
Attribute-Based Content Distribution with Hidden
Policy

Shucheng Yu†, Kui Ren�, and Wenjing Lou†

†Department of ECE, Worcester Polytechnic Institute, MA 01609
{yscheng, wjlou}@wpi.edu

�Department of ECE, Illinois Institute of Technology, IL 60616
kren@ece.iit.edu

Abstract—Access control in content distribution networks
(CDNs) is a long-standing problem and has attracted extensive
research. Traditional centralized access control approaches, such
as reference monitor based approach, do not suit for CDNs as
such networks are of large scale and geographically distributed
in nature. Current CDNs usually resort to cryptographic-based
distributed approaches for better fulfilling the goal of access con-
trol. Hence, it is highly critical to design and adapt appropriate
cryptographic primitives for such purpose. In this paper, we
propose a novel distributed access control approach for CDNs by
exploiting a new cryptographic primitive called Ciphertext Policy
Attributed-Based Encryption (CP-ABE). Our approach provides
flexible yet fine-grained access control (per file level) so that the
contents are available only to the authorized users. We further
consider the protection of user privacy and enhance the current
design of CP-ABE so that not only the contents themselves but
also the access policies, which could lead to the revelation of
sensitive user information, are well protected.

I. INTRODUCTION

The emergence of content distribution networks (CDNs) has
greatly bridged the gap between the content publishers and the
end users. A typical CDN often consists of a large number of
nodes deployed in geographically distributed locations across
the global Internet. To optimize the delivery process, a CDN
usually replicates content among its nodes. End users’ requests
for content are then algorithmically directed to nodes that meet
certain predefined criteria such as minimal delay, minimal
number of hops, etc. Among other flavors, non-profitable
CDNs [1] exploit the bandwidth of volunteers to balance the
workload among network nodes in contrast to the commercial
CDNs based on dedicated servers. When such a model makes
content publish and access more efficient than ever, it also
introduces particular challenges for access control of private
contents restricted to only authorized users. Because CDN
nodes are highly distributed, it is not possible to employ
the traditional centralized access control approaches, such as
reference monitor approach [2]. And the fact that individual
CDN nodes themselves may not be trustable makes it even
harder to enforce reliable access control.

Current solutions [3]–[5] usually follow the cryptographic-
based approach where the contents are encrypted before being
stored in CDNs, and the decryption keys are distributed only
to respective authorized users. In the cryptographic-based
approach, flexibility and granularity of content access control

heavily relies on the underlying cryptographic primitives being
used. Solutions based on conventional pairwise key or group
key primitives repeatedly exhibit difficulties in resolving the
tension between the complexity of key management and
granularity of access control. For example, in [4], to achieve
per file access control, a symmetric key and an asymmetric
key-pair are generated for each new file created. And the cor-
responding decryption keys are then distributed to respective
authorized users. Obviously, the number of keys that has to be
managed by each user is linear to that of the total files. While
such an approach can achieve fine grained access control, its
applicability in large scale is poor given the high complexity
of key management. In [3], files are categorized into multiple
filegroup, and the files of the same filegroup are all protected
with the same key. This approach reduces the key management
complexity but can only offer coarse-grained access control as
it requires filegroups to be relatively static and their number
to be small for avoiding heavy communication load for key
requests due to filegroup dynamics. Hence, it remains to find
a solution which provides both fine-grained access control and
lightweight key management simultaneously.

In this paper, we propose a PKC-based solution aiming at
resolving the above problem. To provide fine-grained access
control, we explore a novel cryptographic primitive called
ciphertext policy attribute-based encryption (CP-ABE). In our
solution, each user is associated with a set of attributes based
on which the user’s secret key is generated. Files are encrypted
under CP-ABE such that only those whose attributes match
the access policy are able to decrypt it. Using CP-ABE, our
protocol is able to provide not only per file grained access
control, but also sophisticated access control semantics such
as “(manager∧(work experience > 5y)∧know Spanish)∨
((position > manager) ∧ HR department)”. Furthermore,
key management in the proposed solution is kept simple as
users are only required to keep track of a single system-wide
secret key information. To this end, a key chain is designed
to record the evolution of the system secret so that users can
always get re-synchronized even after being off-line for a long
period. Another salient feature is that our solution also protects
user privacy by hiding files’ access policies, which is known
only to the file owner himself.

