) and the growth restriction (2.7),

ξv(0) = (∂tu(0), ∂2
t u(0) = (u′

0,Δxu0 − f(u0) − γu′
0 + g) ∈ E
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and the function v solves

∂2
t v + γ∂tv − Δxv = −f ′(u)v, ξv(0) ∈ E . (3.32)

Multiplying Eq. (3.32) by ∂tv, we get
1
2

d
dt

‖ξv(t)‖2
E + γ‖∂tv‖2

L2 = −(f ′(u)v, ∂tv). (3.33)

Due to the growth restriction (2.7), the term on the right hand side of (3.33)
obeys the estimate, see (3.14),

|(f ′(u)v, ∂tv)| ≤ C((1 + |u|4)|v|, |∂tv|) ≤ C(1 + ‖u‖4
L12)‖ξv‖2

E . (3.34)

Substituting the above estimate to (3.33) and using Gronwall inequality one
gets

‖ξv(t)‖2
E ≤ ‖ξv(0)‖2

E exp

(
CT +

∫ T

0

‖u(s)‖4
L12ds

)
, 0 ≤ t ≤ T. (3.35)

The fact that ξv(t) ∈ E , in turn, implies that ξu(t) ∈ E1. Indeed, the fact that
v = ∂tu ∈ H1 is immediate and we only need to check that u ∈ H2. To this
end, we rewrite Eq. (1.1) in the form

Δxu(t) − f(u(t)) = g − ∂tv(t) − γv(t) := gv(t) ∈ L2(Ω) (3.36)

and, multiplying this elliptic equation by Δxu in L2(Ω) and using the addi-
tional assumption (3.29), we end up with

‖u(t)‖2
H2 ≤ C‖Δxu(t)‖2

L2 ≤ C‖g‖2
L2 + ‖ξv(t)‖2

E + K‖ξu(t)‖2
E . (3.37)

Thus, Proposition 3.10 is proved. �

Remark 3.11. The extra assumption (3.29) on the non-linearity f is not essen-
tial and is introduced only to avoid the technicalities related with the maximal
regularity estimate for the critical elliptic equation (3.36). Indeed, under this
extra assumption, it is immediate as we have seen. In the general case when f
satisfies only the growth restriction (2.7) it is also true, but its proof is much
more delicate and requires, to use e.g., the localization in space technique (the
detailed exposition of this technique is out scope of the present paper).

Note also that after obtaining the H2-estimate for u(t), the growth rate
of f becomes not essential due to the embedding H2 ⊂ C, so the further
regularity of the solution u(t) (if the initial data are more smooth) can be
obtained by usual bootstrapping arguments.

4. Asymptotic Compactness and Attractors: The Subcritical
Case

The aim of this section is to consider the subcritical case where the non-
linearity f satisfies

|f ′(u)| ≤ C(1 + |u|4−κ) (4.1)
for some 0 < κ ≤ 4. In that case, the local existence result of Proposition 3.1
can be improved as follows.
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Proposition 4.1. Let g ∈ L2(Ω) and the non-linearity f satisfy (4.1). Then,
for every ξ0 ∈ E , there exists T = T (‖ξ0‖E) > 0 such that Eq. (1.1) possesses
a Shatah–Struwe solution u(t) on the interval t ∈ [0, T ] and the following
estimate holds:

‖u‖L4(0,T ;L12(Ω)) ≤ Q(‖ξ0‖E) (4.2)
for some monotone function Q which is independent of u.

Proof. The proof of this statement is similar to the one of Proposition 3.1, but
we need to check that now the lifespan T depends only on the energy norm of
ξ0. To this end, we note that, due to (4.1), estimate (3.4) can be improved as
follows

‖PNf(vN + wN )‖L1(0,t;L2(Ω))

≤ C
(
t + ‖vN‖5−κ

L5−κ(0,t;L10(Ω)) + ‖wN‖5−κ
L5−κ(0,t;L10(Ω))

)
≤ C

(
t + tκ/5‖vN‖5−κ

L5(0,t;L10(Ω))

)
+ C‖wN‖5−κ

L5(0,t;L10(Ω)). (4.3)

We see that the first term at the left-hand side of (4.3) can be made small by
decreasing t and we need not to make the L5(L10)-norm of vN small. Thus,
we may use estimate (2.8) and interpolation inequality (2.5), to see that

‖vN‖L5(0,1;L10(Ω)) ≤ C‖ξ0‖E

and, for every ε > 0, we may find T = T (ε, ‖ξ0‖E) such that

C
(
t + tκ/5‖vN‖5−κ

L5(0,t;L10(Ω))

)
≤ ε, t ≤ T (ε, ‖ξ0‖E).

Arguing then exactly as in the end of the proof of Proposition 3.1, we establish
the existence of the desired Shatah–Struwe solution u as well as estimate (4.2).
Proposition 4.1 is proved. �

As has been already noted in Remark 3.2, the control of the lifespan of
the local Shatah–Struwe solution in terms of the energy norm together with
the control of energy norm due to the energy estimate allows us to extend the
local solution for all time and prove the existence of a global Shatah–Struwe
solution u(t) of problem (1.1). Namely, the following statement holds.

