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Abstract—In an open environment such as the Internet, the decision to collaborate with a stranger (e.g., by granting access to a

resource) is often based on the characteristics (rather than the identity) of the requester, via digital credentials: Access is granted if

Alice’s credentials satisfy Bob’s access policy. The literature contains many scenarios in which it is desirable to carry out such trust

negotiations in a privacy-preserving manner, i.e., so as minimize the disclosure of credentials and/or of access policies. Elegant

solutions were proposed for achieving various degrees of privacy-preservation through minimal disclosure. In this paper, we present

protocols that protect both sensitive credentials and sensitive policies. That is, Alice gets the resource only if she satisfies the policy,

Bob does not learn anything about Alice’s credentials (not even whether Alice got access), and Alice learns neither Bob’s policy

structure nor which credentials caused her to gain access. Our protocols are efficient in terms of communication and in rounds of

interaction.

Index Terms—Electronic commerce-security, management of computing and information systems, security and protection,

authentication, access control, trust negotiation, hidden credentials, privacy.
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1 INTRODUCTION

WHEREAS, in the past, access decisions were based on the
identity of the entity requesting a resource, in open

systems such as the Internet, this approach is ineffective
when the resource owner and the requester belong to
different security domains controlled by different autho-
rities that are unknown to each other. One alternative is to
use digital credentials for satisfying access policies. Digital
credentials, the digital equivalent of paper credentials, are
digitally signed assertions about the credential owner by a
credential issuer. Each digital credential contains an
attribute (or set of attributes) about the owner. The decision
to allow or deny access to a resource is based on the
attributes in the requester’s credentials, such as age,
citizenship, employment, group membership, or credit
status. This approach is called attribute-based access control
[3], [27], [12], [22], [21].

A typical scenario for accessing a resource using digital

credentials is for the requester Alice to send her request to

Bob, who responds with the policy that governs access to

that resource. If Alice’s credentials satisfy Bob’s policy, she

sends the appropriate credentials to Bob. After Bob receives

the credentials and verifies them, he grants Alice access to

the resource. Observe that, in this scenario, Alice learns

Bob’s policy and Bob learns Alice’s credentials. Such a

strategy is straightforward and efficient; however, if the

credentials or the access control policies are sensitive, then

this strategy is unacceptable. We now give a simple

example where both the credentials and the policy are
sensitive.

Example 1. Consider an online business that grants access
to media records by sending access keys to its client’s
special media-reader software—keys that the reader uses
to “unlock” encrypted media records that are freely
downloaded in encrypted form (or are given away, in
encrypted form, on CDs that are widely distributed for
free). Certain records are treated differently from the
rest: The online business grants access to these records
only if the requester has a disability or is a senior citizen
or is terminally ill and has an income of under 30 K a
year. This requirement involves four attributes (denote
them by attr1, attr2, attr3, attr4) and the policy is
ðattr1 _ attr2 _ attr3Þ ^ attr4. In order to gain access to
the sensitive records in Bob’s database, Alice needs to
prove to Bob that she satisfies the policy. However,
neither Alice nor Bob is willing to disclose her/his
private information. Alice does not want to reveal her
credentials as her credentials contain sensitive informa-
tion about her (e.g., health, age, income, etc.). Bob does
not want to reveal the policy, even to those who satisfy
the policy, so as to make it harder for an adversary to
know which credentials he needs to forge or otherwise
illicitly gain access.

In other examples, the motivation for hiding the policy is
not security from an evil adversary, but simply the desire to
prevent legitimate users from “gaming” the system—e.g.,
changing their behavior based on their knowledge of the
policy (which can render economically motivated policies
less effective). This is particularly important for policies that
are not incentive-compatible in economic terms (i.e., they
suffer from perverse incentives in that they reward the
wrong kinds of behavior, such as free-loading). In yet other
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examples, the policy is simply a commercial secret—e.g.,
Bob has pioneered a novel way of doing business and
knowledge of the policy would compromise Bob’s strategy
and invite unwelcome imitators.

Finally, it is important to point out that a process that
protects Alice’s credentials from Bob is ultimately not only
to Alice’s advantage but also to Bob’s: Bob no longer needs
to worry about rogue insiders in his organization illicitly
leaking or selling Alice’s private information and may even
lower his liability insurance rates as a result of this. Privacy-
preservation is a win-win proposition, one that is appealing
even if Alice and Bob are honest and trustworthy entities.

1.1 Related Work

Our work is related to the area of automated trust
negotiation [4], [28], [31], [32], [33], [34], [37], [38]. The goal
of trust negotiation is to enable strangers to access sensitive
data in open environments without violating the data’s
access policy. In trust negotiation, two parties establish trust
through iterative disclosure of credentials and requests for
credentials. Most of the research in this area focuses on
protecting resources and credentials and assumes that
policies can be freely disclosed. Some work [4], [28], [37]
considers access policies to be sensitive information. Bonatti
and Samarati [4] proposed a framework for regulating
service access and information release on the Web. Their
scheme protects the revelation of policies by dividing
policies into two parts: service prerequisite rules and
service requisite rules. A requisite rule is disclosed only
after prerequisite rules are satisfied. Seamons et al.
proposed the concept of policy graphs in [28]. Instead of
using a single policy, their scheme uses policy graphs to
represent complex policies and it protects polices by
gradual disclosure of the graph nodes. Furthermore, Yu
and Winslett proposed a unified scheme (UniPro) for
resource protection [37]. The basic idea of the UniPro
scheme is to model policies as protected resources and to
protect them in the same way as other resources. Our work
offers better protection of policies; in their schemes, Alice
learns (part of) the policy if her credentials satisfy the
policy, whereas, in our protocols, Alice does not learn the
policy even if her access request is granted.

Li et al. introduced the notion of Oblivious Signature-
Based Envelope (OSBE) [20] to protect sensitive credentials.
They assume the content of a credential is nonsensitive (as
anyone can come up with it) and only the signature of the
credential needs to be protected. In OSBE, Alice sends Bob
the content of her credential or a credential that she does
not have and Bob runs an OSBE protocol with Alice,
sending an encrypted message to Alice such that Alice can
decrypt it if and only if she has the signature on the content.
The difference between their work and ours is that the
policies in OSBE have to be revealed, whereas the policies in
our protocols are protected.

Balfanz et al. proposed a construct called secret hand-
shakes [1]. In their scheme, each party receives, from a central
authority, a certificate that consists of a pseudonym and a
corresponding secret. When Alice and Bob meet, they
exchange their pseudonyms and then each of them computes
a key based on their own secret and the other party’s
pseudonym in order to achieve mutual authentication.

Compared to their scheme, our work supports more
complex policies and protects the content of the policies.

Recently, Holt et al. proposed hidden credentials [18], a
system that protects sensitive credentials and policies.
Furthermore, their system reduces the network overhead
as it needs fewer rounds of interaction compared to
traditional trust negotiation. Their system also solves the
“going first” problem in PKI-authentication systems, where
one of the two parties must be the first to reveal a certificate
to a potentially malicious stranger. Our protocols directly
build on their work. However, we believe that the
protection of policies in their system is not sufficient, for
three reasons:

1. The policy structures are revealed in their system. For
instance, if Bob’s policy is ðattr1 ^ attr2Þ _ attr3,
where attr1, attr2, and attr3 are three attributes, Alice
learns that the structure of the policy is of the form
ðx ^ yÞ _ z even if her credentials do not contain any
one of the attributes attr1, attr2, and attr3.

