
Attribute-Based Architecture Styles 

Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, Mario Barbacci, and 

Howard Lipson 
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213 

{mk, rkazman, ljb, sjc, mrb, hjlj@sei.cmu.edu 

Key words: Architecture, architecture styles, quality attributes 

Abstract: Architectural styles have enjoyed widespread popularity in the past 

few years, and for good reason: they represent the distilled wisdom of 

many experienced architects and guide less experienced architects in 

designing their architectures. However, architectural styles employ 

qualitative reasoning to motivate when and under what conditions they 

should be used. In this paper we present the concept of an ABAS 
(Attribute-Based Architectural Style) which includes a set of 

components and connectors along with their topology, but which adds 

to this a quality attribute specific model that provides a method of 

reasoning about the behavior of component types that interact in the 

defined pattern. We will define ABASs in this paper, show how they 

are used, and argue for why this extension to the notion of architectural 

style is an important step toward creating a true engineering discipline 

of architectural design. 

1. INTRODUCTION 

An architectural style (as defined by Shaw and Garlan (Shaw and Garlan, 

1996) and elaborated on by others (Buschmann, et al., 1996)) includes a de

scription of component types and their topology, a description of the pattern 

of data and control interaction among the components and an informal 

description of the benefits and drawbacks of using that style. Architectural 

styles are important since they differentiate classes of designs by offering 

experiential evidence of how each class has been used along with qualitative 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture

© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35


226 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

reasoning to explain why each class has certain properties."Use the pipe and 

filter style when reuse is desired and performance is not a top priority" is an 

example of the type of description that is a portion of the definition of the 

pipe and filter style. The purpose of this paper is to move the notion of 

architectural styles toward having the reasoning (whether qualitative or 

quantitative) based on quality attribute-specific models. We call these 

enhanced architectural styles, Attribute-Based Architecture Styles (ABASs) 

and we view them as the next generation in the development of architectural 

styles. 

We define an ABAS as a triple 

1. the topology of component types and a description of the pattern of data 

and control interaction among the components (as in the standard 

definition), 

2. a quality attribute specific model that provides a method of reasoning 

about the behavior of component types that interact in the defined 

pattern, and 

3. the reasoning that results from applying the attribute specific model to 

the interacting component types. 

Thus, to further use the pipe-and-filter example, a pipe-and-filter 

performance ABAS would be one that has a description of what it means to 

be a pipe or a filter and how they would legally be connected, a queuing 

model of the pipe-and-filter topology together with rules to instantiate the 

model, and the results of solving the resulting queuing model under varying 

sets of assumptions. 

Software architecture styles are useful during both design and analysis. 

Styles are useful during design because the software architect can choose a 

style based on an understanding of the desired quality goals of the system 

under construction. The goal of those cataloguing architectural styles 

(Buschmann, et al., 1996) is to provide a handbook that the software 

architect can use as a reference to have design options with known qualities 

from which to choose. 

In this paper, we make two points. The first (rather obvious) point is that 

architectural styles are also useful in analysis. When analyzing a system, the 

recognition of the use of pipe and filter, for example, leads to questions 

about how performance is handled and about the assumptions that the filters 

make that might impact their reuse. The second point (somewhat less 

obvious) is that when considering architectural styles as analysis tools, 

focussing on particular quality attributes (McCall, 1994) leads to the ability 

to attach known analytic models for these attributes to the architecture being 

analyzed. This in tum leads to the ability to predict the effect of particular 

architectural decisions and changes to the architecture. Thus, instead of the 

designer having vague guidance about a particular style's effect on 



Attribute-Based Architecture Styles 227 

performance, the designer is given a model, its analysis, and its explicit 

connection to aspects of the architectural style so that the designer can 

answer questions such as "What is the effect on performance of moving a 

particular piece of functionality from one component to another within a 

pipe and file based architectural design?" 

In the remainder of this paper, we discuss the roots of the ABAS concept, 

the pieces of an ABAS, the types of attribute models that exist and how they 

would be used in constructing an ABAS, an extended pedagogical example, 

and an example drawn from our experience using ABASs in architectural 

analysis that shows how ABASs work in practice. 