Corollary 4.2. Let the assumptions of Proposition 4.1 hold and let, in addition,
the non-linearity f satisfy the dissipativity assumption (3.15). Then, for every
ξ0 ∈ E , there exists a unique global Shatah–Struwe solution u(t) of problem
(1.1) and the following dissipative estimate holds:

‖ξu(t)‖E + ‖u‖L4(t,t+1;L12(Ω)) ≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2), (4.4)

where the positive constant α and the monotone function Q are independent
of u and t.

Proof. Indeed, the uniqueness is proved in Corollary 3.4 and the dissipative
energy estimate is obtained in Corollary 3.5. According to this estimate, the
energy norm ‖ξu(t)‖E cannot blow up in a finite time and, therefore, due to
Proposition 4.1, the local Shatah–Struwe solution u(t) can be extended globally
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in time. Finally, the dissipative estimate (4.4) for the Strichartz norm of u
follows from (4.2) and the dissipative estimate (3.16) for the energy norm. �

We are now ready to verify the asymptotic compactness of the solution
semigroup S(t) of Eq. (1.1) in the subcritical case. To this end, we split the
solution u as follows: u(t) = v(t) + w(t), where v(t) solves the linear problem

∂2
t v + γ∂tv − Δxv = 0, ξv |t=0 = ξu|t=0 (4.5)

and the remainder w(t) satisfies

∂2
t w + γ∂tw − Δxw = g − f(u), ξw

∣∣
t=0

= 0. (4.6)

Then, due to estimate (2.4),

‖ξv(t)‖E + ‖v‖L4(t,t+1;L12(Ω)) ≤ Q(‖ξu(0)‖E)e−αt (4.7)

and, therefore, the v-component is exponentially decaying in the energy and
Strichartz norms. As the next corollary shows, the w-component is more reg-
ular.

Corollary 4.3. Let the assumptions of Corollary 4.2 hold. Then, there exists
δ = δ(κ) > 0 and δ < 1/2 such that

ξw(t) ∈ Eδ := H1+δ
0 (Ω) × Hδ(Ω)

and the following estimate holds:

‖ξw(t)‖Eδ
+ ‖w‖L4(t,t+1;W δ,12(Ω)) ≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2), (4.8)

where the monotone function Q and the positive constant α are independent
of u and t.

Proof. Indeed, since the function G := (−Δx)−1g ∈ H2, it only remains to
verify estimate (4.8) for the function w̄(t) := w(t) − G which solves

∂2
t w̄ + γ∂tw̄ − Δxw̄ = −f(u), ξw̄(0) = ξu(0) − (G, 0).

Moreover, due to estimate (2.4), we only need to check that

‖f(u)‖L1(t,t+1;Hδ(Ω)) ≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2). (4.9)

According to the Hölder inequality and estimate (4.4),

‖f(u)‖L1(t,t+1;W 1,6/5(Ω)) ≤ C(1 + ‖u4∇xu‖L1(t,t+1;L6/5(Ω)))

≤ C(1 + ‖u‖4
L4(t,t+1;L12(Ω))‖∇xu‖L∞(t,t+1;L2(Ω)))

≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2).

On the other hand, due to the growth restriction (4.1),

‖f(u)‖L1(t,t+1;L10/(5−κ)(Ω)) ≤ C(1 + ‖u‖L5(t,t+1;L10(Ω)))

≤ Q(‖ξu(0)‖E)e−αt + Q(‖g‖L2).

The interpolation inequality

‖U‖Hδ ≤ C‖U‖1−θ
W 1,6/5‖U‖θ

L10/(5−κ) , θ =
10

10 + 3κ
, δ =

3κ

10 + 3κ

now gives the desired estimate (4.9) and finishes the proof of the corollary. �
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We conclude our study of the subcritical case by establishing the existence
of a global attractor for the associated solution semigroup. For the convenience
of the reader, we recall the definition of a global attractor, see [2,7,30] for more
details.

Definition 4.4. Let S(t) be a semigroup acting on a Banach space E . Then, a
set A ⊂ E is a global attractor of S(t) if

1. The set A is compact in E ;
2. The set A is strictly invariant: S(t)A = A;
3. It is an attracting set for the semigroup S(t), i.e., for any bounded set

B ⊂ E and every neighborhood O(A) of the set A, there exists a time
T = T (B,O) such that

S(t)B ⊂ O(A), ∀t ≥ T.

The next theorem can be considered as the main result of this section.

Theorem 4.5. Let the assumptions of Corollary 4.2 hold. Then, the solution
semigroup S(t) associated with problem (1.1) possesses a global attractor A in
the energy phase space E. Moreover, the attractor A is bounded in more regular
space:

A ∈ Eδ, ‖A‖Eδ
≤ C (4.10)

for some δ > 0.

