
International Journal of Information Security (2021) 20:695–713

https://doi.org/10.1007/s10207-020-00526-3

REGULAR CONTRIBUT ION

Attribute-based encryption and sticky policies for data access control
in a smart home scenario: a comparison on networked smart object
middleware

Sabrina Sicari
1

· Alessandra Rizzardi
1
· Gianluca Dini

2
· Pericle Perazzo

2
·Michele La Manna

3
·

Alberto Coen-Porisini
1

Published online: 23 November 2020

© The Author(s) 2020

Abstract

Regulating the access to the Internet of Things (IoT) network’s resources is a complex-prone task, which requires to pay a

great attention on how policies are defined, shared, and enforced. The present paper considers the specific context of a smart

home, which represents one of the main IoT application domains, and it focuses on two solutions proposed in the literature

to cope with the aforementioned issues. On the one side, approaches based on attribute-based encryption (ABE) allow one to

encrypt data for multiple recipients, in such a way that only those recipients whose attributes satisfy a given access policy can

decrypt afterward. ABE guarantees a high level of customization due to the variety of attributes which can be defined, and it

is also flexible enough to be adapted to different kinds of scenarios. On the other side, approaches based on sticky policies

allow to attach an access policy directly to the data itself, and to employ a trusted authority to evaluate and enforce the policy

itself. Sticky policies also guarantee a highly distributed and customizable enforcement of access control rules. In this paper,

we compare the advantages and the drawbacks in terms of performance and robustness of such two techniques by means

of their integration within the prototype of an IoT middleware, named networked smart object. Hence, the effectiveness of

the presented solutions is validated by means of a real test-bed in the smart home scenario, in terms of storage occupancy,

CPU load, and data retrieval delay. The final goal is to reveal the best approach to be used depending on the application’s

requirements.

Keywords Internet of Things · Security · Attribute-based encryption · Sticky policy · Access control · Middleware

B Sabrina Sicari

sabrina.sicari@uninsubria.it

Alessandra Rizzardi

alessandra.rizzardi@uninsubria.it

Gianluca Dini

gianluca.dini@ing.unipi.it

Pericle Perazzo

pericle.perazzo@ing.unipi.it

Michele La Manna

michele.lamanna@unifi.it

Alberto Coen-Porisini

alberto.coenporisini@uninsubria.it

1 Dipartimento di Scienze Teoriche e Applicate, Università

degli Studi dell’Insubria, Via O. Rossi 9, 21100 Varese, Italy

1 Introduction

The spreading and continuous development of Internet of

Things (IoT) technologies and services introduces a new way

of conceiving and managing the information transmitted over

the network [1]. The huge amount of data generated and

shared every second is in constant increment, thus raising

significant scalability issues. One reason for the success of

the IoT paradigm is certainly the introduction of miniaturized

devices, which are able to interact and acquire information

from the environment where they are placed in. Besides

such a perk, those devices are often memory- and energy-

2 Dipartimento di Ingegneria dell’Informazione, Università

degli Studi di Pisa, Largo Lucio Lazzarino 1, 56122 Pisa,

Italy

3 Università di Firenze, Via Santa Marta 3, 50121 Florence,

Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00526-3&domain=pdf
http://orcid.org/0000-0002-6824-8075

696 S. Sicari et al.

constrained and, as such, they have a low capability to handle

complex data processing and heavy security tasks by them-

selves.

An important issue to be addressed is how the informa-

tion acquired by such devices, which act as producers, could

be shared with the interested consumers. In fact, in the IoT

context, multiple parties may be involved, thus requiring the

definition of strict rules for regulating the access to the IoT

resources. In particular, sensitive data must be disclosed only

to authorized parties. Infrastructures, both public and private,

that make use of IoT technologies could grow faster by ensur-

ing their customers the reliability and the trustworthiness of

their data management practices.

In such a direction, two different approaches seem to be

promising in providing an effective solution to the aforemen-

tioned issues. The first approach involves a cryptographic

technique called attribute-based encryption (ABE) [2]. ABE

is an encryption technique that allows only those who comply

with a given access policy to decrypt the desired information.