The rest of this paper is organized as follows. Section II

978-1-4244-2652-2/08/$25.00 ©2008 IEEE 39

introduces the required preliminaries. Section III presents our
scheme. Section IV briefly analyzes security and efficiency
performance of our protocol. Section V concludes this paper.

II. PRELIMINARIES

This section briefly introduces CP-ABE as well as the user
revocation strategy used by our protocol.

A. Ciphertext Policy Attribute-Based Encryption

In CP-ABE [6], each user is associated with a set of
attributes and her secret key is generated based on these
attributes. When encrypting a message, the encryptor specifies
the threshold access structure for her interested attributes.
Message is then encrypted based on this access structure such
that only those whose attributes satisfy the access structure
can decrypt it. Unintended users, however, are not able to
decrypt the cihpertext even if they collude. In current CP-ABE
schemes, the access structure is sent in plaintext. A CP-ABE
scheme consists of four algorithms:

Setup This algorithm takes a security parameter κ as input
and generates the public key PK and a system master secret
key MK. PK is used for encryption. MK is used to generate
user secret keys1. It is known only to the central authority.

Encrypt This algorithm takes as input the public key
PK, a message M, and an access structure P. It outputs the
cihphertext CT.

KeyGen This algorithm takes as input a set of attributes
S associated with the user and output a secret key SK that
identifies with S.

Decrypt This algorithm takes as input the ciphertext CT
and a secret key SK for an attributes set S. If only S satisfies
the access structure, does it return the message M.

We refer to [6], [7] for more details.

B. Member Revocation

Member revocation is an important yet difficult issue in
identity-based encryption and related schemes. In current
construction of CP-ABE [6], member revocation is realized
by associating each user’s secret key SK with an expiration
date, say X . Message is encrypted on some date Y such that
the user are able to decrypt if only X ≥ Y . This solution
has a salient property that the access privilege of any user is
automatically revoked after the expiration date. One drawback
of this approach, on the other hand, is that it alone is not
able to deal with early revocation (i.e., revoke the user before
his key expires) in case of malicious behavior detected or at
the user’s will. To enable early user revocation, we need to
update the system master secret key SK2 for the remaining
users while preventing the leaving user from being updated.
As future content is encrypted under the new PK (and hence
SK), the leaving users is not able to decrypt.

In the following sections, we use a symbol KA to represent
the CP-ABE public key and system master secret key. When
we say “update KA”, we actually mean “update both the

1MK is also used when generating PK.
2PK is updated accordingly as well.

PK CP-ABE public key.

MK CP-ABE system master secret key which is used to generate both PK and SK.
SK CP-ABE user secret key.

P,p Access policy/structure.
KA A notation to represent PK and MK.

Incremental of KAΔ
ck Content encrypt key which is used to encrypt files.

kek File-lockbox key which is used to protect each file’s content encrypt key ck.
{m}k Encrypt message m using asymmetric key k.
[m]k Encrypt message m using symmetric key k.

kek_ab kek of version b for access policy a.
KA_i KA of version i.

notation meaning

Fig. 1. Main notations and their meanings

system master secret key and the public key”. Encrypting using
CP-ABE is simply denoted by encrypting using KA. Figure 1
lists our definition of main notations used in this paper.

III. OUR CONSTRUCTION

This section introduces our design. We start with introduc-
ing models and goals used in our design. Next we present our
key management scheme independently since it is critical to
our design. Then we describe the execution of our protocol.
Finally, we give an enhanced design in which access policy of
some critical content can be hidden at the content publisher’s
choice.

A. Models and Goals

Our network model, security goals, and adversary model are
defined as follows.