2. MOTIVATIONS 

The motivation for ABASs comes from three different sources: 

l. architectural styles, such as those catalogued by Shaw and Garlan in 

(Shaw and Garlan, 1996) and by Buschmann et al in (Buschmann, et al., 

1996) 

2. analytic models of quality attributes, such as rate monotonic analysis for 

performance (Klein, et al., 1993) or Markov models for availability 

3. architecture evaluation questionnaires, such as those used by AT&T 

(Maranzano, 1993) 

ABASs are a kind of architectural style, and hence they build squarely 

upon the foundational work of Shaw and Garlan, as well as the similar work 

of the design patterns community (Gamma, et al., 1994). However, in each 

of these cases, the kinds of reasoning that the architectural styles support is 

heuristic. For example, in describing the layered style, Shaw and Garlan 

write "if a system can logically be structured in layers, considerations of per

formance may require closer coupling between logically high-level functions 

and their lower-level implementations". While this is important information 

for the designer who is considering using this style, it does not give the 

designer a principled way of understanding when a specific number and 

organization of layers will cause a performance problem. The answer to this 

dilemma lies in our second influence, analytic models of quality attributes. 

Mature analytic models exist for several quality attributes that are of 

central concern to complex software systems, such as performance, 

reliability and, to a lesser extent, security. These models not only provide a 

way to establish a more precise understanding of, for example, 

"considerations of performance", but also can allow the analyst to associate 

particular measurable performance criteria with architectural choices. This 

gives the designer a way to rigorously experiment with, and plan for, 

architectural quality requirements. 



228 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

However, analytic models are typically quite general and it requires a 

substantial amount of training to be able to use them effectively. Frequently, 

when we perform architectural evaluations, we need to be able to assess a 

design's effectiveness and risk within a 2 or 3 day period. This leads to the 

our third motivation. A proven technique for aiding in risk assessments of 

architectures, first used widely by AT&T' s software architecture validation 

exercises (Maranzano, 1993), is a questionnaire or checklist. A proven set of 

questions can help organize the line of reasoning and investigation into an 

architecture, and can provide a first insight into problem areas. These 

questions can be a first approximation for an analysis, and can lead the 

analyst in probing the architecture. 

3. MODELING ARCHITECTURAL DECISIONS 

USING AN ABAS 

One of the reasons for focusing attention on an architecture is to highlight 

and analyze critical early design decisions. Translating these decisions into 

some modelling framework that supports predictive reasoning at the 

architecture level is key for attaining the potential benefits of focusing on the 

architecture. The structure of an ABAS reflects this goal of mapping an 

architecture style onto an attribute-modelling framework. This notion is 

represented by Figure 1. 

Architectural decisions 

* Attribute Model Parameters 

Architectural properties I 
Stimuli t 

Actual behaviors Quality Attribute Models 

l 
Predicted behaviors 

? 

? 
Desired behaviors ======== 

Figure 1. Mapping architectural models to attribute models 

The left side of the figure says that architectural decisions directly and/or 

indirectly affect the behavior ultimately manifested by the architecture. That 

is obvious, but what is less clear is how to characterize those behaviors and 

to understand how they compare with the desired behaviors. For example, 

allocating functionality to a collection of processes (a subset of the 



Attribute-Based Architecture Styles 229 

architectural decisions that a designer will make) that are in tum allocated to 

processors (more architectural decisions) result in a set of process execution 

times (that is, architectural properties). Architectural properties in 

conjunction with stimuli such as message arrival rates ultimately lead to the 

performance behavior that will be exhibited. The actual behavior of the 

system is unknowable without constructing the system and so we use models 

of the behavior as a method of characterizing the actual behaviors. 

We can, of course, "hope" that the actual behavior will satisfy the desired 

behavior, but there is no way to know unless some type of model is used. 

The architecture abstraction needs to be mapped to some other abstraction 

that is more supportive of reasoning. For example, if the goal is to reason 

about reliability, the salient features of the architecture (such as redundancy) 

need to be mapped onto reliability models (such as Markov models). At this 

point the behaviors predicted by the models can be compared with the 

desired behaviors. Such reasoning can become the basis for comparing 

architectures and for making decisions regarding the form of the final 

software architecture. 

3.1 The Structure of an ABAS 

We define an ABAS to have five parts: 

1. Problem description - describes the design problem that the ABAS is 

intended to solve, including the quality attribute of interest, the context of 

use, constraints, and relevant attribute-specific requirements. 