Such an access policy is defined in terms of attributes of the

decryptor or of the data itself. Though more energy consump-

tive than traditional symmetric or asymmetric cryptography,

ABE is very powerful as it allows to make data safely rest

or travel over untrusted channels and platforms, and, at the

same time, enforce a fine-grained access control.

The second approach involves the use of sticky policies

[3], which can be defined by the producer, and can travel

along with the associated information through the whole

data life cycle. Recipients are allowed to retrieve the desired

information only according to the associated sticky policy,

which is evaluated by a trusted authority. Though sticky

policies require the trusted authority to be always online in

order to provide the required decryption keys, it can be very

lightweight as it can exclusively leverage symmetric cryp-

tography.

In this paper, ABE and sticky policies techniques are

compared, in order to reveal their advantages or drawbacks

in a smart home scenario, with respect to robustness in

terms of reliability and performance (e.g., storage occupancy,

CPU load, data retrieval delay). The main goal behind this

work is to establish the differences in choosing one of the

two approaches with respect to certain application domain’s

requirements. To this end, both the approaches have been

integrated within the same existing flexible and cross-domain

middleware, named networked smart object (NOS). NOS

is an IoT platform, originally conceived to manage data

generated by heterogeneous sources, and share them with

interested parties, adopting specific algorithms and protocols

[4]. Note that an enforcement framework based on sticky

policies is already available for the NOS architecture, as

presented in [5]. Instead, in this paper, a specific type of

ABE, named cipher-text-policy attribute-based encryption

(CP-ABE) [6], has been integrated within the NOS system

for comparison purpose. CP-ABE has been also considered

due to its similarities with the approach based on sticky poli-

cies, as clarified later in the paper. To give some preliminary

details, note that, in the CP-ABE paradigm, as for sticky

policies, the access rule resides within the encrypted data

itself, while the attributes, used for evaluating the policy, are

directly associated with decryptors.

Summarizing, the main contributions proposed in this

work are the following ones:

– CP-ABE scheme has been integrated within NOS archi-

tecture. Note that NOS platform has been chosen due to

its modular architecture, which enables to dynamically

adapt its behavior; thus, it is particularly suitable to be

extended with new functionalities. Moreover, an imple-

mentation of sticky policies in NOS platform already

exists [5].

– the behavior of CP-ABE and sticky policies approaches

has been compared, in order to reveal their potentialities

and weaknesses from a functional point of view, fol-

lowing the data flow management in a not-fully trusted

environment, as it happens in the typical IoT contexts.

The comparison is made in a smart home scenario, where

different IoT devices produce heterogeneous data, from

video streams to electrical data sets. Such a kind of sce-

nario also enables the presence of different kinds of users.

In this way, a simple yet accurate case study is provided,

which could be further expanded for future analysis.

– the performance of the employed CP-ABE scheme with

respect to the sticky policy method has been evaluated,

by means of a real test-bed. The aforementioned smart

home data set is considered, and the following metrics are

analyzed and measured: storage occupancy, CPU load,

and data retrieval delay. The main outcomes reveal that

the sticky policy approach is more efficient in terms of

CPU load, but its storage occupancy and data retrieval

delay are higher than those of the CP-ABE approach.

The remainder of the paper is structured as follows. Sec-

tion 2 presents the preliminaries of the proposed work, which

include the sticky policy and CP-ABE paradigms, and the

basic NOS architecture. Then, Sect. 3 presents the integra-

tion of CP-ABE functionalities into the NOS middleware,

along with the comparison between the CP-ABE approach

and the one based on sticky policies. Section 4 presents the

threat model, the smart home application scenario, and the

performed experiments. In Sect. 5, the related work is pre-

sented, while Sect. 6 ends the paper, also drawing some hints

for future works.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 697

2 Preliminaries

In this section, the necessary preliminaries for clearly under-

standing the mechanisms related to the adoption of sticky

policies and CP-ABE for securing the access to the informa-

tion transmitted within an IoT system are detailed. Moreover,

a sketch of NOS architecture is presented.