Network Model Three parties are involved in our pro-
tocol:the content provider, CDN nodes, and end users. The
content provider is the party who provides various kinds of
content services such as file download, multimedia broadcast,
and etc. They could be commercial or non-commercial parties.
Each of them has at least the same computational power than
a modern commercial server. CDN nodes are the parties who
are responsible for efficiently delivering contents to content
consumers. They could be either commercial servers or vol-
unteers. End users are parties who consume contents provided
by CDNs. They each has at least the same computational
power than a modern PC. Network connection is assumed
to be broadband. We do not make security assumptions on
communication channels.

Security Goals The main security goal of our protocol is
to prevent content from being accessed by unauthorized users.
In particular, revoked users could not be allowed to access
contents published after they leave. Content integrity is not our
interest though it is another important security requirement in
CDNs. We resort to some existing techniques to address it.

Adversary Model In our protocol, adversaries could be
unauthorized users or malicious CDN nodes. The main goal
of the adversaries is to get access to contents that they are not
authorized to. They may work independently or collude.

40

B. Key Management Scheme

To fulfill the task of fine-grained access control, our scheme
relies on the following key management mechanisms.

Hierarchical Key Our protocol encrypts each file3 in a
hierarchical way as follows:

{kek}KA
, [ck]kek, [file]ck

In this three layer hierarchy, each file is encrypted with a
unique content encrypt key ck. Each ck is then encrypted with
the file−lockbox key [3] kek (both ck and kek are symmetric
keys). kek is finally encrypted using CP-ABE such that only
those having the intended attributes are able to decrypt it.

If there were no member revocation, ck’s for files under the
same access policy could be encrypted with the same kek.
However, the following two factors should be considered in
practice: On the one hand, when creating new files, system
sometime needs to update kek to prevent them from being ac-
cessed by revoked users. On the other hand, to avoid frequent
re-encrypting ck’s of files, we have to adopt a methodology
called lazy revocation [3]. Under this methodology, member
revocation does not require immediate re-encrypting ck’s of
old files, following the logic that the revoked member may
have already accessed the old files accessible to her. This
causes the fact that ck’s of old files and new files may be
encrypted under different kek’s. To efficiently manage kek’s
under the same access policy, we adopt the key regression
technique [5]. Using this technique, users are able to derive old
keys from new keys, while only the content provider herself is
able to calculate new keys given old keys. In our key hierarchy,
we only encrypt the latest kek with CP-ABE for each access
policy.

The advantages of using our key hierarchy can be
summarized as follows: First, the number of keys each user
needs to keep track of is minimized. As shown above, each
user only needs to keep her CP-ABE secret key. Second,
the vulnerability to known plaintext and known ciphertext
attacks is further decreased because each file is encrypted
with its unique ck. Third, it is computationally efficient since
KA and ck are not directly correlated: On the one hand, KA

update does not require re-encrypting ck’s; On the other hand,
changing ck does not involve expensive CP-ABE operations.

Key Chain As mentioned in Section II, CP-ABE supports
member revocation by broadcasting a KA update message.
However, using broadcast not only causes heavy communi-
cation load in large scale systems, but also requires users to
be always online. Those whose secret keys are not updated
in time have to contact the content provider individually
afterward, which turns out to cause extra communication load
and demand the content provider to be always online. It is
therefore desirable to adopt a technique such that users can
get updated without contacting the content provider even after
they have been off-line for a long period.

3For convenience of expression, we use a file distribution system as an
example to describe our protocol for CDNs.

To address this problem, we employ a key chain to record
the update history of KA as shown in Figure 2. This key chain
is stored in a public directory on the CDN nodes. Whenever
users access the files on the CDN nodes, they update their
secret keys to the correct version with the help of this key
chain. When the content provider updates KA, she always
updates the key chain files on the CDN nodes in a timely
manner.

Active StagesHistorical Stages

iΔ
… ...

1+Δi

, p : access policy

Δ : incremental of the key

: stage

: substage

px

px+1
1+Δx

…xΔ

ki +Δ

… ...
ki +Δ

iP 1P +i ki +P

ki +PP

Fig. 2. Key Chain for KA

In a key chain, we define stages for KA. On each stage,
we record the incremental of KA (denoted by Δ) between the
current stage and the last stage as well as the access policy
(denoted by P or p) under which this incremental is encrypted.
Between two consecutive stages, we also define substages
which record the change history of the key in more detail. KA

on any substage can be derived from the immediate previous
stage via one step as shown in the Figure 2.