Proof. Indeed, according to the abstract attractor existence theorem, we need
to verify that S(t) is continuous in E for every fixed t and that it possesses
a compact attracting set in E , see [2]. The first assertion is satisfied due to
Corollary 3.4 and, according to Corollary 4.3 and estimate (4.7), the following
set

B := {ξ ∈ Eδ, ‖ξ‖Eδ
≤ R}

will be the compact attracting set for S(t) in E if the radius R is large enough.
Thus, all assumptions of the abstract attractor existence theorem are verified
and the existence of the attractor A is proved. It remains to recall that A ⊂ B,
so (4.10) is also verified and the theorem is proved. �

Remark 4.6. We stated in Theorem 4.5 only that the attractor A is bounded
in Eδ with δ = 3κ

3κ+10 . However, using the standard bootstrapping arguments
one can easily show that A ∈ E1 and that its actual regularity is restricted
only by the regularity of Ω, g and f (if all the above data is C∞-smooth, the
attractor also will be C∞-smooth). Moreover, since H2 ⊂ C, the growth rate
of f becomes not essential and one can establish the finite-dimensionality of A
exactly as in the well-studied case when f(u) grows slower than u3, see, e.g., [2].
Mention also that the generalization to the non-autonomous case, when, say,
the external force g = g(t) depends explicitly on time is also straightforward.
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5. Weak Trajectory Attractors for Critical and Supercritical
Cases

The aim of this section is to recall the trajectory attractor theory for Eq. (1.1)
for the case of fast growing non-linearities developed in [32]. This theory will
be essentially used in the next section for proving the dissipativity of Shatah–
Struwe solutions in the critical case. Namely, following [32], we assume that
the non-linearity f satisfies the following conditions:⎧⎪⎨

⎪⎩
1. f ∈ C2(R,R), f(0) = 0,

2. |f ′′(v)| ≤ C(1 + |v|p),
3. f ′(v) ≥ −K + δ|v|p+1,

(5.1)

where the exponent p can be arbitrarily large (of course, we are mainly in-
terested in the case p ≥ 3 since the subcritical case p < 3 is studied in the
previous section). Note that, for the case p > 3, the energy phase space should
be modified:

E := [H1
0 (Ω) ∩ Lp+3(Ω)] × L2(Ω)

in order to guarantee the finiteness of the energy (since H1 is not embedded
into Lp+3 if p > 3). We also modify the energy norm for that case as follows:

‖ξu(t)‖2
E := ‖∂tu(t)‖2

L2 + ‖∇xu(t)‖2
L2 + ‖u(t)‖p+3

Lp+3 .

In this section, we will work with Galerkin solutions of Eq. (1.1), see Definition
2.7.

Proposition 5.1. Let the non-linearity f satisfies assumptions (5.1) and let
g ∈ L2(Ω). Then, for every ξ0 ∈ E , there exists at least one Galerkin solution
u(t), t ∈ R+, of problem (1.1)

The assertion of this proposition is standard, so its proof is omitted, see,
e.g., [32] for more details.

Our next aim is to state the analogue of the energy inequality for Galerkin
solutions. We first note that, arguing in a standard way, one derives the follow-
ing dissipative energy estimate for the Galerkin approximations uN (t) (which
are the solutions of (2.9)):

‖ξuN
(t)‖2

E+
∫ ∞

t

‖∂tuN (τ)‖2
L2 dτ ≤ C‖ξuN

(s)‖2
Ee−α(t−s)+C(1+‖g‖2

L2), (5.2)

where 0 ≤ s ≤ t and positive constants C and α are independent of s, t,
N and uN , see [32]. However, since we do not have the strong convergence
ξuN

(τ) → ξu(τ) in E, we cannot pass to the limit in (5.2) at least in a straight-
forward way; so we cannot guarantee that (5.2) will remain true for the limit
Galerkin solution u(t). To overcome this difficulty, we need to introduce, follow-
ing again [32], the so-called M -energy functional which generalizes the usual
energy functional.
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Definition 5.2. Let the assumptions of Proposition 5.1 hold and let u be a
Galerkin solution of problem (1.1). We define the functional Mu(t), t ≥ 0, by
the following expression:

Mu(t) := inf
{

lim inf
k→∞

‖ξuNk
(t)‖E : ξuNk

⇀ ξu, ξuNk
(0) ⇀ ξu(0)

}
, (5.3)

where the external infimum in the right-hand side of (5.3) is taken over all
sequences of the Galerkin approximations {ξuNk

(t)}∞
k=1 which converge weakly

∗ in L∞
loc(R+, E) to the given Galerkin solution u.

The following corollary gives simple, but important properties of the M -
energy functional.

Corollary 5.3. Let the assumptions of Proposition 5.1 hold. Then, for every
Galerkin solution u of Eq. (1.1), the following estimates hold:

Mu(t) < ∞, ‖ξu(t)‖E ≤ Mu(t), MThu(t) ≤ Mu(t + h), h ≥ 0, (5.4)

where (Thu)(t) := u(t + h), and

Mu(t)2 +
∫ ∞

t

‖∂tu(t)‖2
L2 dt ≤ CMu(s)2e−α(t−s) + C(1 + ‖g‖2

L2), (5.5)

where t ≥ s ≥ 0 and constants α > 0 and C > 0 are the same as in (5.2).