2.1 Networked smart objects architecture

Two main entities compose a typical IoT system: (i) the data

producers, conceived as heterogeneous data sources (e.g.,

WSN, RFID, NFC, actuators, etc.) which generate data to be

sent to the IoT platform; (ii) the data consumers, who interact

with the IoT platform through services making use of such

IoT-generated data, typically accessing them by means of a

mobile device (e.g., smart phone, tablet) connected to the

Internet, through WiFi, 3G, or Bluetooth technologies.

In such a scenario, networked smart objects’ (NOS) mid-

dleware [4] has been conceived as a layered architecture,

providing lightweight and flexible functionalities; it really

represents a comprehensive approach for managing data

gathered from heterogeneous sources in a distributed way,

and for providing customized services to users, assessing

security as well as data quality requirements. It is worth to

remark that NOS, according to authors’ knowledge, still rep-

resents the unique architecture, available in the literature,

able to address both security and data quality issues.

Proper interfaces for the communications of NOSs with

the data producers and consumers have been defined. HTTP

protocol is usually adopted for collecting data from the IoT

devices. For each incoming data, the following pieces of

information are gathered:

– the kind of data producer, which describes the type of

IoT source;

– the communication mode, that is, the way in which the

data is collected (e.g., discrete or streaming communica-

tion);

– the data schema, which represents the type (e.g., number,

text) and the format of the received data;

– the data content;

– the reception timestamp.

Since the received data are of different types and for-

mats, NOSs initially put it in the Raw Data storage unit.

Data in such a collection are periodically processed, in a

batch way, in the Data Normalization and Security and

Data Quality Analysis phases, in order to obtain a uniform

representation and add useful metadata regarding security

(i.e., level of confidentiality, integrity, privacy and robust-

ness of the authentication mechanism) and data quality (i.e.,

level of accuracy, precision, timeliness and completeness)

assessment. Such an assessment is performed following well-

defined algorithms, which are detailed in [4]. It allows the

consumers, who access the IoT data, to be aware of the lev-

els of reliability and trustworthiness of the services gathered

by NOSs themselves. Hence, consumers can directly filter by

themselves the data processed by NOSs, according to their

personal preferences, in terms of security and quality.

Instead, message queue telemetry transport (MQTT) pro-

tocol [7] is used for disseminating the information to the

interested data consumers. To this end, a topic is assigned

by NOSs to each processed data. NOSs also provide a

lightweight and secure information exchange process, based

on an authenticated publish and subscribe mechanism [8],

integrated with the aforementioned MQTT protocol.

Finally, it is worth to remark that NOSs modules inter-

act among themselves through RESTful interfaces; they have

been implemented in a real prototype [4]. Node.JS platform

[9] has been used for developing NOSs’ core operations,

MongoDB [10] has been adopted for the data manage-

ment, and Mosquitto [11] has been chosen for realizing the

open-source MQTT broker. For more details about the imple-

mentation, please refer to [4].

A scheme of NOS architecture is sketched in Fig. 1, along

with its current integration with sticky policy enforcement

framework [5], which is described in the following section.

2.2 Sticky policies

The sticky policy paradigm was first proposed by Karjoth,

Schunter, and Waidner [12]. Sticky policies are transmitted

along the data they refer to throughout the entire data life

cycle. Specifically, sticky policies allow us to define the fol-

lowing aspects:

– the owner of the data;

– the data content, possibly encrypted;

– the scope of the data;

– where and when data will be available;

– specific obligations and restrictions.

In detail, the concept of sticky policy is to attach security

and privacy policies to owners’ data and drive access con-

trol decisions and policy enforcement. Sticky policies allow

specifying access rules in an extremely fine-grained manner:

in principle, every data unit could have its own, unique, pol-

icy. Furthermore, as policies ‘travel’ with the data across the

entire system, they could provide protection over the entire

data life cycle. Such an approach has been mainly introduced

for security and privacy enforcement: when submitting data

to a consumer, a user consents to the applicable policies

selecting the proper preferences.

Such features are particularly interesting in some scenar-

ios, as that of IoT, where users’ or business’ confidential

123

698 S. Sicari et al.

Fig. 1 NOS data flow with

sticky policies

information may flow across organizational boundaries [3].