2. If an access request to a resource is granted, Alice
learns which attributes gave her access. For instance,
if Bob’s policy is ðattr1 ^ attr2Þ _ attr3 and Alice’s
credentials contain attr1 and attr2, Alice gets the
resource and she knows that attr1 ^ attr2 is part of
the access policy.

3. Even if Alice cannot access the resource, she might
learn some partial information about the policy. For
instance, if Bob’s policy is ðattr1 ^ attr2Þ _ ðattr3 ^
attr4Þ and Alice’s credentials contain attr1 and attr3,
Alice learns that attr1 and attr3 are part of Bob’s
policy.

Bradshaw et al. [6] extended the hidden credentials
system to support complex access policies expressed as
monotonic Boolean functions. They applied a secret split-
ting system to conceal the structure of such policies. The
extended hidden credentials system protects the structure
of Bob’s polices; however, it is still unable to solve the
problems described above in items 2 and 3, whereas, in our
protocols, if Alice’s credentials match an attribute in Bob’s
policy, she will not necessarily learn that the attribute is part
of the policy (of course, Alice will learn whether she
obtained access and some inferences can be made about the
attributes in Bob’s policy; we will discuss this in more detail
in the next section). In summary, the hidden credentials
system [18], [6] and the trust negotiation systems ([33], [31],
[38], [37], to list a few) do not achieve the privacy goal of our
work. Of course, we do so at a cost in protocol complexity;
therefore, our work should be viewed as providing another
point on the privacy-performance curve, rather than as an
unqualified improvement over the previous work.

1.2 Problem Definition

Before we formally define the hidden policies with hidden
credentials problem, we first define attributes and policies
for our problem.

An attribute is a statement about a credential holder. For
example, an attribute could be gender (male or female), job
type (student, faculty, FBI agent, etc.), state of residence
(California, Indiana, Ohio, etc.), status (secret clearance,
disabled, homeless), age (between [0-17], between [18-20],
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between [21-59], or age � 60), or annual income (between
½0� 15K�, between ½15K � 30K�, between ½30K � 60K�, or
income > 60K). Let S be the set of all possible attributes in
the hidden credentials system. The Certificate Authority
(CA) publishes S to every user.

Each credential binds a username nym and an attribute
attr. Each user in the system has a unique username nym.
nym can be either a real name or a pseudonym. We use
cred:attr to denote the attribute associated with the
credential cred. If a user has m attributes, she can get
m credentials from the CA, one for each attribute. For
instance, if Alice is a professor, she can have a professor
credential cred1, where cred1:attr ¼ professor; if her age is
3 0 , s h e h a s an a g e c r e d e n t i a l cred2, w he r e
cred2:attr ¼ age 2 ½21 . . . 59�.1

We now define the policies for our problem. Let P be a
family of policy functions. Each P 2 P is a policy function:
Given any set of credentials C, P ðCÞ 2 f0; 1g. More specifi-
cally, a policy functionP is defined by a Boolean expression p
that is relevant to n attributes fattr1; attr2; . . . ; attrng � S.
That is, P ðCÞ ¼ pðx1; x2; . . . ; xnÞ, where p : f0; 1gn ! f0; 1g
and xi ¼ 1 if 9 credj 2 C such that attri ¼ credj:attr;
otherwise, xi ¼ 0.

We now give an example to clarify the above definitions.
Let CA be Alice’s credential set; to check whether Alice
satisfies a policy P is equivalent to verifying whether
P ðCAÞ ¼ 1. For example, suppose Bob’s policy is
female ^ student, i.e., pðx1; x2Þ ¼ x1 ^ x2, and that Alice has
a female credential ðcred1:attr ¼ femaleÞ, a professor cre-
dential ðcred2:attr ¼ professorÞ, and an Indiana resident
credential ðcred3:attr ¼ IndianaÞ. Alice does not satisfy Bob’s
policy as P ðcred1; cred2; cred3Þ ¼ pðx1; x2Þ ¼ 1 ^ 0 ¼ 0. Note
that x1 ¼ 1 because Alice has a female credential and x2 ¼ 0

because Alice does not have a student credential.
The goal of our work is to provide privacy-protection for

both access control policies and credentials. The framework
for our hidden policies with hidden credentials problem is
informally described as follows: Alice has m credentials
issued by the CA. Bob has a resource M and a policy P for
controlling access to M. When Alice wants to access M from
Bob, she engages in a protocol with Bob. Alice provides the
protocol with a subset of her credentials (she may choose to
omit certain credentials), whereas Bob provides M and the
policy P . If the attributes in the credentials that Alice inputs
into the protocol satisfy P , she gets M; otherwise, she gets
nothing. We want Alice to learn as little information as
possible about Bob’s policy and Bob to learn as little
information as possible about Alice’s credentials.

We now formally state the problem. Let M be a private
message. Alice has private input CA, a subset of her
credentials. Bob has a private message M and a private
access control policy P . Alice and Bob want to compute a
function F defined as follows:

FBobðM;P Þ ¼ ?

FAliceðCAÞ ¼
M if P ðCAÞ ¼ 1;

? otherwise;

�

where FAlice represents Alice’s output, FBob represents Bob’s
output, and ? denotes an empty message. In other words,
our goal is for Bob to learn nothing from the function
evaluation, and for Alice to learn FAliceðCAÞ without
learning anything else, i.e., she learns M iff P ðCAÞ is equal
to 1 (i.e., her credentials satisfy Bob’s policy) and she learns
nothing otherwise. Observe that Alice can infer the result of
P ðCAÞ from her output.

The preceding problem can be solved using general
solutions from two-party Secure Function Evaluation (SFE)
[36], [17], [16] as follows: Alice and Bob first build a
universal circuit [30] in which policy evaluation and
credential verification are performed and then Alice and
Bob securely evaluate the circuit using the standard two-
party SFE techniques [36], [17]. However, this approach is
inefficient, as the size of the circuit is very large.

It is possible in our framework to set the policy to be an
arbitrary computable function (even nonmonotonic func-
tions); however, it is common in the literature to assume
that the policy does not require the absence of a credential.
The reason for this is the practical difficulty of verifying an
absence, e.g., if the policy is :attr, then a party, Alice, who
has attr can choose not to input the corresponding
credential (if she suspects it can cause her to be denied
access). Furthermore, if Alice knows that her credentials
will not be revealed by the protocol and that the policy is
monotonic, then she has an incentive to input all of her
credentials. It is therefore a practical consideration, rather
than an inherent limitation of our scheme (in fact, our
scheme can support nonmonotonic policies), that motivates
this assumption that the policy does not require the absence
of a credential. Sometimes the absence of a credential
(“under 21 years of age”) can be replaced by a requirement
for the presence of the opposite (“at least 21 years of age”),
but this is not always possible (e.g., consider requiring the
absence of a credential for millionaire).

Another issue that needs to be discussed is probing
attacks by either party. Our protocols prevent Alice from
probing a policy offline (i.e., requesting a resource once and
then trying several subsets of her credentials). However,
Alice can engage in the protocol with Bob multiple times
using different credential sets (all subsets of her credentials)
to gain information about Bob’s policy. Restricting adver-
saries to online attacks is a significant step forward, but
does not entirely solve the problem. Other means for
preventing online probing attacks can be taken, for
example, making sure that Alice can request a specific
resource from Bob no more than three times a week. As Bob
does not know whether Alice gained access, he cannot carry
out probing attacks.