Indeed, estimates (5.4) are immediate corollaries of the definitions of the
Galerkin solution and the functional Mu(t) and estimates (5.5) follow from
estimate (5.2) in which we pass to the limit Nk → ∞.

Remark 5.4. It is well known (see [2]) that, in the case p ≤ 1, we have the
strong convergence of Galerkin approximations and, consequently,

‖ξu(t)‖E = Mu(t). (5.6)

So, in this case, the M -energy coincides with the classical one. Moreover,
the same equality will hold in the case when p ≤ 3 and u is a Shatah–Struwe
solution of problem (1.1) due to Corollary 3.6. But to the best of our knowledge,
neither identity (5.6) nor the fact that any solution ξu ∈ L∞(R+, E) of (0.1)
can be obtained as a limit of the Galerkin approximations are known in the
supercritical case p > 3. Nevertheless, if the solution ξu(t) of problem (1.1) is
sufficiently regular:

ξu ∈ L∞(R+, E1), E1 := [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω),

then it is unique and, arguing as in Corollary 3.6, we can show the strong
convergence of Galerkin approximations and equality (5.6).

It also worth to emphasize that, in contrast to the usual energy functional,
the functional Mu(t) is not a priori local with respect to t, i.e., Mu(T ) depends
not only on ξu(T ), but also on the whole trajectory u.

We are now ready to build up a trajectory dynamical system associated
with Eq. (1.1), see [7,8,32] for more details.
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Definition 5.5. We define the trajectory phase space K+ of problem (1.1) as
the set of all its Galerkin solutions which correspond to all possible initial data
ξ0 ∈ E, see Definition 2.7. Obviously, K+ is a subset of L∞(R+, E).

We endow the trajectory phase space K+ with the topology induced by
the embedding

K+ ⊂ Θ+ := [L∞
loc(R+, E)]w

∗
,

i.e. by the weak-∗ topology of the space L∞
loc(R+, E).

We also introduce the group of positive time shifts:

Th : Θ+ → Θ+, h ≥ 0, (Thu)(t) := u(t + h). (5.7)

Then, as not difficult to see, semigroup (5.7) acts on the trajectory phase space
K+:

Th : K+ → K+. (5.8)

Semigroup (5.8) acting on the topological space K+ is called the trajectory
dynamical system associated with Eq. (1.1).

Remark 5.6. As known, in the case p ≤ 1, the Galerkin solution u(t) of Eq.
(1.1) is unique and, consequently, this equation generates a semigroup in the
classical energy phase space E in a standard way:

S(t) : E → E , t ≥ 0, S(t)ξu(0) := ξu(t). (5.9)

Moreover, in this case, the map

Πt=0 : K+ → E , Πt=0ξu = ξu(0), (5.10)

where, by definition, Πt=0u = ξu(0), is one to one and realizes a (sequential)
homeomorphism between K+ and Ew (=the space E endowed by the weak
topology). Thus,

S(t) = Πt=0 ◦ Tt ◦ (Πt=0)−1, (5.11)

and, therefore, the trajectory dynamical system (5.8) is conjugated to the
classical dynamical system (5.9) defined on the usual energy phase space E
endowed with the weak topology.

We note, however, that, for fast growing non-linearities, the uniqueness
problem for (1.1) is not solved yet (in particular, even in the most interesting
for our purposes quintic case p = 3, the uniqueness of Galerkin solutions is
not known) and under the classical approach, semigroup (5.9) can be defined
as a semigroup of multivalued maps only. The use of the trajectory dynamical
system (5.8) allows us to avoid multivalued maps and to apply the standard
attractor theory in order to study the long-time behavior of solutions of (1.1)
in the supercritical case.

As the next step, we intend to define the attractor of the introduced
trajectory dynamical system. As usual (see e.g. [7,8,32]), in order to define
the global attractor of the semigroup (5.8), we first need to define the class of
bounded sets which will be attracted by this attractor.
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Definition 5.7. A set B ⊂ K+ is called M -bounded if the following quantity
is finite:

‖B‖M := sup
ξu∈B

Mu(0) < ∞. (5.12)

In other words, the set B ⊂ K+ is M -bounded if the modified energy of all
the solutions belonging to B is uniformly bounded.

Definition 5.8. A set Atr is a global attractor of the trajectory dynamical
system (5.8) (=the trajectory attractor of Eq. (1.1)) if the following conditions
hold:

1. The set Atr is a compact M -bounded set in K+.
2. This set is strictly invariant, i.e. ThAtr = Atr, for h ≥ 0.
3. This set is an attracting set for semigroup (5.8), i.e., for every M -bounded

subset B ⊂ K+ and every neighborhood O(Atr) of Atr in K+, there
exists T = T (B,O) such that

ThB ⊂ O(Atr), for h ≥ T. (5.13)

The next theorem establishes the existence of the attractor Atr for the
trajectory dynamical system associated with problem (1.1).