For example, social networks may share some information

with marketing companies; similarly, cloud applications may

transfer data, depending on a need, among different realms.

Such situations represent well-known open issues in the field

of security and privacy enforcement.

The sticky policy concept has already been integrated in

the NOS platform, as presented in [5]. Note that NOSs own

no policies/credentials, because an external Trusted Author-

ity (TA) is responsible for their management. The owner of

the data sends them in an encrypted way along with the asso-

ciated sticky policy to NOS; clearly, data producers have an

in-depth control over the flow of their own information, since

they are responsible for the access rules on their own data.

Then, each NOS can contact the TA in order to obtain the

access permissions on the received data, when there is the

need to disclose them to interested consumers (i.e., the users

who interact with the IoT platform). In this way, no synchro-

nization or policy sharing is required among multiple NOSs,

since the access permissions are managed by the TA. Fig-

ure 1 summarizes the just described behavior, as anticipated

in Sect. 2.1. Instead, the CP-ABE approach, that up until

123

Attribute-based encryption and sticky policies for data access control in a smart home… 699

now has not been integrated within NOS platform, will be

introduced in the following section.

2.3 Cipher-text-policy attribute-based encryption

Attribute-based encryption (ABE) [2] is a cryptographic

technique which allows one to encrypt data in such a way

that only the parties compliant with a given access policy

can decrypt it afterward. Access policies are Boolean formu-

las, defined on some attributes, which describe the interested

consumer or the encrypted data itself.

Two ABE paradigms are available in the literature: cipher-

text-policy attribute-based encryption (CP-ABE) [6] and

key-policy attribute-based encryption (KP-ABE) [13]. With

CP-ABE, each party owns a decryption key generated with

a set of attributes which describes him/her. Who encrypts

the data determines the access policy to be used to decrypt

it. Decryption is possible if and only if the attribute set of a

decryption key satisfies the policy embedded in the encrypted

data, whereas with KP-ABE the mechanism is the opposite:

each party owns a decryption key generated from a policy

that determines which kind of data he/she can access. Data,

instead, are encrypted under a list of attributes which describe

the underlying information. As emerged, CP-ABE more

resembles the sticky policy principles because the access pol-

icy travels with the data. Hence, this work is focused on the

CP-ABE paradigm, instead of the KP-ABE one.

The first CP-ABE scheme was proposed by Bethencourt,

Sahai and Waters in [6]. It represents a public-key encryp-

tion scheme based on bilinear pairing. Basically, all CP-ABE

attributes can be intended as Boolean ones, in the sense that

the presence of a given attribute inside a decryption key

counts as a “true” in the policies that contain such an attribute,

and its absence counts as a “false.” In [6], a method to imple-

ment numerical attributes by means of multiple Boolean

attributes is introduced. A numerical attribute is realized by

means of its binary representation on a fixed number of bits.

Two Boolean attributes are used for each bit: one of them

mapping the condition that the relative bit is zero, and the

other that the relative bit is one. By doing so, it is possible to

efficiently realize access policies including comparison oper-

ators (e.g., =, �=, <, ≤, >, ≥) between a numerical attribute

and a constant. In order to ease the reading, in this paper the

choice is to abstract away from the mathematical details and

focus on the application programming interface. The inter-

ested reader can refer to [6] for more details. Hence, the

discussion reported hereby concerns the main functions of

the CP-ABE mechanism.

Note that, in general, the mechanisms based on ABE

needs a Trusted Authority (TA) to setup and managing some

functions of the system, as happened for sticky policies in

Sect. 2.2; in particular, the TA is in charge of:

– generating and distributing the key used for encryption,

called encryption key EK, which is unique for the whole

system;

– generating and assigning each data consumer a decryp-

tion key DK.

In the following, an attribute set is denoted by the symbol

γ , while a policy is denoted by the symbol T . The CP-ABE

scheme is modeled by the following black-box primitives:

(MK, EK) = Setup(κ) (1)

This primitive initializes the CP-ABE scheme. It takes as

input the security parameter κ , and it outputs a master key

MK, which is kept secret by the TA, and an associated encryp-

tion key EK, which is publicly divulged. The Setup primitive

is executed by the TA.