2. Quality attribute measures - a condensation of what was discussed in 

the problem description, but in specific terms pertinent to the measurable 

aspects of the quality attribute model. This includes a discussion of 

stimuli: events that cause the architecture to respond or change. 

3. Architectural style - a description of the architectural style in terms of 

component, connections, properties of the components and connections, 

and patterns of data and control interactions. 

4. Quality attribute parameters - a condensation of what was discussed in 

the architectural style section but in specific terms relevant to the 

parameters of the quality attribute model. 

5. Analysis - a description of how the quality attribute models are formally 

related to the elements of the architectural style and the conclusions 

about architectural behavior that are drawn via the models. 

Note that these parts rely on a description of the architectural style and on 

a description of a quality attribute. Describing quality attributes is discussed 

in the next section. 



230 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

4. QUALITY ATTRIBUTE MODELS PARAMETERS 

To assess an architecture for adherence to quality requirements, those 

requirements need to be expressed in terms that are measurable or at least 

observable. We call these the quality attribute measures. These parameters 

depend on properties of the architecture, called quality attribute parameters, 

and on the stimuli. The quality attribute parameters are the adjustable 

parameters of the architecture that determine whether the dependent 

parameters will satisfy the quality requirements. Stimuli are the events to 

which the architecture will have to respond. 

Consider performance: performance is concerned with timeliness, usually 

measured as either latency or throughput. Therefore two quality attribute 

measures are: 

- Latency - time from the occurrence of an event until the response to that 

event is complete; expressed in units of time. 

- Throughput - the rate at which the system can respond to events; 

expressed in terms of transactions (or responses) per unit time. 

The stimuli are changes of state to which the architecture must respond. 

For performance the arrival pattern of an event is important. It can be one of: 

- Periodic - there is a fixed interval between event arrivals. 

- Sporadic - there is a bound on how short the interval between arrivals 

can be. 

- Stochastic- arrivals can be described probabilistically. 

When a stimulus occurs, the system responds to it by using its resources 

to carry out computations or transmit data. Multiple concurrent stimulus 

responses require an arbitration or scheduling policy to resolve conflicting 

requests. Thus we think of performance-related architectural parameters in 

terms of the resources that are needed, the policies for allocating resources, 

and properties of how the resources are requested and used. Therefore 

quality attribute parameters include: 

- Resource characteristics - include the type of resource such as CPU or 

network and characteristics such as processor speed or network 

bandwidth. 

- Resource scheduling policy - includes CPU scheduling, CPU allocation, 

and bus and network arbitration; and queuing policies. 

- Resource usage - includes the priority of processes and messages, 

preemptability of response and magnitude of use such as execution time. 

ABASs map a characterization of architectural properties onto quality 

attribute parameters, and then map (via modelling) quality attribute 

parameters and stimuli onto predicted behaviors. Models such as those for 

scheduling and queuing provide the basis for relating quality attribute 

parameters (such as queuing policies and execution time estimates) to 



Attribute-Based Architecture Styles 231 

quality attribute measures (such as latency and throughput). Some 

parameters such as execution time might not be easily quantifiable at the 

architecture level. In this case execution time budgets can be assigned, which 

then become derived requirements for fleshing out the details of the 

component. This is further illustrated in the next section in which we discuss 

a sample ABAS for reliability. 

For other attributes such as reusability or modifiability, where there are 

no universal quality attribute measures, scenarios can used to provide 

context dependent measures. (Kazman, et al., 1996) 

5. ABASs 

We will illustrate the notion of an ABAS by an example. We are 

currently collecting, documenting, and testing many such examples in the 

hope of creating an engineering handbook of ABASs. The example given 

here uses a form of redundancy known as analytic redundancy as a means of 

achieving high levels of availability. First, we will lay out a portion of the 

relevant attribute model1• 

5.1 Reliability/ Availability Attribute Model 

Reliability is usually measured in terms of mean time to failure (MTTF). 

Availability is usually measured in terms of the long-run fraction of time that 

a system is working. Component failures (and faults)2, and repair (or 

recovery) are the stimuli of concern. Architecture parameters include fault 

detection and fault containment and recovery strategies. An attribute model 

for reliability/availability looks as follows3: 

Quality attribute measures 

- Steady state availability - fraction of time that the system is working 

(that is, not in a failed state) 

- Reliability- usually measured in terms of mean time to failure 

- Faults detectable- passive failures (detectable via time-out 

mechanisms), active failures , timing failures, semantic failures 

1 An attribute model does not have to be developed for every ABAS. Only one attribute model 

is needed per attribute and it is then applied to all ABASs for which that specific attribute 

is relevant. 
2In this paper we do not distinguish between failures and faults. 
3This is not meant to be a complete attribute model, but rather one that focuses attention on 

architectural decisions. 