Theorem 5.9. Let the assumptions of Proposition 5.1 hold. Then, semigroup
(5.8) possesses a global attractor Atr in the sense of Definition 5.8 which can
be described in the following way:

Atr = Πt≥0K, Πt≥0u := u
∣∣
t≥0

. (5.14)

Here K ⊂ L∞(R, E) is the set of all the complete solutions of problem (1.1)
which are defined for all t ∈ R and can be obtained as a Galerkin limit, i.e.
ξu ∈ K if and only if there exist a sequence of times tk → −∞ and a sequence
of solutions ξuNk

(t) of the problems:{
∂2

t uNk
+ γ∂tuNk

− ΔxuNk
+ PNk

f(uNk
) = gNk

,

ξuNk
(tk) = ξ0

k ∈ ENk
, t ≥ tk,

(5.15)

where ENk
:= PNk

E, such that

‖ξ0
k‖E ≤ C, and ξu = Θ − lim

k→∞
ξuNk

, (5.16)

where C is independent of k and

Θ := [L∞
loc(R, E)]w

∗
. (5.17)

For the proof of this theorem see [32].
The next standard assertion utilizes the gradient structure of Eq. (1.1).

Corollary 5.10. Let the assumptions of Theorem 5.9 hold and let ξu ∈ K. Then,∫ +∞

−∞
‖∂tu(s)‖2

L2 ds ≤ C(1 + ‖g‖2
L2), (5.18)

where the constant C is the same as in (5.5), and moreover, for every 1 ≥ β >
0,

∂tu ∈ Cb(R,H−β(Ω)) and lim
t→±∞ ‖∂tu(t)‖H−β(Ω) = 0. (5.19)
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Indeed, the finiteness of the dissipation integral is an immediate corol-
lary of estimate (5.5) and the definition of the set K and the convergence
(5.19) follows from this integral and from the embedding Θ ⊂ Cloc(R,H−β

(Ω)), see [32] for more details.
The next theorem which establishes the backward regularity of solutions

on the trajectory attractor Atr is crucial for our proof of asymptotic compact-
ness for the quintic case, see the next section.

Theorem 5.11. Let the assumptions of Theorem 5.9 hold. Then, for every com-
plete Galerkin solution ξu ∈ K of Eq. (1.1), there exists a time T = Tu such
that

ξu ∈ Cb((−∞, T ], E1) (5.20)

and
‖ξu‖Cb(−∞,T ;E1) ≤ C, (5.21)

where the constant C is independent of u ∈ K.

The proof of this theorem is essentially based on the finiteness of the
dissipation integral (5.18) and is given in [32], see also [10,11] for the analogous
results for the hyperbolic Cahn–Hilliard equations.

To conclude the section, we state a version of the so-called weak–strong
uniqueness result which shows that the solution ξu(t) ∈ K is unique until it is
regular; so the non-uniqueness can appear only after the possible blow up of
the strong solution.

Theorem 5.12. Let the assumptions of Theorem 5.9 hold and ξu ∈ K be a
complete weak solution of (1.1) which satisfies (5.20), for t ≤ T . We also
assume that ξv ∈ K is another complete weak solution which satisfies

ξu(t) = ξv(t), for all t ≤ T ′ < T. (5.22)

Then, necessarily

ξu(t) = ξv(t), for all t ≤ T.

The proof of this theorem is also given in [32].

6. Asymptotic Compactness and Attractors: The Critical Case

In this concluding section, we establish the asymptotic compactness of the
Shatah–Struwe solutions and the existence of the global attractor for the so-
lutions semigroup S(t), see (3.27), of Eq. (1.1) in the critical quintic case. The
crucial role in our proof of this fact is played by the trajectory attractor Atr

for the Galerkin solutions of this equation and the backward regularity of so-
lutions on it discussed in the previous section. Namely, combining the results
of Sect. 3 on the Shatah–Struwe solutions with the trajectory attractor ap-
proach for the Galerkin solutions discussed in the previous section, we obtain
the following regularity result.
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Proposition 6.1. Let the non-linearity f satisfy (3.25) and (5.1) with p = 3 and
let g ∈ L2(Ω). Then the trajectory attractor Atr of problem (1.1) constructed
in Theorem 5.9 is generated by smooth complete solutions of (1.1), namely,
for any ξu ∈ K,

ξu(t) ∈ E1, (6.1)
for all t ∈ R.

Proof. Indeed, due to Theorem 5.11, we know that ξu(t) ∈ E1 for all t ≤ T .
Moreover, due to Theorem 3.8 there is an extension ū(t) for t ≥ T such that
ū(t) = u(t) for t ≤ T and ū(t) is a Shatah–Struwe solution of Eq. (1.1) for
all t ∈ R. Then, due to Proposition 3.10 and the fact that ξū(T ) ∈ E1, we
conclude that ξū(t) ∈ E1 for all t ∈ R.