1.3 Our Contributions

In this paper, we give efficient protocols that solve the
hidden policies with hidden credential problem. Our
protocols are built on the hidden credentials system [18]
and have two phases: In the first phase, we use homo-
morphic encryption, oblivious transfer, scrambled circuit
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evaluation, and shuffling to prevent an attacker from offline

probing; in the second phase, we use scrambled circuit

evaluation to protect the policies.
Our scheme is credential indistinguishable in that the

communication between two clients with two credential

sets of equal size is indistinguishable (at least to a

computationally bounded server) from each other. Thus,

the server will not learn which credentials a client has from

our protocols. Furthermore, our scheme is policy indistin-

guishable in that two policies that evaluate to the same value

for the client’s credential set have indistinguishable com-

munication transcripts and, thus, the client does not learn

anything about the policy other than what can be deduced

from the outcome (i.e., whether access was granted). For

efficiency reasons, we sometimes weaken this latter

requirement by requiring only indistinguishability for

policies of a certain class (this will become clear in

Section 3.2.2).
We provide three protocols, each with different perfor-

mance and levels of protection for the policy. All of these

protocols leak an upper bound on the number of credentials

that Alice is using to obtain the resource and an upper

bound on the number of attributes in the policy.2 Protocol 1

reveals to Alice a superset of the credentials in the policy.

Protocol 2 reveals the number of credentials in the policy

that Alice satisfies. Protocol 3 reveals nothing beyond the

above-mentioned upper bounds. Our protocols can support

arbitrary policies at exponential cost. However, for certain

classes of policies (e.g., monotonic Boolean expression,

threshold-based functions), our protocols require only

polynomial cost. A summary of our protocols’ performance

is listed in Table 1.
In the above table, � is a security parameter and is

typically about 1,024 or 2,048. Hence, protocols 1 and 2 are

efficient and protocol 3 is quite expensive in practice.

Compared to our scheme, the hidden credentials schemes

in [18], [6] require at least Oð�nÞ communication (depend-

ing on the policy structure). Again, we stress that our

protocols achieve better privacy at a cost in protocol

complexity.

1.4 Organization of Document

The rest of this paper is organized as follows: In Section 2,
we review the identity-based encryption schemes, the
hidden credentials system, and some building blocks that
are used in our protocols. We present our protocols in detail
in Section 3 and give the security proofs in Section 4. We
conclude in Section 5.

2 REVIEW OF CRYPTOGRAPHIC TOOLS

2.1 Review of Identity-Based Encryption

The concept of Identity-Base Encryption (IBE) was first
proposed by Shamir [29] in 1984; however, the first usable
IBE systems were discovered only recently [5], [9]. An IBE
scheme is specified by the following four algorithms:

1. Setup: A Private Key Generator (PKG) takes a
security parameter k and generates system para-
meters params and a master secret s. params is
public, whereas s is private to PKG.

2. Extract: Given any arbitrary ID 2 f0; 1g�, PKG uses
params, s, and ID to compute the corresponding
private key dID.

3. Encrypt: It takes params, ID, and plaintext M as
input and returns ciphertext C.

4. Decrypt: It takes params, dID, and ciphertext C as
input and returns the corresponding plaintext M.

An IBE scheme enables Bob to encrypt a message using
Alice’s ID as the public key and, thus, he avoids obtaining
the public key from Alice or a directory. Boneh and Franklin
proposed an IBE scheme from the Weil pairing [5] that is
secure against adaptive chosen ciphertext attacks.

2.2 Review of Hidden Credentials System

In the hidden credentials system proposed by Holt et al.
[18], there is one or more Credential Authority (CA) who
issue credentials for users in the system. We assume CAs
are trusted entities. Each user in the system is assigned a
unique nym, where nym could be either a real name or a
pseudonym. In hidden credential systems [18], [6], a
credential cred is a tuple (nym, attr, sig). The CA issues a
credential asserting that nym has attribute attr by providing
sig to the owner of nym. Note that sig is known only to the
credential holder (and the CA) and must be kept secret.
Given an IBE scheme as described in Section 2.1, the
signature sig of a hidden credential cred, for username nym
and attribute attr, is the private key corresponding to the
identity nym k attr. More specifically, assuming public
value params is conventionally agreed upon for use by all
CAs, the hidden credentials system has the following four
programs:

1. CA CreateðÞ: A CA chooses a private key sk and
computes the corresponding public key pk. The CA
keeps sk private and publishes pk. The CA may also
publish the whole list of attribute names for which
she can issue credentials.

2. CA Issueðnym; attrÞ: A CA issues a hidden creden-
tial cred for the user with username nym and
attribute attr. The signature of the credential cred
is the IBE private key corresponding to the public
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2. Note that, when Alice and Bob engage in our protocols, Alice learns
the number of attributes in Bob’s policy and Bob learns the number of
credentials that Alice inputs. Since Alice can insert some dummy
credentials and Bob can add dummy attributes into his policy before
engaging the protocols, the actual number of Alice’s credentials and actual
size of Bob’s policy are not necessarily leaked from our protocols.

TABLE 1
Summary of Communication and Number of Rounds

of Interaction of Our Protocols

In this table, � is a security parameter (e.g., � could be the ciphertext
size of IBE encryptions [5], [9] or homomorphic encryptions [11], [26],
[25]), m is the number of credentials Alice possesses, and n is the
number of attributes in Bob’s policy. The simple policies include
monotonic Boolean expressions as well as threshold-based functions.



identity nym k attr. Given a hidden credential cred,
we use cred:nym to denote the corresponding
username, cred:attr to denote the corresponding
attribute in the credential, and cred:sig to denote the
signature of the credential.

3. IðM;nym k attrÞ: This program corresponds to
the encrypt algorithm of the IBE system with
system parameters params, ID ¼ nym k attr, and
plaintext M. The output of this program is a
ciphertext C.

4. I�1ðC; credÞ: This function corresponds to the
decrypt program of the IBE system with system
parameters params , credential cred, and
ciphertext C. The output of this function is
plaintext M. These programs must satisfy the
standard consistency constraint, namely, for
any credential cred and any message M,
I�1ðIðM; cred:nym k cred:attrÞ; credÞ ¼M. When a
user computes I�1ðIðM; cred:nym k cred:attrÞ; cred0Þ
for some cred0 6¼ cred, the value obtained is compu-
tationally indistinguishable from a random value.

Hidden credentials are secure against an adaptive chosen
ciphertext attack where an attacker can obtain an unlimited
number of other arbitrary credentials [18]. Hidden creden-
tials are also unforgeable [18]. We now give a simple example
(based on [18]) of how Alice can access Bob’s resource using a
hidden credential. Suppose Bob’s resourceM can be accessed
only by a student. Alice has a student credential cred, i.e.,
cred:nym ¼ Alice and cred:attr ¼ student. To access M,
Alice sends her username Alice to Bob. Bob responds with
IðM;Alice k studentÞ. Alice uses her credential cred to
decrypt IðM;Alice k studentÞ and obtains M. Bob does
not learn whether Alice possesses a student credential from
the above interaction.