We also define active stages and historical stages. The
term active stages refers to the range inside of which KA’s
are active, i.e., existing files are encrypted under some of these
KA’s . The definition of historical stages is similar except
that the KA’s in historical stages are obsolete. The content
provider use historical stages to help the users who have not
updated their secret key for a long period to update their secret
keys. In historical stages, substages are removed. We use the
term length to represent the number of stages in active stages
or historical stages. The lengths of active stages and historical
stages are fixed except for protocol setup phrase. Usually, the
length of active stages is short while that of historical stages
is long. For example, if one stage represents a natural day, we
can create a key chain having active stages for 10 days and
historical stages for three months.

The starting points of active stages and historical stages
slide forward by one stage each time. If we assume stage to
be a natural day, the starting points change everyday. When the
starting points is sliding forward, three operations are executed
on the key chain file: First, files encrypted under KA’s between
the oldest and the second oldest active stages are updated with
the latest KA. Next, remove the substages between the oldest
and the second oldest active stages and set the second oldest
active stage as the new starting point of active stages. Finally,
set the second oldest historical stage as the new starting point
of historical stages and remove the oldest one. Because the
“window” of the key chain keeps sliding forward, users who

41

Policy Index Table

Access Policy

Policy 1

Policy k

KA Version KEK

{KEK_1x}KA_i

{KEK_ky}KA_j

File Encrypt Key

[km]KEK_1z

[kn]KEK_1x

File Description

File m

File n

File Index Table

…
...

…
...

…
...

…
...

…
...

…
...

Event Flag File Index

…
...

KEK Version

…
...

x

y

KEK Version

x

z

…
...

Fig. 3. Index Table for Private File Management

have not accessed the CDN for extremely long period may
lose synchronization. In this case, they need to contact the
content provider to get re-synchronized.

Another concern is how to create a substage. Ideally,
once a member revocation event occurs, the content provider
should update KA and create a substage. However, this way
may cause frequent update to the key chain if the member
revocation event happens very frequently. The key chain file
may expand to be extremely large as well. An appropriate
way is to aggregate member revocation events and update the
key chain in a reasonable interval, e.g., update the key chain
every 30 minutes if any event happens. Once a new substage
is created, system records the event such that new files can
use this record to decide if they need to be encrypted under
the latest KA. We will discuss it in detail in the next section.

C. Protocol Description

This part describes the execution of the protocol. In par-
ticular, we discuss the protocol setup process and how the
protocol reacts under events such as file access, file create, file
delete, member join, member revocation. Before introducing
the protocol itself, we discuss an important data structure of
our system called index table.

Index Table As shown in Figure 3, this data struc-
ture contains two type of tables: policy index table and
file index tables. The system has a unique policy index table.
This table records all the access policies used by the files.
Because the number of access policies used could not be larger
than the number of the files, the size of this table is at the most
comparable to that of the system directory file. Each item in
this table has six fields: policy description, KA version, event
flag, KEK version, KEK and file index. KA version records
the version number of KA (version number is represented by
stage and substage) used by current access policy. The event
flag field records if any new subtage has been created since
the latest upload of file under current access policy. Every
time when a new substage is created, system marks the event
flag field for each access policy. KEK version field records
the latest kek’s version for current access policy. KEK field
records the corresponding credential of the latest version kek.
File index field records the link to current access policy’s
file index table, which remembers all the files encrypted
under current policy. Each item of the file index table has two

columns: file description and the credential for current file’s
ck.

Now we discuss the execution of the protocol.
Protocol Setup Before providing content service, the con-

tent provider runs the setup algorithm to configure the system.
This setup algorithm is as follows:
• First, it defines a set of attributes for users and runs the

CP-ABE setup algorithm.
• Next, it creates empty index tables and a key chain file

containing a start stage. Then, it uploads these files to CDN
nodes.
• Now the content provider is ready to serve the users.
File Access When a file is being accessed, system first gets

the access policy of this file and then looks up the policy index
table for this policy. Using the content contained in the policy
index table, the user can decrypt the kek if she owns required
attributes. Then the user reads the KEK version field of this
file from file index table. If KEK version is older than that
in the policy index table, the user derives the correct version
kek from the one she decrypted using key regression method.
With correct kek, the user can decrypt ck and get access to
the file.