232 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

Stimuli •• characterized in terms of the types of failures and repairs and 

their rates. 

Quality attribute parameters 

- Detection- mechanisms for detection of failures such as voting, post

condition checking, and deadline detection 

- Recovery - mechanisms for recovering from failure including forward 

and backward recovery mechanism 

- Modes - A system can operate in various degraded modes and the 

availability/reliability of each mode of operation have to be calculated 

separately. 

5.2 Simplex ABAS 

We will now describe the documentation that accompanies an ABAS by 

means of an example of a particular ABAS, called Simplex. 

5.2.1 Problem Description 

The purpose of this section is to describe the architectural design 

problem being addressed or in other words the goals of the architecture. 4 

The Simplex (Sha, et al.) ABAS focuses on the problem of software 

reliability in control systems. In particular, Simplex addresses the problem of 

tolerating software faults introduced as a consequence of upgrading control 

algorithms. Simplex also addresses the problem how to take advantage of 

redundancy to increase reliability while avoiding "common mode" software 

failures. 

To illustrate the problem consider, "the update paradox", as described in 

(Sha, eta!., 1996). Consider the case in which a component is replicated to 

ensure its reliability. Each replica performs its calculations and sends its 

results to a voter. If the results do not agree (to within a specified tolerance), 

the voter "votes for the majority". 

Let's say that a key algorithm is updated which will yield a different 

output value than the older algorithm. Here's the paradox: if the new 

algorithm is placed in a minority of the replicated components then it will be 

voted out and have no effect; if it's placed into a majority of the replicated 

components and is faulty, the bad output will used. 

There are two problems highlighted by the upgrade paradox. First of all, 

even components that have been implemented by different groups and hence 

have different implementations can suffer from common mode failures . 

Hence the first problem is, how to introduce redundancy to ensure the proper 

"7he text in italics in this section is commentary for the reader, and is not part of the ABAS. 



Attribute-Based Architecture Styles 233 

level of reliability/availability without introducing common mode failures? 

The second problem is, how do you upgrade a system without compromising 

its reliability/availability? 

5.2.2 Quality Attribute measures and Stimuli 

Based on the desired architectural behavior, the stimuli of the 

reliability/availability attribute model, and the problem description there are 

set of specific issues that should be highlighted. These issues are raised in 

this section. A checklist of such issues would include those that follow. 

The availability/reliability issues of concern for this ABAS are: 

- What types of faults need to be tolerated by the architecture 

- What the levels of (degraded) service are 

- What the reliability/availability is for each level of service 

Types of faults: the goal of this architecture is to handle timing faults 

(e.g., timing overruns), semantic faults (wrong output values) and system 

faults (such as memory overruns due to bad pointers). 

Reliability of service levels: There is a specified desired level of 

availability for the upgraded or higher performance level of service and 

specified level of reliability for the baseline level of service. 

5.2.3 Architectural Style 

This section starts by identifying the relationship between this ABAS and 

other similar ABASs. In this case the Simplex ABAS is an instance of a more 

general pattern. 

Simplex is an architectural style which belongs to a general family of 

reliability styles that could be called redundancy styles. The general pattern 

for a redundancy style is shown in Figure 2 below. The pattern, from a 

reliability point of view, consists of multiple redundant components. Data 

flows into one or more redundant components, which then send their output 

to another component (or possibly components) responsible for detecting 

failures, switching to a working component and possibly initiating recovery 

of the failed component. 

The Simplex style, as shown in Figure 3, is an instance of the redundancy 

style in which the redundant components are processes. The components 

don't necessarily receive the same input or generate the same output. 