C = Encrypt(M, T , EK) (2)

This primitive encrypts a plain-text M with the policy T .

It takes as input the encryption key, EK, and it outputs the

encrypted data C , which embeds the policy T . The Encrypt

primitive can be executed by any component of the IoT

network, because it does not require the knowledge of any

secret. It is worth to note that this primitive is computation-

ally demanding, so making its execution challenging for a

resource-constrained IoT device [14,15]. This is a reason for

adopting an architecture like the NOS one, as detailed in

Sect. 3.

DK = KeyGen(MK, γ) (3)

This primitive generates a decryption key DK for a data con-

sumer, described by the attribute set γ . It takes as input the

master key MK and a set of attributes γ , and it outputs a

decryption key DK, which embeds γ . The KeyGen primitive

is executed by the TA.

M = Decrypt(C, DK) (4)

This primitive takes an encrypted data C and a decryption key

DK as input, and it outputs the plain-text message content if

the interested consumer can access the data; otherwise, the

decryption is unsuccessful and the primitive outputs noth-

ing. Inside C , there is the policy T . By the mathematical

properties of CP-ABE scheme, decryption is successful only

if the attribute set γ embedded in DK satisfies the policy T

embedded in C . It is worth to remark that a policy is a Boolean

formula, composed by certain attributes. If an attribute men-

tioned inside a policy belongs to γ , it is considered as “true”

for the policy evaluation. So, a policy T is satisfied by an

attribute set γ if the Boolean formula represented by T ,

123

700 S. Sicari et al.

Table 1 Acronyms

Acronym Meaning

EK The encryption key

DK A decryption key

γ An attribute set

T A policy

MK The master key

M A plain-text

C A cipher-text

AVL Attribute version list

CAL Consumers attribute list

TA Trusted authority

evaluated with the attributes γ , returns “true.” The Decrypt

primitive is executed by a data consumer holding the proper

decryption key. It is worth to note that this primitive is, in gen-

eral, computationally demanding for resource-constrained

devices, but it can be easily executed by modern mobile

devices such as smart phones and tablets, as proven in [16].

Table 1 summarizes the acronyms just presented and oth-

ers, which will be used later.

3 Integration of CP-ABE into NOS
architecture and comparison with sticky
policies

Generally, an enforcement framework is composed by the

following main standard elements: (i) a Policy Enforcement

Point (PEP), which intercepts the access requests and queries

the PDP about its acceptance; (ii) a Policy Decision Point

(PDP), which evaluates the access requests against the autho-

rization policies and takes the authorization decisions; (iii) a

Policy Administration Point (PAP), which contains the full set

of authorization policies established by the system’s admin-

istrators. In a previous NOS’s version, such components are

all located into NOS [17].

By introducing the sticky policies (Sect. 2.2), only the

PEP is located into NOSs, while the PDP is located within

the TA, as the PAP. As a consequence, the role of NOSs

in the enforcement process is softened, and NOSs can be no

longer considered as a single point of failure in the security of

the information transmitted within the whole IoT system. By

delegating some operations and controls to the TA, the over-

all efficiency of the NOSs middleware has been improved,

as demonstrated in [5], with respect to the more traditional

solution, presented in [17].

However, the main drawback emerged from the approach

based on sticky policies is the need of an always-on-line TA,

responsible of trustworthy evaluating the policies in rela-

tion to the subscribing data consumer. In order to overcome

such an issue and, at the same time, to provide a flexible and

efficient data access control framework, CP-ABE scheme is

introduced. It includes a mechanism for access control able

to embed PEP and PDP just inside the cipher-text (hence,

the policy is not separated from the encrypted data itself,

as it is for sticky policies). In order to include the new

components/functionalities required by the CP-ABE scheme,

presented in Sect. 2.3, the actual NOS architecture, described

in Sect. 2.1, must be revised.