File Create When a file is being uploaded, system first
generates a ck and encrypts this file with this ck. Then, system
checks the policy index table to see if the access policy of
this file has already been recorded. If not, system does the
following: (1)create a new kek and encrypt it with the latest
KA under the file’s access policy; (2) create a new item in the
policy index table and update all the fields of this new item.
In particular, the event flag field is set to unmarked status; (3)
create an empty file index table and link it to the file index
field in policy index table; (4) encrypt current file’s ck with
kek and insert the credential to the file index table together
with other information. If the file’s policy is already in the
policy index table, system first checks the event flag field of
current policy. If its status is unmarked, system just creates a
new item and inserts it to the file index table for current file.
Otherwise, system does the following: (1)generate a new kek
based on current kek; (2)encrypt the new kek with the latest
KA; (3) updates other fields for this access policy accordingly;
(4)encrypt the new file’s ck with the new kek and insert it to
the file index table together with other information. Uploading
files in batch is more efficient than doing that one by one.

42

File Delete To delete a file, system just removes the
corresponding item from the file index table. If current file
is the last one in the file index table, system also deletes the
corresponding item from the policy index table.

Member Join When a new user is to join, she contacts
the content provider to obtain her attributes and secret key.
The content provider gives this new user her secret key on
the oldest active stage. The user can calculate her keys on
the remaining stages by herself. In this paper, we assume the
new user can contact the content provider via an out-of-band
channel and run the CP-ABE algorithm correctly.

Member Revocation When our protocol is to revoke a
user, it just records the event. Member revocation events
are aggregated and processed in batch. When processing the
member revocation events, our protocol updates KA, creates a
new substage, and sets the event flag of all the items in policy
index table as we discussed previously.

D. Access Control with Hidden Policy

This section considers applications in which access policies
for some files should be hidden. Here is an example: Company
C wants to offer a promotion to consumers of particular
attributes. The promotion code file is published on its server
and encrypted such that only the intended consumers can
decrypt it. If the access policy is disclosed to others, they may
know to whom the promotion is aimed and thus the scale of
this activity. To prevent competing companies from knowing
this information, company C wants to hides the promotion
code file’s access policy. Similar examples are not hard to
find in our life.

Actually, if we have a CP-ABE scheme that supports hidden
policy, we can embed aforementioned functionality in our
protocol: In the policy index table, we just replace the policy
description field with a pseudo policy ID while keeping other
fields the same as before. Because the new CP-ABE algorithm
can decrypt ciphertext without knowing the access policy, it
can decrypt kek correctly and thus get access to the file.
Unfortunately, current constructions of CP-ABE [6], [7] do
not support hidden policy.

In this section, we will re-design [7] to support hidden
policy in CP-ABE. For brevity, we do not present the original
scheme in this paper. We refer to the original paper for details.

Security Goals Intuitively, our security goal is to prevent
users, intended or not, from knowing under which access
policy the message is encrypted. They should not be able to
obtain this information even if they collude.

Our scheme achieves hidden policy based on the Symmet-
ric External Diffie-Hellman (SXDH) [8] assumption between
paired elliptic curve groups.

Definition (SXDH) We say that the SXDH assumption holds
if, given values y, y1, y2, y3 ∈ G1, it is not computationally
feasible to decide if there is an integer a ∈ Zp such that
y1 = ya and y3 = ya

2 , i.e., G1 is a DDH-hard group. The

same requirement must hold for G2, i.e., it is also a DDH-
hard group.

CP-ABE with Hidden Policy We follow the same
definition on the notations as [7]. For completeness, we
present them here: The set of attributes are defined as
N := 1, . . . , n for some natural number n. Attribute i and
their negations ¬i are referred to as literals. Let I denote the
set of attributes that are needed for decryption. The scheme
considers access structures that consist of a single AND gate
whose inputs are literals, denoted by

∧
i∈I i, where every i is

a literal (i.e., i or ¬i).

