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(Communicated by Kenneth R. Meyer)

Abstract. The goal of this note is to extend previous results about the dynam-

ics of cellular automata to "restricted cellular automata." Roughly speaking,

a cellular automaton is a rule that updates a configuration of "states" that are

arranged along the integer lattice in R . In applications one often thinks of one

of these states as "blank" or "quiescent," while the other "active" states evolve

against a quiescent background. Often the physically relevant configurations are

those with only a finite number of active states. If X0 is the set of all such

states, and if a cellular automaton maps Xq to Xq , then its restriction to Xq

is a restricted cellular automaton. The main results show that there are rather

strong constraints on the collection of attractors for any restricted cellular au-

tomaton. These constraints parallel those described in [HI] for the unrestricted

case.

Cellular automata are a class of discrete dynamical systems on a Cantor

set I. This Cantor set is defined as the bi-infinite product of a finite set S

with itself: I = Yln€Z S. Giving S the discrete topology and I the prod-
uct topology makes I a compact space homeomorphic to the usual Cantor

middle-third set. One can consider elements of I as functions from Z to S,

X = {x : Z -> S} . The shift map is the homeomorphism a on I that is de-

fined by (<jx)(«) = x(zz + 1) for each zz in Z and x c X. A map /:!-»!

is a cellular automaton if it is continuous and commutes with a:foa = oof.

The Curtis-Hedlund-Lyndon theorem [Hed] gives a characterization of cellu-

lar automata that makes them easy to construct: / is cellular automaton if and

only if there is an integer k > 0 and a map F: S2k+X —► S with the property

that

ifx)in) = Fixin-k),...,xin + k))

for each x £ X and integer zz. F is called a block map that generates /.

Cellular automata were introduced by von Neumann as a model of biological

self-reproduction. Since their introduction, and increasing in recent years, they

have been proposed as models in a number of diverse areas (see, e.g., [FTS, W]).

The general dynamical behavior of cellular automata is quite complex; in fact,

a number of basic questions about cellular automata turn out to be formally

undecidable [CHY]. On the other hand the dynamics of cellular automata are
■
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rather severely restricted by the requirement that they commute with the shift;

these constraints are due to the ergodic properties of ¿j [HI-3].

In using cellular automata as models, one can view a point x £ X as the

assignment of one of a finite number of states—the elements of S—to each site

on the integer lattice in R. Often one of the states is thought of as being "blank"

or "quiescent," while the other states are thought of as "active." In this situation

it may be natural to assume on physical grounds that only a finite number of

sites are in active states. For definiteness suppose that S = {0, 1, 2, ... , N}

and let 0 denote the quiescent state. Thus attention can be restricted to the

physically relevant subset of I,

I0 = {x £ I|x(zz) = 0 for all but finitely many n £ Z},

and to cellular automata that preserve Xq. lo is a countable dense subset of I

that is invariant under the shift map. It is easy to see that a cellular automaton

/ on I will map Xq into itself if and only if /(z) = z, where z is the

bisequence consisting entirely of O's, z(zz) = 0 for all n . This will happen if

and only if the generating block map F satisfies F(0, 0, 0, ... , 0) = 0. For

the remainder of the paper we will consider only cellular automata that map Xç,

into itself. This does not seriously limit the range of possible dynamics, for if /

is any cellular automaton, then some iterate of / is conjugate to an automaton

that preserves Xq . The reason for this is that / must permute the constant

bisequences, so by replacing / with an appropriate iterate and relabeling the

symbols we obtain a cellular automaton that has z as a fixed point.

The purpose of this note is to examine the dynamics of restricted cellular

automata /: Xq —► Xç,. The main results will show that there are severe con-
straints on the collections of "attractors" that can occur for a map of this type.

These results parallel results obtained in [HI] for unrestricted cellular automata.