Moreover, the components are not all peers. The components are 

analytically redundant, meaning they are redundant with respect to the 



234 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

general effect their output has in controlling their environment, but not 

necessarily redundant in the algorithms used or the output produced. 5 

input 

(oetector) 

(Switcher) ___. output 

Figure 2: A redundancy-specific architectural style 

--•• output 

y Safety/ 

Figure 3: The Simplex architectural style 

The "leader" component, the other redundant components (Rl and R2) 

and the "safety" component are analytically redundant. The "leader" is 

typically the upgraded version of a critical component. All components 

execute concurrently. The leader's output is used if it passes the acceptance 

test applied by the decision and switch unit. The acceptance test is based on 

a model of the controlled environment and the ability of the safety 

5You can think of the relationship between power steering and mechanical steering as analytic 

redundant. Both mechanisms have the same effect on the environment, that is, they change 

the direction of the wheels, but the mechanisms used, the output produced, and their 

performance are all different. 



Attribute-Based Architecture Styles 235 

component to recover from actions of the other components. If the leader 

doesn't pass this test a new leader is picked (either Rl or R2). The "safety" 

component is a simple, highly reliable analytically redundant component that 

is used as a last resort. The safety might be used to affect a recovery to the 

point where one of the other (more able) components can once again take 

over. Note that the decision and switch component receives a copy of the 

input and uses it as a basis for performing its acceptance test. 

The Simplex style assumes that mechanisms exist to bound the execution 

time of the components, thereby preventing timing overruns. Another 

(related) style would address performance issues. The Simplex style also 

assumes that the concurrent units are processes with address space protection 

thereby preventing the propagation of system faults such as memory 

overruns. 

5.2.4 Quality attribute parameters 

Based on the architecture parameters of the reliability/availability 

attribute model and on the pattern of interactions, there are set of specific 

issues that should be raised to refine the pattern. 

The quality attribute parameters of concern for this ABAS are: 

- Analytic redundancy (possibly different input; different implementation; 

possibly different output) is the form of redundancy 

- A leadership based "voting" mechanism is used. 

- Estimates are needed for failure rates and repair rates of the various 

components. We assume that the failure rates for the decision unit and 

the safety component are very low in comparison to the failures rates of 

the other components. 

5.2.5 Analysis 

This section ties together the preceding sections. It discusses how to use 

the architectural decisions and properties and the stimuli to model the 

architectural behavior. 

To model the availability of this style you have to make estimates of the 

failure rates and repair rates of the components to calculate the availability 

of the system. Reliability growth models can be used for obtaining estimates. 

In addition, it can be very illustrative to compare one architecture style to 

another simply by making assumptions about the various failure and repair 

rates. This is the approach we will use. 

The first step in this section is to map the architectural decisions and 

properties into a quantitative or qualitative model that helps you to predict 

the architectural behavior. 



236 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

Modelling a Simpler Problem 

Before discussing the analysis of the Simplex style we'll first take a look 

at a similar style, the majority voting style.6 This is the style that we used in 

the problem description to illustrate the update paradox. For this style there 

are three redundant components7• At least 2 or the 3 components must 

produce results that agree, otherwise the system has failed. When the system 

is working (in this case controlling some aspect of its environment, for 

example, the trajectory of a missile or the temperature and pressure of a 

chemical process) it is performing at a constant level of service. The system 

can be in one of three states: 3 working components, 2 working components, 

or failed. If F failures per year occur and a component repair takes on the 

average 1/R years then the Markov model shown in Figure 4 can be used to 

calculate the availability (that is, the proportion of time that the system is not 

in the failed state). 

Figure 4: A Markov model for majority voting 

The representation of a Markov model in Figure 4 can be viewed as a 

state diagram. State "3" represents the state in which 3 components are 

working, state "2" represents the state in which 2 components are working 

and the grey state is the failed state. The transition arrows are labelled with 

failure (F) and repair (R) rates. Since each component fails independently 

with an average rate of F, 3 components fail with an average fail rate of 3F 

and hence the label for the transition from state "3" to state "2". 

The steady state solution of the Markov model yields the long-term 

proportion of time that the system is in each state. Therefore the availability 

of the majority voting case is the proportion of time in which the system is in 

state "3" or state "2", and hence not in the failure state. 

More information about Markov models can be found in standard texts 

on probability. Our goal is to illustrate the mapping from architectural 

parameters to a predictive model and to show how the model provides the 

motivation for the characterization of the ABAS. In this case the predictive 

6 The majority voting style would probably have its own entry in a handbook of ABASs and 

be referenced in the Simplex ABAS. 
7This is known as Trimodular redundancy (TMR). However, majority voting is not restricted 

to 3 components. 