SETUP. This algorithm selects bilinear groups G1 and G2

of prime order p with generator g1 and g2 respectively. A
bilinear map e : G1 × G2 → GT is defined on them. Next,
it chooses random exponents y, t1, . . . , t2n ∈ Zp. The public
key is published as:

PK = (e, g1, g2, Y, T1, . . . , T2n)

where Y = e(g1, g2)y, ∀i ∈ Z2n : Ti = gti
1 . The master

secret key is MK = (y, t1, . . . , t2n).
In our construction, each attribution only has two

occurrences: positive and negative. don′t care element is
discarded, while it is a key element in the original construction.

ENCRYPT. Given a message M ∈ GT and an AND
gate W =

∧
i∈I i, the ciphertext is output as CT =

(C̃, Ĉ, {Ci,0, Ci,1|i ∈ N}), where C̃ = M · Y s, Ĉ = gs,
and s is a random number in Zp.

For each i ∈ I , Ci,0 and Ci,1 are computed as follows.
• if i = i, Ci,0 = T s

i , Ci,1 = T x
n+i.

• if i = ¬i, Ci,0 = T x
i , Ci,1 = T s

n+i.
x is a random number in Zp.

For each i /∈ I , Ci,0 = T s
i and Ci,1 = T s

n+i.

KEYGEN. Let S denote the input attribute set. Every i /∈ S
is considered a negative attribute. The secret key is defined
as SK = (D̂, {Di|i ∈ N}), where D̂ = gy−r

2 , r =
∑n

i=1 ri,

ri is randomly selected from Zp. For each i ∈ N , Di = g
ri
ti
2

if i ∈ S; otherwise, Di = g
ri

tn+i

2 .

DECRYPT. Suppose the input ciphertext is of form CT =
(C̃, Ĉ, {Ci,0, Ci,1|i ∈ N}). Let SK = (D̂, {Di|i ∈ N}). For
each i ∈ N , if the user’s attribute is positive, then

Fi = e(Ci,0,Di) = e(gti·s
1 , g

ri
ti
2 = e(g1, g2)ri·s)

If the user’s attribute is negative, then

Fi = e(Ci,1,Di) = e(gtn+i·s
1 , g

ri
tn+i

2 = e(g1, g2)ri·s)

Decrypt finishes as follows: M = C̃
Y s = C̃

e(g1,g2)y·s , where

e(g1, g2)y·s = e(gs
1, g

y−r
2) · e(g1, g2)r·s = e(Ĉ, D̂) ·

n∏

i=1

Fi.

43

Above equations demonstrate how an intended user can
decrypt the ciphertext. If the user is not the intended recipient,
there is at least one attribute for which the user gets Fi with the
form e(g1, g2)ri·x. Therefore, she can not calculate e(g1, g2)y·s

as shown in the above equation.
Security Intuition As is shown above, ciphertext in our

construction does not include the access policy. In decrypt
algorithm, the user uses all her attributes to decrypt the
ciphertext. If the user’s ith attribute is positive while Ci,0

has the form T x
i , this user can not decrypt the ciphertext.

However, because the user can not distinguish between T x
i and

T s
i according to SXDH assumption, she is not able to know

which attributes are desired by the encryptor. Therefore, she
can not derive any information about the access policy. For the
same reason, an intended user only knows if she can decrypt
the ciphertext while not knowing which attributes grant her
the access. Therefore, the access policy is hidden to all the
users.

IV. DISCUSSION

A. Security Analysis

In our protocol, each file is encrypted by a three-layered
hierarchical key. To access a file, the adversary first needs to
break the CP-ABE scheme to harvest kek, which is hard since
current CP-ABE [7] is proven to be secure even under CCA-
2 attacks. Moreover, known plaintext and known ciphertext
attacks to ck’s and files are difficult since each of them is
encrypted under a unique random key. Our enhanced CP-
ABE with hidden policy is secure under SXDH assumption
as shown above.