Furthermore, due to Corollary 3.6, any Shatah–Struwe solution is a
Galerkin solution as well and the Galerkin approximations converge even
strongly in E to that solution. By this reason, the modified energy coincides
with the usual one (i.e., identity (5.6) holds) for any Shatah–Struwe solution
and this, together with the definition of the set K implies that ū ∈ K. Finally,
due to the uniqueness Theorem 5.12, u(t) = ū(t) for all t ∈ R. This gives (6.1)
and finishes the proof of the proposition. �

Remark 6.2. Note that, at this stage, we have established only the
E1-regularity of any solution u ∈ K and the global boundedness of K in Cb(R, E)
(due to the energy estimate). However, since we do not control the growth rate
of the Strichartz norm with respect to T in estimate (3.26), we still do not
have boundedness of ξu(t) as t → ∞ in the E1-norm. Nevertheless, we obviously
have the energy equality for every u ∈ K. This, together with the standard en-
ergy method will allow us to establish the asymptotic compactness which a
posteriori will give us the desired control of the Strichartz norm and, finally,
we will verify that K is bounded in Cb(R, E1) as well.

The next theorem can be considered as the main result of this section.

Theorem 6.3. Let the assumptions of Proposition 6.1 hold. Then, the solution
semigroup S(t) generated by the Shatah–Struwe solutions of Eq. (1.1) possesses
a global attractor A in the space E (see Definition 4.4) which is a subset of E1.
Moreover,

A = Πt=0Atr, (6.2)
where Atr is a trajectory attractor of Eq. (1.1) constructed in Theorem 5.9
(based on the Galerkin solutions of Eq. (1.1)).

Proof. Indeed, due to estimate (3.28), the ball

B := {ξ ∈ E , ‖ξ‖E ≤ R}
is an absorbing ball for the semigroup S(t) in E and, arguing as in Corollary
3.4, we see that the semigroup S(t) is continuous in E for every fixed t. Thus,
according to the abstract attractor existence theorem (see [2,13,21]), we only
need to verify the asymptotic compactness of the semigroup S(t). Namely, we
need to check that, for every sequence ξn ∈ B and every sequence of times
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tn → ∞, the sequence S(tn)ξn is precompact in E , i.e., that there exists a
subsequence nk such that

S(tnk
)ξnk

→ ξ∞ (6.3)

strongly in E .
To prove the strong convergence, we will utilize the so-called energy

method, see, e.g., [3,22]. We start with the elementary observation that, with-
out loss of generality, we may assume that S(tn)ξn → ξ∞ weakly in E . This
follows from the fact that the sequence S(tn)ξn is bounded due to energy esti-
mate and the Banach–Alaoglu theorem. Let us denote by vn(t) := S(t)ξn the
corresponding Shatah–Struwe solutions of Eq. (1.1) and fix un := Ttn

vn. Then,
un(t) are also Shatah–Struwe solutions of Eq. (1.1) defined on time interval
t ∈ [−tn,∞) and

ξun
(0) ⇀ ξ∞

weakly in E . Since every Shatah–Struwe solution is a Galerkin solution and
the M -energy of them coincide with the usual energy, by the definition of
the trajectory attractor Atr, we may assume without loss of generality that
ξun

is weakly star convergent to some Galerkin solution ξu(t) ∈ Atr in the
space L∞

loc(R+, E). Moreover, if we extend the functions ξun
(t), say, by zero for

t ≤ −tn, we also may assume that

ξun
(t) → ξu(t), weakly star in L∞

loc(R, E)

and that ξu ∈ K with ξu(0) = ξ∞, see [32] for the details.
Multiplying now Eq. (1.1) for un by ∂tun + αun, where α > 0 will be

fixed below, we end up with the following energy type identity:

d
dt

Eα(un) + κEα(un) + Gα(un) + (Φα(un), 1) + (gα, un) = 0, (6.4)

where κ > 0 is a parameter, gα = (κ − α)g, Φα(u) := αf(u)u − κF (u),

Eα(u) :=
1
2
‖ξu‖2

E + (F (u), 1) − (g, u) + α(u, ∂tu) +
1
2
αγ‖u‖2

L2

and

Gα(u) :=
(
γ − α − κ

2

)
‖∂tu‖2

L2 +
(
α − κ

2

)
‖∇xu‖2

L2

−κα(u, ∂tu) − γακ

2
‖u‖2

L2 .

We recall that the above calculations are justified since any Shatah–Struwe
solution satisfies the energy equality. We now fix the positive constants α and
κ to be small enough that the quadratic form Gα is positive definite:

K1‖ξu‖2
E ≤ Gα(u) ≤ K2‖ξu‖2

E

for some positive K1 and K2. We also assume that 4κ ≤ α which guarantees
that

Φα(u) ≥ −C,
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due to assumption (3.25). Integrating now equality (6.4) with respect to t ∈
[−tn, 0], we arrive at

Eα(un(0)) +
∫ 0

−tn

eκs (Gα(un(s)) + (Φα(un(s)), 1) + (gα, un(s))) ds

= Eα(ξn)e−κtn . (6.5)