Attribute-Based Architecture Styles 237 

model is a mathematical model. In other ABASs qualitative reasoning 

techniques might also be used. For this case we use the model to gain an 

understanding of how the availability varies as a function of the assumed 

failure and repair rates, not to get absolute availability estimates. The trends 

of the majority voting style will then be compared with Simplex style. 

Modeling Simplex 

The Simplex style achieves relatively high levels of availability of the 

high performance (e.g., a very precise algorithm) variant by using a highly 

reliable but lower performing (e.g., a less accurate algorithm) variant to 

recover from faults. To illustrate the concept consider a system with two 

redundant controllers (R 1 and R2), a safety controller, and a monitoring and 

decision unit. The Simplex style preserves the total number of active 

components, but allocates functions to components differently depending on 

their states, and hence the components have different failure properties. The 

Markov model for this style is shown in Figure 5. 

Figure 5: Markov model for Simplex 

The system starts in state "2" with two high performance controllers, the 

outputs of which are compared. If they agree we assume that they're correct 

(that is, we assume no common mode failure, but rather random failures). If 

they disagree, one is picked. If the right one is picked the model transitions 

from state "2" to state "1 ". If the wrong one is picked the model transitions 

from state "2" to state "Kl ", where Kl stands for the a state in which the 

safety component becomes active. Since one of the high performance 

controllers continues to work, the transition from "K1" to "1" is relatively 

quick and thus has a quick repair (QR) rate. We assume that QR=n*R, for 

some n greater than 1. If a failure occurs while in state "1", the system also 

transitions to the safety controller, but in this case the repair rate is that of a 

"normal" repair (i.e. a software or hardware fix). 

The final objective is to gain insight into the architecture by using the 

model as a basis of reasoning. 



238 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

A key to the availability properties of this style is the relatively quick 

repair rate (QR) from state "K1" to state "1". To see this imagine that QR is 

so quick that virtually no time is spent in state "K1". In this case the model 

in Figure 5 closely approximates the model in Figure 6, below. The 

availability properties of the model shown in Figure 6 are better than for 

majority voting (shown in Figure 4) due to the higher transition rates for ma

jority voting. The higher transition rates for majority voting are a 

consequence of needing a majority of the redundant components to agree in 

order to detect a failure, whereas this style uses a semantic check of the 

output for failure detection. 

14-:--0 
Figure 6: An approximate Markov model for Simplex 

6. USING ABASs 

We have applied ABASs on a real-world system during an enactment of 

the Architecture Tradeoff Analysis Method (ATAM) (Kazman, et al., 1998). 

During the course of the architectural analysis, ABASs relevant to several 

properties (availability, performance, and modifiability) were applied to aid 

in the understanding of the system and the consideration of design 

alternatives. 

The system being evaluated-which we will call LAOB (Leader And 

One Backup) here8-comprises a collection of independently operating 

nodes (computers), communicating via a radio network, with a single node 

acting as leader. The leader has the responsibility to plan the activities of the 

other nodes. To perform this planning, it must accumulate and maintain data 

concerning the states of the other nodes. 

Because the availability of the system is critical, we used a reliability 

ABAS to map the quality attribute parameters (i.e. the architectural 

decisions, such as the mechanisms for detection and recovery) and the pre

dicted stimuli (e.g. failure of a node) onto the quality attribute measures (i.e. 

the predicted behavior) of the system via a reliability model. The resulting 

analysis was used to understand how well the system will meet its 

Bne actual name, developing organization, and details of this application are proprietary, but 

their suppression does not affect the analysis. 



Attribute-Based Architecture Styles 239 

availability goals and to inform decisions for refining the architecture. In 

particular, by looking at the system via ABASs, we were able to detennine 

that its reliability had not been adequately addressed in either requirements 

or implementation. 

Quality Attribute Measures: Based on the reliability/availability 

attribute model presented in Section 5.1, the quality attribute measure of 

interest for this ABAS is its steady-state availability. 

Stimuli: The stimuli of interest for this ABAS are hardware or software 

failures of the nodes. 

Structure: The structure of the ABAS is shown in Figure 7. 

Communication takes place exclusively between the leader and the other 

nodes (i.e. the nodes do not communicate with each other). If the leader fails, 

a node pre-designated as a backup must reconfigure to take on the planning 

responsibilities of the leader and must acquire any additional data it needs to 

begin perfonning the leadership responsibilities. Also, another node must be 

identified to act as the new backup. 