References [H2-H3] establish analogous results where the notion of attractor

is generalized using shift-invariant probability measures on I. Since Xq is

countable, any probability measure of Xq must have an atom; that is, it must

assign positive measure to some singleton. If the probability measure is also

shift invariant then the orbit of any atom under the shift must be periodic. The

only (T-periodic element of Xq is the constant bisequence z consisting entirely

of O's. Consequently we will consider only topological attractors in this note.

1. Definitions and background

We continue to assume that f:X—>X is a cellular automaton that preserves

the subset Xq . In what follows we will be using a metric d on X. Any

metric that is compatible with the product topology will suffice, for example,

dix, y) = 2~" , where zz = min{\j\\xij) # y(;')} .

A subset A of I is an attractor of / is there is a nonempty open set U

with the two properties: (i) /(clos(i7)) C U, and (ii) C]n>oPiu) = A. It

follows from (i) that f]n>of"iU) = f]„>0 f (clos(t7)), and so the compactness

of I ensures that A is compact and nonempty. If the forward orbit of a

point p enters U, then it stays in U and moves asymptotically toward A

under iteration by /. The set of all such points is the basin of A, BiA) =

U/i>o/"(c7) • We will refer to a nonempty open set U satisfying (i) as an

absorbing set; since I is compact, condition (i) is equivalent to the statement

that U is a uniform neighborhood of fVU).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ATTRACTORS IN RESTRICTED CELLULAR AUTOMATA 565

There will always be at least one attractor, namely Amax = f]n>0f"iX). Any

nonempty intersection of finitely many attractors is an attractor. An attractor

A is minimal if no proper subset is also an attractor; there may be no minimal

attractor. As an example, consider the identity map on I. Any nonempty set

U that is both open and closed is an attractor for the identity, and since I is

a Cantor set, any nonempty open and closed set has a proper subset that is also
open and closed.

The following two results can be found in [HI].

1.0. Theorem. Any cellular automaton f: X —► I is of one of three mutually
exclusive types:

(1) / has a minimal attractor. In this case the minimal attractor A is

unique, its basin B(,4) is open and dense in X, and A shift invariant:
aiA) = A.

(2) / has a pair of disjoint attractors. In this case each attractor of f con-

tains a pair of disjoint attractors.

(3) / has no minimal attractor, but the intersection of all the attractors of

f is nonempty.

1.1. Theorem. If Y c I is a finite set that is an attractor for the cellular

automaton f, then there is a point p £ Y that is fixed by f and is a minimal
attractor. Moreover, p is also fixed by the shift (i.e., p is constant as a map

from Z into the symbol set S.)

In the next section we will show that these results remain true if I is re-

placed by Xq and / by its restriction to Xq . Since Xq is not compact, it
will be necessary to generalize the definition of "attractor." The form of this

generalization is primarily motivated by the desire to preserve the connection
that exists in the compact case between the collection of attractors of / and

the chain recurrent set of /. What follows is a brief outline of this connec-

tion. A point p is chain recurrent for / if for each e > 0 there is a finite

sequence xq , xx, x2, ... , xk_x, xk with the property that ¿/(/(xy), x;+i) < e

for 0 < j <k-l and with xq = xk= p . This definition is due to Conley, who

also noted the following connection between the attractors of / and its chain

recurrent set [C].

1.2. Theorem. Suppose f is a continuous map from a compact space X to

itself.

(i) If A is an attractor and p £ B(/i) - A, then p is not chain recurrent.

(ii) If p is not chain recurrent, then there is an attractor A with p £ B(A) -

A.

The proof of this theorem can be found in [C]; [HI] contains a treatment

in the context of cellular automata. Note that the theorem implies that any

minimal attractor is contained in the chain recurrent set.
In extending these results to noncompact spaces it is necessary to make some

changes in the definitions. In particular, the "attractors" in the compact setting
will be replaced by "attractor-like sets." Examples motivating the details of the

following definitions can be found in [H4].
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Definitions, (i) A nonempty open subset U of Xq is absorbing for / if there

is a constant ô > 0 with the property that U contains the ¿-neighborhood of

/(to.
(ii) If U is absorbing then the set A = n„>ocl°s(/"(L/)) is the attractor-like

set determined by U. (It is possible that Ä is empty.) The set BiA ; U) =

Un>0/""(£/) is called the basin of A relative to U.