2.3 Review of Other Building Blocks

Scrambled Circuit Evaluation. There are two parties in
scrambled circuit evaluation, one is a generator of a
scrambled circuit and the other is an evaluator. Let x be
the evaluator’s input, y be the generator’s input, and f :
f0; 1g� � f0; 1g� ! f0; 1g� be a function known to both
parties. The goal of the scrambled circuit evaluation is for
the two parties to securely compute fðx; yÞ without the
generator learning x or the evaluator learning y. The
generator creates a scrambled circuit where each wire of
the circuit has two encodings (one for each possible value of
the wire) and the evaluator learns only one encoding per
wire and, thus, the intermediate results are oblivious to the
evaluator. The generator creates gate information that
allows the evaluator to obtain the encoding of a gate’s
output wire when given the encoding for each of the gate’s
input wires. Yao’s original scheme [35] was secure only in
the passive model (where the participants follow the
protocol) and, recently, there has been an implementation
of this protocol [23]. Also, Katz and Ostrovsky introduced a
scheme that is secure in the malicious model that requires
only five rounds of interaction [19]. We discuss this in more
detail in Appendix A.

Homomorphic Encryption. A cryptographic scheme is
said to be homomorphic if, for its encryption function E, the

following holds: EðxÞ � EðyÞ ¼ Eðxþ yÞ. Some homo-

morphic schemes are described in [11], [26], [25]. A

homomorphic encryption scheme is semantically secure if

EðxÞ reveals no information about x; hence, from a pair

ðEðxÞ; EðyÞÞ, it is computationally infeasible to distinguish

between the case x 6¼ y and x ¼ y.
Symmetric Key Encryption. We use Enc to denote the

encryption algorithm of a symmetric key encryption

scheme (such as AES [10]) and Dec to denote the

corresponding decryption algorithm.
Oblivious Transfer. We use chosen 1-out-of-2 Oblivious

Transfer (OT) [13], [16] as a basic building block in our

protocols. A 1-out-of-2 OT protocol involves a sender and a

chooser. A sender has two private messages, hm0;m1i, and a

chooser has a bit, b 2 f0; 1g. At the end of the protocol, the

chooser obtains mb without learning anything else, while

the sender learns nothing about b. More formally, 1-out-of-2

OT is defined as OT2
1ððm0;m1Þ; bÞ ¼ ð?;mbÞ. Efficient 1-out-

of-2 OT protocols have been proposed by Bellare and Micali

[2] and Naor and Pinkas [24].
Set Intersection. Freedman et al. [14] introduced an

elegant scheme for computing the intersection of two

k element sets with only OðkÞ communication and

Oðk ln ln kÞ modular exponentiations. In this paper, we use

a simple modification of their result. We define a primitive

SetIntðx; S;EAÞ, where Bob provides an element x and

Alice provides a set S with n elements and a semantically

secure homomorphic encryption system EA. The output of

the protocol is that Bob learns EAðyÞ where y is 0 if and only

if x 2 S and is otherwise a random value. This primitive can

be easily defined from the protocols in [14], requires a single

message from Alice to Bob with Oð� k S kÞ communication

(where � is the size of the security parameter), and is secure

against a malicious Alice.

3 OUR PROTOCOLS

There are two primary phases in our protocols: 1) a

credential hiding phase and 2) a blinded policy evaluation

phase. During the credential hiding phase, Alice and Bob

engage in a protocol that in some way (to be specified later)

hides which credentials Bob’s policy requires. During the

blinded policy evaluation, if Alice satisfies Bob’s policy,

then she learns the requested message and, otherwise, she

learns nothing. We now describe each phase in more detail:

. Credential Hiding Phase: Suppose Bob’s policy con-
tains n attributes attr1; . . . ; attrn. At the end of this
phase, Alice has a set of values ‘1; . . . ; ‘n (i.e., one for
each attribute), where ‘i 2 fri½0�; ri½1�g and ri½0�; ri½1�
are random values generated by Bob. These values
will either be encryption keys or seeds for a
pseudorandom generator that can produce such
keys. Furthermore, the value of ‘i is subject to the
following constraints:

1. ‘i ¼ ri½1� only if Alice has a credential cred such
that cred:attr ¼ attri (i.e., if Alice does not
possess attribute attri, she cannot learn the
value ri½1�). Otherwise, Alice gets ri½0�.
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2. A computationally bounded Alice learns noth-
ing about the value fri½0�; ri½1�g � f‘ig. In other
words, Alice learns one and only one value from
the set fri½0�; ri½1�g.

. Blinded Policy Evaluation Phase: Given the ‘values from
the previous phase, Alice and Bob engage in a protocol
that allows Alice to learn message M if she satisfies
Bob’s policy. His policy is represented by a Boolean
function p : f0; 1gn ! f0; 1g (i.e., it maps n values,
which correspond to which attributes Alice has, to a
binary value that corresponds to whether Alice
satisfies Bob’s policy). To formalize the definition of
this phase, suppose that, after the previous phase,
Alice’s values are r1½x1�; r2½x2�; . . . ; rn½xn�, where
xi 2 f0; 1g, then Alice will receive M if and only if
pðx1; x2; . . . ; xnÞ ¼ 1.

3.1 Credential Hiding Phase

In this section, we introduce three protocols for the

credential hiding phase; we describe the input and output

for this phase below:
Input. Bob has a policy P relative to set of attributes

attr1; . . . ; attrn and, for each attribute attri, Bob has two

random values, ri½0� and ri½1�. Alice has a set of credentials

cred1; . . . ; credm.
Output. Alice learns a value ‘i for each attribute attri,

where ‘i ¼ ri½1� if and only if there exists a credj, 1 � j � m,

in her credential set such that credj:attr ¼ attri, and ‘i is

ri½0� otherwise. Recall that a crucial element of this protocol

is that Alice learns exactly one value for each attribute.
There is an inherent security/communication complexity

trade-off for these protocols. We denote the number of

attributes in Bob’s policy by n, the number of credentials

Alice possesses by m, and a security parameter by �. Note

that Alice can input some dummy credentials to disguise

her actual number of credentials and, analogously, Bob can

add dummy attributes to hide the size of the actual policy.

The protocols can be summarized as follows:

1. Protocol 1 (Section 3.1.1): In this protocol, it is
assumed that Bob is willing to reveal to Alice a
superset of the attributes in his policy (he chooses
this superset and can make it large enough to
achieve a “hiding in a crowd” effect that suits him).
While this is not acceptable for all applications, there
are many cases where Alice could guess with high
probability the set of attributes in Bob’s policy before
the protocol and, in such cases, this protocol may be
acceptable to Bob. Example 2 gives a scenario where
Bob is willing to reveal a superset of attributes in his
policy. The communication complexity of this pro-
tocol is Oð�nÞ and it requires three rounds of
interaction.

2. Protocol 2 (Section 3.1.2): Unlike Protocol 1, this
protocol does not assume that Bob is willing to
reveal a superset of the attributes in his policy. In
this protocol, Bob learns the value m and Alice
learns: a) the value n and b) the number of attributes
in Bob’s policy that she satisfies (she does not know
which of her credentials are responsible for this).

This protocol requires Oð�mnÞ communication and
five rounds of interaction.

3. Protocol 3 (Section 3.1.3): This protocol is similar to
Protocol 2, but Alice does not even learn how many
attributes she satisfies in Bob’s policy. This protocol
requires Oð�2mnÞ communication and five rounds of
interaction.