/ 
8 

• • • 

\ 
E) 

Figure 7: The ABAS-relevant structure of the LAOB system 

Quality Attribute Parameters: The quality attribute parameters of 

interest in this style are: 

- The mechanism used for detecting the failure of the leader: In the LAOB 

system, the lack of communication between the backup and the leader 

signals that the leader has failed. 



240 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

- The mechanism for recovering system operation: When the leader fails, a 

designated backup takes over. The backup must acquire whatever data it 

requires to begin acting as leader and reconfigure itself. 

- The failure and repair rates for the leader and the other nodes: The failure 

rates for the leader and the other nodes may be different as the leader has 

different responsibilities and is executing different software. The repair 

rates will need to include the time required for a node to take over as 

leader and the time required for a node to take over as backup. When we 

speak of repair, we are referring to the repair of the system, returning it to 

a functioning state from a non-functioning one. Individual nodes that 

have failed do not get repaired during the execution of the system. 

Analysis: From our generic reliability ABAS we know that we can 

model this system using a Markov model. Figure 8 shows the Markov model 

for a three node system (it is easily generalized to more nodes). Each state in 

the model is labelled with a triple: (number of leaders active/number of 

backups active/total number of nodes active). F1 is the failure rate of a leader, 

Fb is the failure rate for the backup node, F0 is the failure rate for another 

node, R1 is the repair rate for the leader (i.e. the reciprocal of the time taken 

to transform a backup into the leader) and Rb is the repair rate for a backup 

(i.e . the reciprocal of the time taken to transform another node into a 

backup). The model makes the assumption that the transformation of the 

backup into leader and the transformation of another node into backup are 

sequential. 

The steady-state availability can now be computed as the probability of 

the system being in a state in which a leader is active (four of the eight 

states). Based on expected failure and repair rates, the model can be used to 

understand how well the system will meet its availability goal. 

Figure 8: A Markov model for a reliability ABAS 



Attribute-Based Architecture Styles 241 

Reasoning about the system in the context of the reliability ABAS led us 

to a consideration of other architectural alternatives for the LAOB system. 

The primary alternative considered was the use of multiple backups to tum 

the LAOB into a LAMB (Leader And Many Backups), where each of the 

backups would maintain the state necessary to quickly take over upon failure 

of the leader. 

This alternative will result in better availability due to a reduced repair 

time, but at a cost of higher utilization of the radio network. Since the radio 

network had a relatively low bandwidth, this was not a trivial consideration: 

keeping additional backups informed of the state of the leader meant 

additional transmissions and retransmissions. The performance issues for the 

LAOB/LAMB system alternatives were considered using a separate ABAS, 

one for communicating processes, and the confluence of these two ABASs 

identified an architectural tradeoff, since higher levels of availability meant 

higher utilization of the network. 

The purpose of this example is not to present the design decisions made 

for this system, or even the details of the analysis, for they are not the point 

of this paper. The point is that a consideration of ABASs led us to ask 

questions of the system: reliability ABASs made us ask questions about 

failures and recovery of components and their effects on the predicted level 

of system availability; performance ABASs made us ask questions about 

resource characteristics and resource utilization and their effects on the 

predicted level of system response times. Using these models, we could play 

with different architectural alternatives, constantly gauging the performance 

of these alternatives against the system's requirements. For example, we 

could explore versions of the LAMB system with varying numbers of 

backups and with different strategies for keeping them synchronized with the 

leader. Strategies include: 

1. The backups could be passive recipients of updates, not worrying about 

any missed information until they are called upon to become the leader. 

In this case they would not be guaranteed of being true functional 

replicas of the leader. 

2. They could be active recipients, requesting re-sends of any missed 

packets (they could identify missed packets via noting holes in the packet 

number sequence, for example). In this case they will be functional 

replicas of the leader most of the time, but at the cost of additional 

communication with the leader. 

3. A single backup could be an active recipient and all other backups could 

be passive recipients. When the primary backup was called upon to 

become the leader, it would designate a new primary backup and 

negotiate with it to provide it with any missed packets, at the cost of 

additional communication at switchover time. 



242 Mark H. Klein, Rick Kazman, Len Bass, Jeromy Carriere, et al. 

The various strategies each have different availability and performance 

implications-<lifferent bandwidth requirements, different time to repair, 

different probabilities of failure-and these can be modelled analytically 

before committing to one strategy for prototyping or implementation. 