We want now to pass to the limit n → ∞ in equality (6.5). To this end,
we remind that ξun

is uniformly bounded in L∞(R−, E) and is weakly star
convergent in this space to the solution ξu ∈ K. Moreover, we also know that
ξn(0) → ξ∞ = ξu(0) weakly in E . Using the compactness of the embedding
Cloc(R−, E) ⊂ Cloc(R−, L2(Ω)), we also conclude that un → u strongly in
Cloc(R−, L2(Ω)) and, in particular, almost everywhere. Therefore, since Φα(u)
is bounded from below and the quadratic form Gα(u) is positive definite, using
also the Fatou lemma, we conclude that

lim inf
n→∞

∫ 0

−tn

eκs (Gα(un(s)) + (Φα(un(s)), 1) + (gα, un(s))) ds

≥
∫ 0

−∞
eκs (Gα(u(s)) + (Φα(u(s)), 1) + (gα, u(s))) ds

and, analogously,
lim inf
n→∞ Eα(un(0)) ≥ Eα(u(0)). (6.6)

Thus, taking into the account that ξn is uniformly bounded in E , we end up
with

Eα(u(0)) +
∫ 0

−∞
eκs (Gα(u(s)) + (Φα(u(s)), 1) + (gα, u(s))) ds ≤ 0. (6.7)

We now recall that u ∈ K, so, by Proposition 6.1, u is smooth and, therefore,
it satisfies the energy equality. Thus, repeating the derivation of (6.5), but for
the function u, we see that the last inequality is actually the equality. This
is possible only if (6.6) is actually equality. Using now that, due to the Fatou
lemma

lim inf
n→∞ (F (un(0)), 1) ≥ (F (u(0)), 1) and lim inf

n→∞ ‖ξun
(0)‖2

E ≥ ‖ξu(0)‖2
E ,

we see that

‖ξu(0)‖2
E = lim inf

n→∞ ‖ξun
(0)‖2

E .

Thus, since ξun
(0) ⇀ ξu(0), we may assume without loss of generality that

S(tn)ξn = ξun
(0) → ξ∞ = ξu(0)

strongly in E . This proves the desired asymptotic compactness of the semigroup
S(t).

Thus, by the abstract attractor existence theorem, there exists a global
attractor A for the semigroup S(t) associated with Eq. (1.1) and, obviously,

A ⊂ Πt=0K.
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The opposite inclusion follows from the fact that K consists of smooth solutions
which are the Shatah–Struwe ones. So, the equality (6.2) is also proved and
the theorem is proved. �

We now want to verify that the constructed attractor is bounded in E1.
To this end, we need the following result.

Corollary 6.4. Let the assumptions of Theorem 6.3 hold. Then, the restric-
tion of the trajectory set K to the time interval t ∈ [0, 1] is a compact set of
L4(0, 1;L12(Ω)):

K∣∣
t∈[0,1]

⊂⊂ L4(0, 1;L12(Ω)).

Proof. Indeed, due to Theorem 6.3, the attractor A is compact in E . Then,
arguing as in the proof of Proposition 3.1, we see that, for every ε > 0, there
exists T = T (ε) such that, for any Shatah–Struwe solution u(t) starting from
the attractor (ξu(0) ∈ A), we have

‖u‖L4(0,T (ε);L12(Ω)) ≤ ε

or, in other words,

‖K∣∣
t∈[0,T (ε)]

‖L4(0,T (ε);L12(Ω)) ≤ ε. (6.8)

Since the set K is invariant with respect to time shifts (ThK = K), we have
proved that, for any u ∈ K

sup
T∈R

‖u‖L4(T,T+1;L12(Ω)) ≤ C, (6.9)

where the constant C is independent of u.
Since A is compact, verifying the continuity of the solution map S :

ξu(0) → u as the map from A to L4(0, 1;L12(Ω)) will prove the corollary. To
this end, we first observe that using the uniform estimate (6.8) and arguing as
in the proof of Corollary 3.4, we see that

‖ξu1(t) − ξu2(t)‖E ≤ CeKt‖ξu1(0) − ξu2(0)‖E , (6.10)

where C and K are independent of ξui
(0) ∈ A. Thus, the map S is continuous

as the map from E to C(0, 1; E).
To prove the continuity in the Strichartz norm, we note that analogously

to (3.14),

‖f(u1(t)) − f(u2(t))‖L2(Ω)

≤ C(1 + ‖u1(t)‖4
L12(Ω) + ‖u2(t)‖4

L12(Ω))‖ξu1(t) − ξu2(t)‖E .

This estimate, together with (6.10) and (6.9), gives

‖f(u1) − f(u2)‖L1(0,1;L2(Ω)) ≤ C‖ξu1(0) − ξu2(0)‖E ,

where the constant C is independent of ξui
(0) ∈ A. Applying now the

Strichartz estimate (2.3) to Eq. (3.12), we get

‖u1 − u2‖L4(0,1;L12(Ω)) ≤ C‖ξu1(0) − ξu2(0)‖E .

Thus, the map S is indeed continuous as a map from E to L4(0, 1;L12(Ω)) and
the corollary is proved. �
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We are finally ready to state the result on the boundedness of the global
attractor in E1.

Theorem 6.5. Let the assumptions of Theorem 6.3 hold. Then the global at-
tractor A of the solution semigroup S(t) associated with Eq. (1.1) is a bounded
set in E1.