B. Performance Analysis

The main concern in terms of performance of our scheme
is the efficient implementation of file encryption and user
revocation using CP-ABE. In this paper, we introduce the
hierarchical key and an index table to reduce the number of
the expensive CP-ABE operations. With these techniques, file
re-encryption does not involve CP-ABE encryption operations.
Encryption of files under the same access policy just involves
one CP-ABE encryption in total. To facilitate user revocation,
we attach an expiration date to each user’s secret key. In
this way, regular users can be automatically revoked after
the expiration date. To further support early revocation, we
update the system master secret key using a key chain. For this
purpose, we can define two attributes for each bit of the user
ID as is proposed by [9], [10]. According to the experimental
result in [10], the average message complexity for multiple
user revocation in this kind of solution is O(logM), where M
is the total number of users. The constant factor is about 3.5.

C. Related Work

Using ABE, Traynor et. al. [11] proposed a conditional ac-
cess scheme for massive-scale systems. This scheme is aimed
for massive-scale content distribution systems where content
encryption keys are frequently changed. The authors proposed
a novel tired construction in which users are divided into

groups. Each group is assigned a group attribute under which
the content encrypt key is encrypted. When this construction
improves the performance of key distribution, the inherent
flexibility of ABE is greatly sacrificed since it mandatorily
divide the user access privilege by the group. In addition, as
this paper is based on a previous work on threshold ABE [12],
which is vulnerable to collusion attacks as is addressed in the
paper, its security strength is weakened.

V. CONCLUSION

In this paper, we propose a PKC-based distributed access
control protocol for CDNs. To provide fine-grained access
control, we explore a novel cryptographic primitive called
CP-ABE. Each user is associated with a set of attributes.
Each file is then encrypted under CP-ABE such that only
those whose attributes match the access policy are able to
decrypt it. Besides per file grained access control, sophisticated
access control semantics can be achieved in our protocol. Our
protocol is also design with key management efficiency in
mind. In our protocol, users are only required to keep track of
a single system-wide secret key information. To further protect
user privacy, our protocol also provides an option for content
providers to encrypt files with hidden policy. An important
future work is to implement our protocol and evaluate its
practical performance.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants CNS-0626601, CNS-0716306, and
CNS-0831963.

REFERENCES

[1] MU, “Existing cdns.” [Online]. Available: http://www.cs.mu.oz.au/ ap-
athan/CDNs.html

[2] J.P.Anderson, “Computer security planning study,” Technical Report 73-
51, Air Force Electronic System Division, 1972.

[3] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in USENIX’02, San
Francisco, CA, Dec. 2002.

[4] A. Harrington and C. Jensen, “Cryptographic access control in a
distributed file system,” in SACMAT ’03. New York, NY, USA: ACM,
2003, pp. 158–165.

[5] K. Fu, “Integrity and access control in untrusted content distribution
networks,” Ph.D. dissertation, MIT, September 2005. [Online].
Available: http://prisms.cs.umass.edu/ kevinfu/papers/fu-phd-thesis.pdf

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in SP ’07: Proceedings of the 2007 IEEE Symposium
on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 321–334.

[7] L. Cheung and C. Newport, “Provably secure ciphertext policy abe,” in
CCS ’07. New York, NY, USA: ACM, 2007, pp. 456–465.

[8] L. Ballard, M. Green, B. de Medeiros, and F. Monrose, “Correlation-
resistant storage via keyword-searchable encryption,” Cryptology ePrint
Archive, Report 2005/417, Nov. 2005, http://eprint.iacr.org/2005/417.

[9] S. Yu, K. Ren, and W. Lou, “Attribute-based on-demand multicast
group setup with membership anonymity,” in SecureComm’08, Istanbul,
Turkey, Sep. 2008.

[10] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-
resistant group key management using attribute-based encryption,” Cryp-
tology ePrint Archive, Report 2007/161, 2007, http://eprint.iacr.org/.

[11] P. Traynor, K. Butler, W. Enck, and P. McDaniel, “Realizing massive-
scale conditional access systems through attribute-based cryptosystems,”
in NDSS’08, San Diego, CA, 2008.

[12] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-
based systems,” in CCS’06, Alexandria, VA, Oct-Nov. 2006.

44