(iii) The extended basin of A, BiA), is the union of the sets B(^4 ; U) for

all absorbing sets U that determine A .

In a compact space these definitions reduce to the definitions of absorbing

set, attractor, and basin of attraction that were given earlier; see [H4] for details.

The form of the definitions is motivated by the desire to obtain the analogue of

Conley's theorem in noncompact spaces. The relevant result is

1.3. Theorem. Let fo: Xq —» Xq be the restriction of a cellular automaton f

to Xq . Then

(i) If A is an attractor-like set and p £ BiA) - A, then p is not chain

recurrent.

(ii) If p is not chain recurrent, then there is an attractor-like set A  with

P£BiA)-A.

Proof. In [H4] it is shown that conclusions (i) and (ii) will hold for any con-

tinuous map g of a metric space into itself, provided that g satisfies certain

mild conditions, for example, if g is either uniformly continuous or a proper

map. Since /o is the restriction of a continuous mapping of the compact set

I, fo is uniformly continuous.   D

Theorem 1.3 can be viewed as some evidence that the above definition of

attractor-like set is a dynamically natural one.

It is possible for an attractor-like set of the restricted automaton to be empty,

even though we insist that absorbing sets be nonempty. This fact will complicate

the rest of the paper, but it is a necessary complication. From the point of view

of modeling, an attractor-like set that is empty can be viewed as "runaway

growth:" the number of sites that are active (nonzero) grows without bound as

the automaton is iterated, beginning at appropriate initial points. Examples of

such automata are easy to construct.
The following observation will be used in the next section.

1.4. Remark. If Ux and U2 are absorbing sets, then so is their intersection,

provided that it is nonempty.

2. The main result

In this section we will show that the results of Theorem 1.0 carry over to

the restricted case. The main result is the following theorem; it is phrased in
terms of absorbing sets instead of attractor-like sets because the possiblity that

attractor-like sets can be empty means that the notion "minimal attractor-like

set" is not a particularly useful one.

2.0. Theorem. Suppose fo: X0 —► I0 is the restriction to Xq of a cellular au-

tomaton /:!—►!. Then fo is of one of the following three mutually exclusive
types; type j occurs here precisely when the unrestricted automaton f is of type

j in Theorem 1.0.
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(1) There is an absorbing set W* that has the following "'minimality'''' prop-

erty: if V is any absorbing set then there is an n > 0 with fiW*) c V. If
Aq is the attractor-like set determined by W*, then Aq is contained in every

attractor-like set of f, Aq is invariant under the shift, and its extended basin is

open and dense in Xq .

(2) There is a pair of disjoint absorbing sets. In this case any absorbing set

contains a pair of disjoint absorbing sets.

(3) fo is not of type I, but given any finite collection Wx, ... , Wn of absorbing

sets, their intersection is nonempty and hence by Remark 1.4 is also absorbing.

Theorem 2.0 will follow from Theorem 1.0 once we make the connection

between attractors of / and attractor-like sets of fo . Such a connection exists
because Xq is dense in I, and attractors in I are determined by absorbing

sets, which are nonempty and open. This makes it possible to set up a corre-

spondence between the absorbing sets of the unrestricted automaton and those

of its restriction to Xq . The proof begins with three simple topological lemmas.

2.1. Lemma. Suppose (7, d) is a metric space and that g: Y -* Y is contin-

uous. If G is an absorbing set for g then so is U = int(clos(C7)). Moreover G

and U determine the same attractor-like set.