Perhaps more importantly, these analyses can be used to find architectural 

tradeoff points-critical areas of the design with respect to some qualities of 

interest-and these can become the focus of additional analysis or 

prototyping as a means of mitigating the risk of building a large, complex 

software-intensive system. 

7. CONCLUSIONS 

An ABAS is an extension of the notion of an architectural style. To make 

architectural styles more rigorous, we associate analytic models of quality 

attributes with them, in much the same way that Allen and Garlan associate 

formal semantics with architectural elements to better describe the 

correctness of a design (Allen and Garlan, 1994). So, an ABAS has 

associated with it a set of analytic models (such as performance or reliability 

models) that allow a designer to predict its behavior with respect to some 

desired quality attributes . ABASs provide to the designer a pre-analyzed 

structural framework, an analysis, and a mapping between the structure and 

the analysis. 

Associated with the mapping from architectural style to analytic model 

are two related processes: 

1. from a design perspective, there are a set of decisions that accompany 

turning a style into an implementable design. For example, when 

decomposing a system's functionality into a set of processes, there is an 

allocation of functionality to each process, and an allocation of processes 

to processors. For a performance style we might also make decisions such 

as choosing the priorities of the processes. 

2. from an analysis perspective, there are a set of questions that accompany 

an architectural style that aid in understanding the style. These questions 

will ask about the allocation, for example, of processes to processors, their 

communication mechanisms, the speeds of their connections. 

If these questions relate to designs that are repeated over and over again 

within an organization, then they are often organized into checklists 

(Maranzano) that are employed during architectural reviews. The answers to 

the questions form the input to the attribute models. This is the key linkage 

that comprises the reasoning behind an ABAS: architectural parameters-the 

things that you can change when you do architectural design-are explicitly 

related to parameters in an analytic model. In solving the model, we are then 



Attribute-Based Architecture Styles 243 

modeling the expected behavior of the architecture. The results of this model 

solving can then be compare back to the expected behavior. 

We envision, and are actively working on, a handbook with many 

ABASs that can be looked to for pre-packaged design and/or analysis 

wisdom. This is the start of an attempt to make architectural design more of 

an engineering discipline; one where design decisions are made upon the 

basis of known properties and well-understood analyses, rather than the 

currently popular practice of "patch-and-pray". 

REFERENCES 

R. Allen, D. Garlan, "Formalizing Architectural Connection", Proceedings of /CSE /6, 

(Sorrento, Italy), May 1994, 71-80. 

L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley, 1998. 

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software 

Architecture, Wiley, 1996. 

E. Gamma, R. Helm, R. Johnson, J. V1issides, Design Pattems-Microarchitectures for 

Reusable Object-Oriented Software, Addison-Wesley, 1994. 

R. Kazman, G. Abowd, L. Bass, P. Clements, Scenario-Based Analysis of Software 

Architectures, IEEE Software, November 1996. 

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, 'The Architecture 

Tradeoff Analysis Method", Proceedings of ICECCS '98, (Monterey, CA), August 1998, to 

appear. 

M. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonzales Harbour, A Practitioner's Handbook 

for Real-Time Analysis, Kluwer Academic, 1993. 

J. Maranzano, Best Current Practices: Software Architecture Validation, AT&T, 1993. 

J. McCall, "Quality Factors", Encyclopedia of Software Engineering (Marciniak, J., ed.). Vol. 

2. Wiley, 1994,958-969. 

L. Sha, R. Rajkumar, M. Gagliardi, "A Software Architecture for Dependable and Evolvable 

Industrial Computing Systems", CMU/SEI-95-TR-005, Pittsburgh, PA: Software 

Engineering Institute, 1996. 

M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, 

Prentice-Hall, 1996. 


	Attribute-Based Architecture Styles
	1. INTRODUCTION
	2. MOTIVATIONS
	3. MODELING ARCHITECTURAL DECISIONSUSING AN ABAS
	3.1 The Structure of an ABAS

	4. QUALITY ATTRIBUTE MODELS PARAMETERS
	5. ABASs
	5.1 Reliability/ Availability Attribute Model
	5.2 Simplex ABAS

	6. USING ABASs
	7. CONCLUSIONS
	REFERENCES