In Fig. 2, the modified NOS architecture is shown, includ-

ing the CP-ABE primitives, which are integrated into the data

flow. More in detail, with respect to Fig. 1, it worth to note

that the policy associated with the data now depends on the

CP-ABE encryption (the Encrypt primitive is executed by

the new introduced CP-ABE Data Encryption module). The

CP-ABE Data Encryption module has three main goals: (i)

it performs the encryption in place of data producers, thus

lightening the memory- and energy-constrained IoT devices

from such a complex and expensive task; (ii) it defines and

properly associates the access policies with the processed

data; (iii) it stores normalized data in the Normalized Data

storage unit in an encrypted form, so such data are protected

also in the case of NOS compromised by unauthorized par-

ties. The CP-ABE Data Encryption module combines the

policies defined by NOS and the encryption keys defined by

the TA, which executes the Setup and KeyGen primitives. In

this sense, data owners have less control on the disclosure of

their own information, but the IoT platform has more con-

trol on them. Another fundamental remark is that the TA now

needs to communicate with both NOS, in order to provide the

required encryption key for performing the encryption task,

and users, to disclose the decryption key to authorize them

to access the NOS’s resources; hence, the Decrypt primitive

is executed by the data consumer. After that, the TA can go

offline.

Going more deeply into the differences between the NOS’

data flow with the sticky policies approach and with the

CP-ABE scheme, a further overview of the two systems is

provided in Figs. 3 and 4, respectively.

Figure 3 highlights that, in the sticky policies approach,

for each subscription to a certain topic by an interested con-

sumer (step 10), the TA must be contacted by NOS in order

to achieve the access decision (steps 11-13); then, if the TA

agrees to the subscription, the data consumer will be noti-

fied of the data belonging to the requested topic (step 14).

The credentials used for exchanging such data between NOS

and the consumer are established a priori by an agreement

between them (steps 1–2). Hence, a sort of double agreement

should be done: one for the encryption key and another one

for the topic’s subscription. The normal NOS’s processing

activity is independent from such tasks (steps 3-9).

123

Attribute-based encryption and sticky policies for data access control in a smart home… 701

Fig. 2 New proposed NOS

architecture

Instead, in a scenario which adopts CP-ABE (Fig. 4), the

TA is no longer required to be online during subscription and

data transmission (steps 8–9). NOS is not required to know

the decryption keys needed by the consumers to decrypt the

information (step 10). This lightens the keys’ management

from the NOS’s viewpoint. In fact, with CP-ABE, the access

policy is just embedded in the encrypted data on the basis of

the assigned attributes (steps 1–7). Such an aspect represents

the crucial difference between the two approaches, which

clearly reveals the effectiveness of the CP-ABE approach

in facilitating, from a performance perspective, the whole

management of data encryption/decryption in relation to the

established policies. In that sense, sticky policies seem more

123

702 S. Sicari et al.

Fig. 3 Scheme of sticky

policies-based data flow within

the NOS system

difficult to manage because encryption/decryption are not so

related to access policies with respect to CP-ABE paradigm.

In case of policies’ update, addition, or revocation, the

sticky policy approach requires an update of the scopes and

constraints of the TA; hence, the related decryption keys must

be revoked and re-assigned to the consumers involved in that

policies. On the other hand, CP-ABE mechanism simply

requires that NOSs change the policy used for encrypting

data, which can be done without involving the TA.

Summarizing, the CP-ABE Encrypt, Setup and KeyGen

primitives are not so complex to be integrated into the NOS

platform, due to its modular design. In fact, the introduction

of the new module CP-ABE Data Encryption does not affect

the behavior of the existing ones, as it emerges in Fig. 4;

moreover, communications with the TA were already avail-

able in the previous version with sticky policies [5]. The main

difficulty is represented by the management of the decryp-

tion keys in relation to the consumers subscribed to NOS.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 703

Fig. 4 Scheme of

CP-ABE-based data flow within

the NOS system

The next section focuses on the key management mecha-

nism, in order to clarify how decryption keys are distributed

and assigned, and how decryption is enabled.

3.1 Keymanagement

In a system adopting CP-ABE, the decryption keys must be

distributed to the data consumers and revoked if they get

compromised somehow. The mechanisms of distribution and

revocation of decryption keys are often critical and complex.