Proof. Clearly G c U c clos(G). There is a ô > 0 with the property that

the distance from giy) to the complement of G is at least ô for any y £ G,

and therefore the same is true for any y £ U c clos(C7). If y £ U then

difiy) ,Y-U)> difiy) ,Y-G)>ô,so U is absorbing. The fact that U
and G determine the same attractor-like set follows from the fact that G is

dense in U, so that clos(g"(G)) = clos(^"(t7)) for each zz > 1.   G

2.2. Lemma. Let U, G be as in the last lemma. Then int(clos(C/)) = U.

Proof. We want to show that the two sets U = int(clos(C7)) and P =

int(clos(int(clos(C7)))) are the same. Working with P, if we delete the inner-

most closure operator we clearly get a subset of P ; since G is open this new

set is equal to U. Similarly if we delete the innermost interior operation in P

we get a new set that contains P, and this new set is also equal to U. Thus
P= U.   O

In describing the relation between attractors of / on I and attractor-like

sets of the restriction of / to Xq we will be taking interiors and closures of
sets Y with respect to I and to the subspace topology on Xq . We will denote

these operations as int(y ; I), clos(F ; X0), etc.

2.3. Lemma, (i) If Y c Xq then clos(F ; Xq) = I0 n clos(F ; I).
(ii) // Y is a closed subset of X, then int(F n I0 ; Xq) = I0 n int(F ; I).

Proof, (i) It is clear that the set on the right contains the set on the left. Con-

versely, there is a closed subset A' of I with the property that clos( F ; lo) =

ATnlo. In particular Y c K, so that clos(F ; I) is also contained in K. Thus

I0 n clos(F ; X)cXqCiK = clos(F ; X0).

(ii) The set on the right is open in lo and contained in Y n lo , so the set
on the right is contained in the set on the left. To get the opposite inclusion,

let O be an open set in I with the set on the left equal to X0r\O. It suffices

to show that O c Y, for then O c int(7 ; I) and I0nOcI0n int(y ; I).
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To see that O c Y note that O n lo is both dense in O and contained in Y

so that O c clos(0 ; I) C clos(F ; I) = Y.   D

2.4. Proposition. Let f: X -» I èe a cellular automaton that maps Xq into

itself and let fo denote the restriction of f to Xq.

2.4.1. If U is an absorbing set for f, then W = U C\ X0 is an absorbing
set for f0. If A, Aq are the attractor-like sets determined by U, W, then

Ao = AnXQ.
2.4.2. Suppose V = G n lo is an absorbing set for fo, where G is open in

X. Let U = int(clos(tr)). Then U is absorbing for f, and if A, A0 are the
attractor-like sets determined by U, V, then Aq = A Ci Xq . In particular, the

absorbing sets V and W = U n lo determine the same attractor-like set of fo .

2.4.3. In both 2.4.1 and 2.4.2, the extended basin of Aq, B(^0). contains
B(^)nl0.

Proof of 2.4.1. Clearly if U is absorbing relative to I then I0nc7 is absorbing

relative to lo . It remains to show that Aq = AhXq . Suppose first that p £ Aq.

Then for each n > 0, p is contained in clos(/n(W/) ; I0). Since lo c I and

W c U, we have clos(/"(W/) ; I0) C clos(/"(£7) ; I). Thus p is contained in

n„>0clos(/"(t7); I) = A . Conversely, suppose p £ ACiXq. For each n > 0

p£X0n c1os(/"(l7) ; I) = I0 n ctos(/"(*0 ; I) = clos(/"(^) ; I0),

where the first equality is due to the fact that W is dense in U and the second

follows from Lemma 2.3(i). Taking the intersection over all n > 0 shows that

P£Aq.

Proof of'2.4.2. Since I is compact, to show U is absorbing we need only verify

that /(clos(C)) c U. Begin by noting that V, U, and G all have the same
closures as subsets of I. Since V is absorbing for fo, there is a positive

constant S with the property that if x € V then any point of lo that lies

within ô of fix) must lie in V c G c U. The density of lo ensures that
if p is any point of I that is within S of /(x) then p £ clos(t7). The same

argument shows that such a p has a neighborhood that is contained in clos( U).