Example 2. An online auto insurance company gives a
special promotion to those who are married and have
good credit history. The policy for this special promotion
is married ^ good credit. The insurance company may
publish a superset of attributes that the policies may
contain such as age, gender, marital status, credit history,
number of accidents in the last three years, state of
residence, etc. The actual promotion policy contains only
a small subset of the published attributes. The auto
insurance company may treat the superset of the
attributes as nonsensitive information, but treat the
attributes used in the policy as well as the policy
structure as private information. The insurance company
does not want its competitors to know the content of the
policy as it is a commercial secret.

3.1.1 Protocol CHP 1

This protocol assumes that Bob is willing to reveal to Alice a

superset of the attributes in his policy. This is the most

efficient of the credential hiding phase protocols.
Protocol.

1. For each attribute attri: Bob generates a random
key ki as well as information Ci that reveals to
Alice what credential she needs to satisfy attri. Bob
then generates an encryption �i ¼ Iðki; nym k attriÞ.
He sends the following information to Alice:
ð�1; C1Þ; . . . ; ð�n; CnÞ.

2. For each ordered pair ð�j; CjÞ, Alice generates a
value bj which is 1 if she possesses a credential credp
that satisfies Cj and is 0 otherwise. If bj ¼ 1, she
computes kj, which is I�1ð�j; credpÞ.

3. For each attribute attri, Alice and Bob engage in a
chosen 1-out-of-2 OT protocol where Bob’s input is
the list fri½0�; Encðri½1�; kiÞg and Alice’s input is bi.

4. If bi is 1, then Alice decrypts Encðri½1�; kiÞwith ki (she
computed this in Step 2) and sets the result as her
output and, otherwise, she sets her output to be ri½0�.

Complexity Analysis. For each attribute, the protocol
requires a single encryption to be sent between Alice and
Bob as well as the descriptions Ci (which we assume are of
size Oð1Þ) and a single chosen 1-out-of-2 OT. Thus, the
communication complexity is Oð�nÞ. The OT can be
bootstrapped with the first step and, thus, this protocol
requires only three rounds of interaction.

Intuition. The intuition of this protocol is that Alice will

learn ki iff she has attri. This is because this value is

encrypted with IBE using attri as the key. Furthermore,

without ki, the value Encðri½1�; kiÞ reveals nothing (in a

computational sense). Thus, Alice will learn ri½1� iff she has

attri. Now, due to the nature of the OT, Alice will learn at

most one of the values ri½0� or Encðri½1�; kiÞ.
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3.1.2 Protocol CHP 2

In this protocol, Bob does not reveal to Alice a superset of
the attributes in his policy, but Alice learns how many, but
not which, attributes she satisfies in Bob’s policy. Clearly, if
Bob pads his list with superfluous credentials, as in
Protocol 1, this reveals less information to Alice.

Protocol.

1. For each attribute attri, Bob generates two random
keys, ki½0� and ki½1�, and a public marker q, where q
could be specified beforehand and is of length �, the
length of the security parameter. He also computes
�i ¼ Iðki½0�; nym k attriÞ. He then sends to Alice
�1; . . . ; �n along with q.

2. Alice generates a semantically secure homomorphic
encryption systemEA. Then, for each value �i and for
each of her credentials credj, she creates a value
�i;j ¼ I�1ð�i; credjÞ. Alice and Bob then engage in
protocol SetIntðki½0�; f�i;1; . . . ; �i;mg; EAÞ, where Bob
learns the value EAð�iÞ (note that �i is 0 if Alice has a
credential for attri and is random if she does not). Bob
computes �i ¼ EAð�iÞ � EAðki½1�Þ ¼ EAð�i þ ki½1�Þ; he
then forms ordered pairs ð�i; Encðq; ki½1�ÞÞ. Bob
randomly permutes these pairs and sends them to
Alice.

3. For each value ð�j; Encðq; kj½1�ÞÞ, Alice computes �j ¼
DAð�jÞ and then computes DecðEncððq; kj½1�ÞÞ; �jÞ. If
this value is q, then she stores �j (which is kj½1�) and
sets bj to 1 and, otherwise, she sets bj to 0.

4. For each attribute attri (note that these are per-
muted), Alice and Bob engage in a chosen 1-out-of-2
OT protocol where Bob’s input is the list
fri½0�; Encðri½1�; ki½1�Þg and Alice’s input is bi. Note:
These values are permuted by Bob above, but Alice
does not need to know which value corresponds to
which initial attribute.

5. If bi is 1, then Alice decrypts Encðri½1�; ki½1�Þ with
ki½1� (she computed this in Step 3) and sets the result
as her output; otherwise, she sets her output to be
ri½0�.

Complexity Analysis. It is clear that, for each attribute,
OðmÞ encryption/decryption operations are required (in the
form of homomorphic/identity-based encryptions and
decryptions). Thus, there are OðmnÞ such operations and
the system requires Oð�mnÞ communication. Furthermore,
the OT in Step 5 can be started in Step 3 and, thus, this
protocol requires five rounds of interaction.

Intuition. The set of values f�i;1; . . . ; �i;mg will contain
ki½0� iff Alice has attri. This is due to the IBE encryption of
ki½0�. In the set intersection protocol, Bob will learn EAð0Þ if
Alice has attri and he will learn EAðr1Þ for some random
value r1 otherwise. Since EA is semantically secure, Bob will
not learn which value he has received. However, the value
�i will be EAðki½1�Þ iff Alice has attri; otherwise, it will be
EAðr2Þ for some random value r2. Thus, Alice will learn ki½1�
iff she has attri. In Step 3 of the protocol, Alice will learn if a
specific value is a correct key, but, since the values were
permuted by Bob earlier, she does not learn which
credential this corresponds to. The rest of the intuition is
identical to the previous protocol except that ki½1� now plays
the role of ki.

3.1.3 Protocol CHP 3

This protocol protects which attributes are in Bob’s policy
more than the previous protocols in that Alice does not
learn how many credentials she has that match with the
attributes in Bob’s policy. As stated earlier, this protocol
requires more communication and computation than the
previous protocols. It also uses Scrambled Circuit Evalua-
tion extensively (see Appendix A).

Protocol.

1. For each attribute attri, Bob generates two keys, ki½0�
and ki½1�. He also computes �i ¼ Iðki½0�; nym k attriÞ.
He then sends to Alice �1; . . . ; �n.

2. Alice generates a semantically secure homomorphic
encryption systemEA. Then, for each value �i and for
each of her credentials credj, she creates a value
�i;j ¼ I�1ð�i; credjÞ. Alice and Bob then engage in
protocol SetIntðki½0�; f�i;1; . . . ; �i;mg; EAÞ, where Bob
learns the value EAð�iÞ (note that �i is 0 if Alice has a
credential for attri and is random if she does not). Bob
c o m p u t e s �i ¼ EAð�iÞ � EAðki½1�Þ ¼ EAð�i þ ki½1�Þ.
Bob sends �1; . . . ; �n values to Alice.

3. For each value �j, Alice computes �j ¼ DAð�jÞ. Alice
and Bob engage in a Scrambled Circuit Evaluation,
with Bob as the generator and Alice as the evaluator.
The circuit that Bob creates is a circuit for an equality
test (which requires OðkÞ gates for k-bit values).
Bob’s input into the circuit is kj½1� and Alice’s input
is �j. If the values match, then Alice learns rj½1� and,
otherwise, she learns rj½0�.