Proof. Indeed, due to estimate (5.21) for any complete solution u ∈ K and due
to the invariance of K, it is sufficient to verify the following estimate:

‖ξu(t)‖E1 ≤ Q(‖ξu(0)‖E1), t ≥ 0, (6.11)

where the monotone function Q is independent of t ≥ 0 and ξu(0) ∈ A.
We will proceed analogously to the proof of Proposition 3.10, but will

improve estimate (3.34) using the information on the compactness of K in
the Strichartz norm. Namely, due to that compactness and estimate (6.9), for
every ε > 0, we can split the solution u in a sum u(t) = ū(t) + ũ(t), where

sup
T≥0

‖ũ‖L4(T,T+1;L12(Ω)) ≤ ε (6.12)

and the other function is smooth:

‖ū(t)‖E1 ≤ Cε, t ≥ 0, (6.13)

where the constant Cε depends on ε, but is independent of t and u ∈ K. Using
this decomposition, we improve (3.34) as follows

|(f ′(u)v, ∂tv)| ≤ (|f ′(ū + ũ) − f(ū)|, |v| · |∂tv|) + (|f ′(ū)|, |v| · |∂tv|)
≤ C((1 + |ū|3 + |ũ|3)|ũ|, |v| · |∂tv|) + C‖f ′(ū)‖L∞‖v‖L2‖∂tv‖L2

≤ C(1 + ‖ũ‖3
L12 + ‖u‖3

L12)‖ũ‖L12‖ξv‖2
E + ε‖ξv‖2

E + Cε‖∂tu‖2
L2

= lε(t)‖ξv‖2
E + Cε‖ξu‖2

E , (6.14)

where lε(t) := ε + C
(
1 + ‖ũ‖3

L12 + ‖u‖3
L12

) ‖ũ‖L12). Then, due to (6.9) and
(6.12), we have ∫ t+1

t

lε(t) dt ≤ Cε, (6.15)

where the constant C is independent of ε and on u ∈ K. Inserting this estimate
into (3.33), we have

1
2

d
dt

‖ξv(t)‖2
E + γ‖∂tv(t)‖2

L2 ≤ lε(t)‖ξv(t)‖2
E + Cε‖ξu(t)‖2

E . (6.16)

Multiplying now Eq. (3.32) by αv, where α > 0 is a small parameter, integrat-
ing over Ω and using (3.29), we derive
d
dt

(α(v(t), ∂tv(t)) +
1
2
αγ‖v(t)‖2

L2) + α‖∇xv(t)‖2
L2 ≤ Kα‖ξu(t)‖2

L2 + α‖∂tv‖2.

Taking a sum of this inequality with (6.16) and fixing α > 0 to be small
enough, we finally arrive at

d
dt

(
1
2
‖ξv(t)‖2

E + α(v(t), ∂tv(t)) +
1
2
αγ‖v(t)‖2

L2

)
+ (κ − lε(t))‖ξv(t)‖2

E

≤ Kα‖ξu(t)‖2
E
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for some positive constant κ which is independent of ε and u. Fixing now ε > 0
to be small enough, applying the Gronwall inequality and estimating the term
containing lε(t) using (6.15), we get

‖ξv(t)‖2
E ≤ Ce−κt‖ξv(0)‖2

E + C‖ξu‖2
C(R+,E) ≤ C

(‖ξv(0)‖2
E + 1

)
.

Estimate (3.37) gives now the desired estimate (6.11) and finishes the proof of
the theorem. �

Remark 6.6. Since H2 ⊂ C in the 3D case, the proved boundedness of the
global attractor A in the space E1 allows us to verify the further regularity of
the attractor by straightforward bootstrapping; so, similarly to the subcritical
case, the actual regularity of the attractor is restricted by the regularity of
f and g only. Moreover, the finite-dimensionality of A can be obtained also
exactly as in the subcritical case.

However, we emphasize that, in contrast to the subcritical case, our proof
of the existence of the global attractor A and its further regularity is strongly
based on the gradient structure of Eq. (1.1) and the finiteness of the dissipation
integral (5.18). Thus, the extension of the results of this section to the case
of non-autonomous external forces g = g(t) or to systems of equations of the
form (1.1) with non-gradient non-linearity f is still an open problem. As we
have already mentioned, the key difficulty in this problem is to establish the
dissipative estimate for the Strichartz norm of any Shatah–Struwe solution u
of the form

‖u‖L4(T,T+1;L12(Ω)) ≤ Q(‖ξu(0)‖E)e−αT + Q(‖g‖L2). (6.17)

This estimate cannot be obtained directly from the proof of Theorem 3.8 and
we do not know whether or not it is actually true even in the autonomous
case considered in this section. Nevertheless, we conjecture that it is true at
least in the autonomous case since, a posteriori, based on the existence of the
compact global attractor A, on can verify a slightly weaker version of (6.17),
namely, that for every bounded set B ⊂ E , there exists T = T (B) such that

‖u‖L4(t,t+1;L12(Ω)) ≤ Q(‖g‖L2), t ≥ T,

so one only needs to verify (6.17) on a finite time interval and we expect that
it can be done using the concentration compactness arguments, see e.g. [29].
On the other hand, up to the moment, we do not know how to verify (6.17)
in the non-autonomous case.
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