In short, dip, fix)) < ô implies that p £ int(clos(£7)) = U, where the final

equality follows from Lemma 2.2. To finish the proof that U is absorbing for

/, suppose y is a point of clos(t7). Since clos(i7) = clos(F), there is a point
x £ V with d(f(x), fiy)) < S, and so the preceding argument shows that

fiy) e U.

It remains to show that Aq = Xq n A . This is complicated by the fact that G
might not be absorbing. The argument goes as follows: Lemma 2.1 shows that

V and int(clos(F ; I0) ; lo) are absorbing sets for f0 that determine the same

attractor-like set, namely, Aq . On the other hand, 2.4.1 shows that W = I0n U

is also an absorbing set for fo , and that W determines I© n A. To show that
Aq = X0nA will show that the absorbing sets int(clos(F ; lo) ; lo) and I0n t7
are equal. Let Y = clos(t/ ; I) and observe

(*) clos(F ; I0) = lo n clos(F ; I) = I0 n clos(C/; X) = X0 n Y,

where the first equality follows from Lemma 2.3(i) and the second from the fact

that V is dense in U. It follows that

int(dos(K ; I0) ; lo) = int(I0 n Y ; I0).
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Since Y = clos(t7 ; I) is closed in I, we can apply Lemmas 2.3(h) and 2.2 to

obtain

int(I0 n Y ; I0) = lo n int(F ; I) = I0 n int(clos(t/ ; I) ; I) = I0 n U.

This completes the proof of 2.4.2.

Proof oj'2.4.3. The extended basin of Aq is the union of B(^4o ; A) as A ranges
over the collection of absorbing sets that determine Aq , so it is sufficient to

show that B(^o ; W) = B(^) nl0 . B(i40 ; W) is defined as U„>0 fo~niw) > and

f-"iW) = f~niW) n I0 = f~"iU n I0) n I0 . Since I0 is forward invariant
under /, this last set is the same as /~"(H7) n I0. The union of the sets

/-"([/) m0 is B(^)nl0.   d

We will refer to the following consequence of the proof of 2.4.2: for V, U

as in 2.4.2, we have

(2.5) Ve i/nI0Cclos(F;I0).

The first inclusion is obvious and the second follows from (*).

Proof of Theorem 2.0. We will show that for j = 1, 2, 3, if the unrestricted
automaton / is of type j in Theorem 1.0, then its restriction is of type j in

Theorem 2.0.
(1) Let A* be the minimal attractor of / and let U* be an absorbing set

that determines A*. Set W* = U* n lo, and denote the attractor-like set

determined by W* by Aq . Suppose V is some absorbing set for fo, and as
in 2.4.2 let U be the corresponding absorbing set for /. If A is the attractor

for f determined by U, then A* c A c U. Since I is compact and A* =

C\„>of"(u*) »there is an integer n with /"(t/*) c U. Thus

fniW*)cf"iU*)nXoc UnX0.

Combining this with (2.5) we obtain

fn+xiW*) c AUnXo) c /o(clos(K; I0)) c V,

where we use the assumption that V is absorbing for fo to obtain the last

inclusion. Since the basin of A* is open and dense in I, the extended basin

of Aq will be open and dense in lo by 2.4.3. Aq is shift invariant because

Aq is the intersection of A* and lo , both of which are shift invariant.

(2) Let Ax, A2 be a disjoint pair of attractors for /, and let Ux , U2 be
associated absorbing sets. Since I is compact, the forward orbit of any point

in the closure of U¡ tends asymptotically toward A¡,so the closures of Ux and

U2 must be disjoint. Let V¡ = Í7, n I0 be the associated absorbing sets for f0 .