Complexity Analysis. There are n circuits in the above
protocol, each of which compares m values with � bits each.
Thus, there will be Oð�mnÞ encryption operations and
Oð�2mnÞ communication. This can be reduced slightly by
using a one-way function on the values in Step 4 before
engaging in the circuit. The protocol requires five rounds of
interaction.

Intuition. The � values are identical to the previous
protocol. However, in this protocol, Alice and Bob will use
SCE (where Alice is the evaluator) to reveal the outcome.
Now, a property of SCE is that the evaluator will learn at
most one encoding per wire and the evaluator does not
learn which encoding (i.e., 0 or 1) that it received. Thus,
Alice will learn either ri½0� or r1½1� but not both and she will
not know which of them she has received. Furthermore,
since Bob constructs the circuit, she will learn r1½1� iff her
value �i is equal to Bob’s value ki½1�. Therefore, she will
learn ri½1� iff she has attri.

3.2 Blinded Policy Evaluation Phase

In this section, we outline two protocols for blinded policy
evaluation. The first protocol requires Oð2nÞ communication
for a policy with n attributes and the second requires a
communication polynomial in n. However, the first proto-
col is for arbitrary functions and the second protocol is for a
special class of functions that are useful in expressing
policies. We formally define the input and output for this
phase below. In the input and output description, we use
pðx1; . . . ; xnÞ to denote a policy. Recall that, given a policy P
on a set of credentials C, P ðCÞ ¼ pðx1; . . . ; xnÞ, where xi ¼ 1
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if there is a credential in C that matches with credi in
policy P and xi ¼ 0 otherwise.

Input. Bob has a policy p : f0; 1gn ! f0; 1g, several pairs
of values fr1½0�; r1½1�g; . . . ; frn½0�; rn½1�g, and a message M.
Alice has n values ‘1; . . . ; ‘n, where ‘i 2 fri½0�; ri½1�g.

Output. Alice learns M if and only if pð‘1 ¼?
r1½1�; . . . ; ‘n ¼? rn½1�Þ ¼ 1 and learns nothing otherwise.

3.2.1 Arbitrary Policies

Recall that, after the previous phase, Alice has a set of values
‘1; . . . ; ‘n, where each of these is one of two keys3 that Bob
generated, i.e., ‘i is either ri½0� if Alice does not possess
attribute attri and is ri½1� if Alice does possess attribute attri.

Protocol.

1. For each binary string � ¼ x1x2 . . .xn 2 f0; 1gn, Bob
generates a value �x1x2...xn along with a public
marker, q, where q is of length �, the length of the
security parameter. There are two cases for such a
value:

. pðx1; . . . ; xnÞ ¼ 1:

�x1x2...xn ¼ Enc q k k;
Mn
i¼1

ðri½xi�Þ
 !

:

. pðx1; . . . ; xnÞ ¼ 0: �x1x2...xn is chosen to be a
random value indistinguishable from an en-
cryption with Enc.

Bob randomly permutes the � values and sends
them to Alice, along with q, and EncðM;kÞ.

2. Alice computes k0 ¼
Ln

i¼1 ‘i and then computes
Decð�; k0Þ for each � value. If she finds q, then she
uses this value to obtain M.

Complexity Analysis. Note that the communication
complexity of the above scheme is Oð2n�Þ and, thus, is
intractable for large policies. However, any computable
policy function can be supported with such a scheme and
this is impossible with polynomial computation.4 In the
following section, we look at a class of policies that can be
computed with polynomial communication.

Intuition. The above is secure since Alice only knows
one value for each of the attributes. Assuming a strong
encryption system, Alice cannot deduce information about
other keys given the encrypted messages.

3.2.2 Oblivious Circuit Policies

Typically, with Scrambled Circuit Evaluation (see Appen-
dix A) during the construction of a scrambled circuit, the
gates are constructed for some publicly defined
function f ; when the computation must be verified (i.e.,
in the presence of malicious adversaries), it is required
that the generator of the circuit prove to the evaluator
that the circuit is well-formed (i.e., that it computes f).

However, there are cases where it is useful not to have the

function publicly defined, especially when the function is

private (as is the case with the application in this

exposition). In this case, the construction can easily be

modified to use oblivious gates, where the evaluator does not

know the function that each gate computes.
Protocol.

1. Bob constructs a circuit C that computes his policy
(several “useful circuits” are described below) that
uses the ri values as the input encodings and that
has an output wire with two encodings: k and some
other random value. He sends the encodings of the
circuit’s gates to Alice (note that she already has
input encodings) along with EncðM;kÞ.

2. Alice evaluates the circuit and then tries to decrypt
the message with the value she computes for the
output wire of the circuit.

We now give several examples of such oblivious circuits:

1. A binary tree of oblivious gates could be used to
compute several common types of policies, includ-
ing: conjunction (does Alice have all of the attri-
butes?), disjunction (does Alice have at least one of
the attributes?), conjunction/disjunction of a subset
(does Alice have all (one of) of a subset of the
attributes), and other policies. Note that the size of
this circuit is Oð�nÞ.

2. An addition circuit followed by a comparison circuit
would allow for computation of a threshold based
function (i.e., “does Alice have at least four of the
credentials”). This could easily be modified to
support policies that require a threshold number of
attributes for a subset of the attributes. Note that the
size of the circuit is Oð�nÞ.

3. By having one instance of each of the above,
combined with a single oblivious gate, it is possible
to have policies that are combinations of: conjunc-
tion, disjunction, and threshold-based. Note that the
circuit size is still Oð�nÞ.

4. More complex policies can be represented by
combining several of the above-defined oblivious
circuits together and then connecting them with
other circuits. Of course, when this is done, the
structure of the policy is revealed slightly (as the
topography of the circuit is revealed). However, the
structure is at a high level and the individual pieces
of the policy are hidden (thus, the evaluator does not
learn things like whether the binary tree being used
is for conjunction/disjunction, the thresholds that
values are being compared to, and which attributes
are being used).

5. Another option is to use a universal circuit, as
described by Valiant [30]. Recall that a universal
circuit for a specific size s and depth d is a circuit
that can be used to evaluate any circuit with these
dimensions. Furthermore, there is such a universal
circuit of size Oðds log sÞ and depth Oðd log sÞ. Thus,
when such a universal circuit is used, it could
represent any circuit of a certain size and depth.
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3. We treat the values from the credential hiding phase as cryptographic
keys; however, they could be seeds to a pseudorandom generator that is
used to generate these keys.

4. As the function can be arbitrary, it could be any problem (including
those not in P , such as the reachability problem for vector addition
systems). Clearly, supporting any computable function requires super-
polynomial computation.



Clearly, a large class of useful policies can be used with
this technique and, while arbitrary functions cannot be
computed, the communication requirements are polyno-
mial in the number of attributes in Bob’s policy.

3.3 Protocol Summary

In summary, there are two primary phases in our protocols:
1) a credential hiding phase and 2) a blinded policy
evaluation phase. For the credential hiding phase, we gave
three protocols that have a constant number of rounds and
respective communication complexities: Oð�nÞ, Oð�mnÞ,
and Oð�2mnÞ. Furthermore, we gave two protocols for
computing the blinded policy evaluation phase: 1) for
arbitrary policies (using exponential communication) and
2) a limited, but useful, class of policies that can be
computed with polynomial communication. In the next
section, we discuss the security of our protocols in more
detail.

4 SECURITY PROOFS

We begin by defining our security model (Section 4.1) and
then prove that our system is secure in that model.

4.1 Security Definitions

In this section, we discuss our security model, which is that
of [7], [16]. At a high level, a protocol securely implements a
function f if the information that can be learned by
engaging in the protocol could be learned in an ideal
implementation of the protocol where the functionality was
provided by a trusted oracle. For more details, we refer the
reader to [7], [16]. Throughout this paper, we assume that
the adversary is a probabilistic polynomial-time algorithm,
hence, the security of our problem is defined in a
“computationally infeasible” sense. Having protocols that
leak nothing other than what can be computed by the input
and output alone are enough in Bob’s case, but there are
further restrictions on Alice. We must also show that Alice
gets the message iff she satisfies Bob’s policy.

Composition Theorem. While it is not always true that
two secure protocols can be composed to create another
secure protocol, the work in [7] gave conditions where
composition is valid. If a protocol �0 securely implements g
by making calls to trusted oracles (i.e., a trusted third party)
for functions f1; . . . ; fn, then the protocol � that replaces the
calls to the oracles by secure implementations of f1; . . . ; fn
will securely implement g. This composition theorem allows
us to prove that many complex protocols are secure. There
are composition theorems for semi-honest adversaries,
malicious adversaries, and adaptive adversaries.

Concurrent Execution. There has been a large amount of
work on developing protocols that are secure even if they
are run in parallel with many other protocols, where the
participants can be different in each protocol. While it has
been shown that this is impossible for two-party computa-
tion, it was shown by [8] that, in the Common Reference
String Model (i.e., where each party has a string common to
all) that this is achievable. Of course, this model is
unrealistic in many environments since the parties would
have to agree on such a string beforehand and, so, no new
parties could be added. Our protocols do not address such

concerns, but it may be possible to extend our protocols

with these techniques.

4.2 Assumptions/Security of Building Blocks

In this section, we introduce our assumptions about the

security of various building blocks.

1. Strong Chooser OT. We assume the existence of an
OT scheme where the chooser receives information
about at most one value.

2. Strong Sender OT. We assume the existence of an
OT scheme where the sender receives no (in a
computational sense) information about which value
the chooser picked.

3. Strong Evaluator SCE. We assume that Yao’s
Scrambled Circuit Evaluation has the following
property: Assuming that the generator is honest,
then a malicious evaluator will learn at most one
encoding per wire for the circuit. This result assumes
the Strong Chooser OT property.

4. Secure Set Intersection. We assume there exists a set
intersection protocol SetIntðxB; SA;EAÞ, where Bob
inputs a value xB and Alice inputs a set SA and a
semantically secure homomorphic encryption
scheme EA. In this protocol, Bob will learn a value
EAð�Þ, where � will be 0 iff Alice’s set SA contains xB
and, otherwis,e � will be a value that is uniformly
distributed over the base of the homomorphic
scheme that Alice has no information about. It is
worth pointing out that such a protocol easily
follows from [14].

4.3 Proof of Credential Hiding Phase

We first prove that the protocols correctly implement input

and output requirements given for the credential hiding

phase (Section 3.1).

Theorem 1. For each attribute, Alice can learn at most one value

ri½0� or ri½1�.
Proof. For protocols CHP 1 and CHP 2, the only time that

these values are used is in the last step of the protocol

(i.e., the oblivious transfer). By the Strong Chooser OT

property, the chooser (i.e., Alice) learns information

about at most one value. This theorem holds for protocol

CHP 3 because of the Strong Evaluator SCE property

because this property implies that the evaluator (i.e.,

Alice) learns at most one encoding for the output wire of

the circuit, which is the only place in the protocol where

the values in question are used. tu
Theorem 2. For each attribute attri, Alice can learn ri½1� iff she

has attri.

Proof. We first prove this theorem for protocol CHP 1.

Suppose Alice can obtain ri½1� with nonnegligible prob-

ability. Bob only uses ri½1� in the value Encðri½1�; kiÞ and,

so, Alice must be able to learn ki with nonnegligible

probability. However, the only other place where ki is

used is in Iðki; nym k attriÞ and, since Alice can learn ki
with nonnegligible probability, she must be able to invert

Iðki; nym k attriÞ with nonnegligible probability. Thus,

this implies that she must have the private key
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corresponding to nym k attri, which implies that she has
attri.

We now prove this theorem for protocol CHP 2. Again
suppose Alice can obtain ri½1� with nonnegligible
probability. As it does not affect the correctness of the
proof, we ignore the permutation in Step 2 of the
protocol. Bob uses ri½1� only in the value Encðri½1�; ki½1�Þ
and, so, Alice must be able to learn ki½1� with
nonnegligible probability. However, for Alice to learn
any information about ki½1�, the value �i must be 0 (if it is
a randomly chosen value, then �i reveals no information
about ki½1�). Thus, by the Secure Set Intersection property,
Alice must be able to have a set of values �i;1; . . . ; �i;m
that contains ki½0�with nonnegligible probability, but this
implies that Alice knows ki½0� with nonnegligible
probability. The rest of the proof is identical to end of
the last case.

Finally, we prove this theorem for protocol CHP 3.
Since Bob generated the circuit in Step 3 of the protocol,
Alice will only obtain ri½1� iff her value �i is equal to ki½1�.
And, thus, if Alice can learn ri½1� with nonnegligible
probability, then she can learn ki½1� with nonnegligible
probability. The rest of the proof is identical to the end of
the last case. tu

We now prove that a malicious Alice or malicious Bob
does not learn additional information about the other
party’s private input from each of the CHP protocols.

Theorem 3. In protocol CHP 1, Alice learns only a superset of
the attributes in Bob’s policy and Bob learns no information
about which credentials Alice possesses.

Proof. The second part of the theorem is trivial since Bob’s
only communication from Alice is from the OT protocol,
which reveals no information to Bob by the Strong Sender
OT property. The first part is almost as trivial because
the only information about Bob’s policy used in this
protocol is a superset of the attributes in his policy, but
this is exactly the information that Alice learns. tu

Theorem 4. In protocol CHP 2, Alice learns how many attributes
that she has in Bob’s policy and Bob learns only the number of
credentials that Alice uses.

Proof. In Step 1, Bob sends to Alice Iðki½0�; nym k attriÞ for
each attribute in his policy. Since ki½0� is a randomly
chosen value, a correct decryption is indistinguishable
from an incorrect decryption (assuming that decryption
in IBE with the wrong key is a pseudorandom function).
Thus, this first step reveals no information to Alice about
which credentials are in Bob’s policy. After Step 2, Bob
sends to Alice in a permuted order a set of ordered pairs
of the form ð�j; Encðq; kj½1�ÞÞ, where �j ¼ EAðkj½1�Þ iff
Alice has this attribute. From this information, Alice
clearly learns when she has an attribute in Bob’s policy,
but the permuted order prevents her from learning
which of her attributes is responsible for this. Finally,
Alice sees the interaction from the OT protocol, but, since
Bob’s policy does not affect his input into this protocol,
this reveals no information about his policy.