Vx and V2 also have disjoint closures, so they determine disjoint attractor-like

sets. This gives the first assertion of (2). To establish the second, consider some

absorbing set V for f0. Let G, A and U be as in 2.4.2. A is an attractor

for /, so A contains a disjoint pair of attractors. Due to the compactness of

I, this means that a disjoint pair of absorbing sets can be found in any given

neighborhood of A ; in particular, they can be found in U ; call them Ux and

U2. As above, if V¡ = U¡ n lo then Vx and V2 are disjoint absorbing sets for

fo. By Remark 1.4 the sets V¡nV are absorbing if they are nonempty, so to

finish the proof of (2) it is enough to show that Vn V¡ / 0 for i = 1, 2. To
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do this, recall that G is open in I with V = GC\Xq and U = int(clos(C7)).
Thus G is open and dense in U ,so Gf\U¡ is open and nonempty. Since lo is

dense in I, we conclude that 0 ¿ G n U¡ n I0 = (Gn I0) n (£/,■ n I0) = F n Vt■.
(3) In this case / has no minimal attractor, but all the attractors of / inte-

sect. First we show that if Vx , V2 are absorbing sets for fo, then Vx n V2 / 0 .

For z = 1, 2 let G, and U¡ be the open subsets of I associated to ^ as in
2.4.2. Each U¡ is absorbing for / and so determines an attractor. These at-

tractors intersect, so the open set U = UxnU2 is nonempty. U¡ = int(clos(G,),

so G, is an open and dense subset of U¡, and thus Gi n G2 is open and dense
in U. In particular, Gx l~l G2 is nonempty; since it is open, its intersection with

lo is also nonempty. Thus Vx n V2 = Gx n G2 n lo / 0. It remains to show
that ./o is not of type (1); to do this we will show that if V is any absorbing

set for fo then there is another absorbing set W with fniV) not contained

in W for any n. Given V, let U be absorbing for / as in 2.4.2. Since the

attractor determined by U is not minimal, there is another absorbing set for

f, N, such that A does not contain /"([/) for any zz. Let W = N nX0. If

f"iV)c IF, then

fniU)c c1os(/"(l7)) = clos(/"(F)) c clos(W) c clos(A)

where the closures are taken in I, and we have used the density of V in U.

Applying / and using the assumption that A is absorbing gives the contradic-
tion fn+xiU) C A.    G

2.6. Corollary. Using the notation of Theorem 2.0, suppose fo is a type 1 cel-

lular automaton and that Aq is finite. Then either Aq is the empty set or else

Aq = {z} where z in X is the configuration that has the quiescent state at every
site: z(zz) = 0 for all n £ Z.

Proof. The theorem shows that Aq is shift-invariant; since it is also finite, each

point in Aq must be periodic under the shift. If x £ Aq is nonzero at some

site zz it will be nonzero at infinitely many sites, which contradicts the fact that

X £ Xq.     D

Corollary 2.6 can be interpreted as saying that the only finite minimal

attractor-like sets for a restricted cellular automaton correspond either to run-

away growth for almost all initial conditions or to eventual extinction for almost

all initial conditions.

3.   ZZ-DIMENSIONAL CELLULAR AUTOMATA

Strictly speaking the cellular automata described above are one-dimensional

cellular automata. For each finite zz there is a related concept of n-dimensional

cellular automata. These are defined as follows: let S continue to denote a

finite set of symbols, and let I be all maps from the integer lattice in R" to

S, X = {x : Z" -* S}. For each w in Z" there is an associated shift on

I, aw: X —> I, defined as iawx)iv) = x(zj + w). An zz-dimensional cellular

automaton is a map f: X ^ X that commutes with all of these shifts.

Theorems 1.0 and 1.2 are true for zz-dimensional cellular automata; see [HI].

The argument in §2 that derives Theorem 2.0 from Theorem 1.0 does not require

that the cellular automata being considered to one-dimensional, so Theorem 2.0

and Corollary 2.6 also hold for any finite-dimensional cellular automaton.
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