We now show the second part of the theorem. Bob’s
only communication from Alice is the set intersection

protocol and the OT protocol. The first part of this is a set
of values encrypted with a semantically secure homo-
morphic encryption scheme (which reveals no informa-
tion to Bob by definition of semantic security) and the
second set of values reveals nothing by the Strong Sender
OT property. tu

Theorem 5. In protocol CHP 3, Alice learns how many attributes
are in Bob’s policy and Bob learns only the number of
credentials that Alice uses.

Proof. This proof is very similar to that of the last case; we
only highlight the differences. The set of values �1; . . . ; �n
is given to Alice. By the Secure Set Intersection property,
these values will either be EAðki½1�Þ or EAðri þ ki½1�Þ,
where ri is a uniformly chosen value. However, since
ki½1� is a uniformly chosen value, these cases are
indistinguishable. Her only other interaction is from
being the evaluator in SCE, but, by the Secure Evaluator
SCE property, she will learn at most one encoding for the
output wire and, since the encodings are both randomly
chosen values, she will not learn when she has an
attribute.

We now show the second part of the theorem. The
difference between this protocol and the last protocol is
that Bob sees the communication from the Scrambled
Circuit Evaluation, but this is just several OT protocols
which reveal no information to him about Alice’s
values. tu

4.4 Proof of Blinded Policy Evaluation

As both implementations are just SCE with the first protocol
having a single n-ary gate and the second protocol revealing
a topology of a circuit but hiding the values, all that needs
to be shown is that Alice learns the message only when she
has a set of values that correspond to satisfying the policy.
As long as Alice knows only one value per input wire, then
she cannot learn anything other than at most one value for
the output wire. Since Bob generates the circuits to match
his policy, the correctness is guaranteed. It is worth pointing
out that, in the second case, the notion of policy
indishtinguishability being used is that two policies are
indistinguishable if and only if they can be represented by
the circuit topology that is being used and they evaluate to
the same value on the client’s input.

4.5 Proof of Composition

We now show that the protocol is secure according to the
definition presented in Problem 1.

Theorem 6. Given trusted oracles CHP and BPE, where CHP
provides the Credential Hiding Phase functionality and BPE
provides the Blinded Policy Evaluation functionality, the
protocol is secure (in as strong of a model as the weakest of
CHP and BPE).

Proof. The CHP oracle requires that Bob input n triples into
the system ðattri; ri½0�; ri½1�Þ, that Alice learns one of
Bob’s ri values per tuple, and that she learns the ri½1�
only if she has a credential satisfying attri. Now, BPE
requires that Bob inputs pairs of the form ðri½0�; ri½1�Þ and
a policy P , that Alice inputs a single value from the pair
ri½xi�, and that she gets M iff she P ðx1; . . . ; xmÞ ¼ 1. In
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order to make multiple distinct probes at BPE, she must
be able to learn two values from the same attribute pair,
which is not possible since the CHP oracle allows Alice
to learn at most one value (the values can be chosen to be
from a large enough space do as to make guessing
computationally infeasible). Also, she obtains the mes-
sage only when she has a set of attributes that matches
the policy. Up to this point, we have been informal and
have not discussed the effect of the information leaked
by our protocols (e.g., an upper bound on the number of
attributes in the policy). As this is a fairly simple
extension of the above proof, we do not give all of the
details here, but this information does not give the
adversary an advantage in breaking the above system.tu

5 CONCLUSION

We gave efficient protocols for Alice to access a resource
from Bob such that Alice does not learn Bob’s policy and
Bob does not learn Alice’s credentials. The only information
Alice learns is whether she got access. Our protocols
support different types of policies, from simple to arbi-
trarily complex. For many simple policies, our protocols
require polynomial communication. However, for arbitrary
policies, our protocols require communication exponential
in the size of the policy.

APPENDIX A

SCRAMBLED CIRCUIT EVALUATION

We review an efficient scheme for secure two-party circuit
simulation in constant rounds (as in [35], for more details
about this work and extensions of this work, see the
excellent survey [15]). In this protocol, one party is a
generator of a scrambled circuit and the other party is an
evaluator. The generator creates a scrambled circuit where
each wire of the circuit has two encodings (one for each
possible value of the wire) and the gates contain informa-
tion that allows an evaluator to obtain the encoding of the
output wire when given the encoding for the gate’s input
wires. This is a private circuit evaluation because the
evaluator learns only one encoding per wire. We now
describe in more detail a protocol for Scrambled Circuit
Evaluation.

Circuit Generation. For each wire in the circuit
w1; . . . ; wn, the generator creates random encodings for the
wires (in this case, the encodings are a key for a trapdoor
function or are a random seed that can be used by a
pseudorandom number generator to generate such a key).
We denote the encodings of 0 and 1 for wire wi by wi½0� and
wi½1�, respectively. To create a 2-ary gate for a function f

with input wires wi and wj and with output wire wk, the
gate consists of four messages (where m is a publicly
defined marker, used to recognize when an item has been
successfully decrypted):

1. EncðEncðm k wk½fð0; 0Þ�; wj½0�Þ; wi½0�Þ,
2. EncðEncðm k wk½fð0; 1Þ�; wj½1�Þ; wi½0�Þ,
3. EncðEncðm k wk½fð1; 0Þ�; wj½0�Þ; wi½1�Þ, and
4. EncðEncðm k wk½fð1; 1Þ�; wj½1�Þ; wi½1�Þ.

Note that the scrambled gate consists of the above messages
in a randomly permuted order. Clearly, a scrambled circuit

with fan-in 2 can be represented in size proportional to the

size of the original circuit. It is a natural extension of this to
create an n-ary gate with m outputs which can be encoded

with size 2nm and, while this has an exponential blowup in
gate size, there are situations where this is useful.

Learning Input Wires. In order to evaluate a circuit, the

evaluator must know the values of the input wires. For

input wires corresponding to the generator’s inputs, the
generator simply sends the evaluator the encoding of each

of his inputs. For input wires corresponding to the
evaluator’s inputs, the two parties engage in a 1-out-of-2

Oblivious Transfer(OT), where the two “messages” are the

generator’s encodings of 1 and 0 and the evaluator gets the
encoding corresponding to his input for that wire.

Evaluating the Circuit. To evaluate a gate, the evaluator

decrypts each message in the gate with the keys that it has
for the input wires. Only one of these decrypted messages

will contain the marker m (the others will look random)

and, thus, the evaluator will learn exactly one encoding for
the output wire (he will know it is the correct value for that

wire, but, of course, he cannot tell whether it corresponds to
a 0 or a 1).

Learning the Result. If the goal is to have the evaluator

simply learn the result, then it is enough for the generator to

tell the evaluator both encodings of the output wire.
With passive adversaries, it is enough for the trapdoor

function used for gate construction to be a strong encryp-

tion function (such as AES [10], which we assume to be a
strong encryption function). In [19], this was extended to

the malicious model and, so, our protocols are secure in a

malicious-adversary sense. However, we now argue that
Yao’s passive construction is sufficient for our application.

Essentially, the evaluator (Alice in our protocols) has no
advantage in being malicious as long as the OT is secure.

However, the generator can make the circuit for anything

that matches the topology, but this is not a concern because
the generator will never see the result of the circuit

computation and, thus, this just gives more expressive
power to the policy holder.
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