To implement such mechanisms, some additions to the basic

Bethencourt’s scheme have been introduced in NOS.

A version number is associated with each attribute, and

inside the TA an Attribute Version List (AVL) is implemented,

which is a list of all the attributes used in the system together

with their latest version number. The AVL is created by the

TA just after the execution of the Setup procedure, and all

the version numbers are initialized to 1. From now on, an

attribute is intended as including its version number. For

example, the attribute “attr” will become “attr_vn” where

123

704 S. Sicari et al.

n is the version number and “attr_v1” and “attr_v2” are

considered two distinct attributes. Furthermore, the TA also

detains a table of the unique identifiers of all the data con-

sumers (Cons I D) and their attribute sets, named Consumers

Attribute List (CAL). This table is updated every time a

new data consumer joins the system, by means of a sub-

scription to a certain topic, since the IoT platform run on a

publish&subscribed sharing, as described in Sect. 2.1.

It is supposed that each data consumer and the TA have

their own pair of asymmetric keys (e.g., RSA or ECC)

used for digital signature and encryption. Furthermore, it is

assumed that the TA’s public key is well known to all NOSs

and data consumers, possibly obtained offline. Hence, the

following procedures for key management are defined:

– System initialization In the system initialization proce-

dure, the TA runs the CP-ABE primitive Setup, thus

generating the couple (MK, EK). The TA has the respon-

sibility to keep MK secret. Then, the TA creates the AVL

by inserting all the attributes used in the system along

with their version. Finally, the TA creates also the CAL,

which is empty at the system initialization.

– NOS join The NOS join procedure is executed whenever

a new NOS joins the system. The TA signs and communi-

cates EK and the AVL to the NOS. The NOS can encrypt

data using only attributes contained in the AVL.

– Consumer join The consumer join procedure is executed

whenever a new data consumer joins the system. The data

consumer requests a decryption key to the TA, declar-

ing an attribute set γ that describes him/her. The TA has

the responsibility to verify that the declared γ actually

describes the consumer. Such attribute verification pro-

cedures are application-specific and fall outside the scope

of the present paper. Every attribute inside γ must belong

to the AVL maintained by the TA. Then, the TA executes

the CP-ABE primitive KeyGen, generating a decryption

key based on the previously mentionedγ . The TA updates

the CAL by adding a tuple including the Cons I D of

the consumer and its associated attribute set. Then, the

TA signs the decryption key with its private key, and it

encrypts the signed decryption key with the consumer’s

public key, which may have been acquired offline. The

TA sends such signed and encrypted decryption key to

the new consumer, which decrypts and authenticates it.

If both operations are successful, the consumer accepts

the decryption key and starts using it to decrypt data.

– Data producer deployment The data producer deploy-

ment procedure is executed whenever a new data pro-

ducer is installed in the system. The data producer agrees

with the associated NOS on a symmetric key, with which

all the subsequent messages will be encrypted. Such a

key agreement could be done in several ways, depend-

ing on the capabilities of the specific data producer. For

AVL

A_v1

B_v1

C_v1

D_v1

compromised DK2

{A_v1, D_v1}

AVL

A_v2

B_v1

C_v1

D_v2

Fig. 5 Example of AVL update during a key revocation procedure. On

the left, the AVL before the procedure of key revocation. In the middle,

the key that has been compromised. On the right, the updated AVL

example, NOS can transmit the symmetric key in clear to

the data producer with a low-power wireless signal. This

is a lightweight technique recommended by some IETF’s

RFCs [18] for smart home applications. It assumes that

no eavesdropper is present at deployment time. If this

assumption does not hold, more advanced key agree-

ment protocols can be used, for example, anonymous or

authenticated Diffie–Hellman.

– Key revocation The key revocation procedure is exe-

cuted whenever a decryption key is compromised. This

procedure drastically reduces the risk of data leakage,

by invalidating and making useless the compromised

decryption key. In order to ease the reading, the key revo-

cation procedure is explained through an example in the

following.

Suppose that the decryption key DK2 of a consumer

identified by Cons2 has been compromised and must be

revoked. The attribute set γ2 associated with the decryption

key includes the attributes A_v1, D_v1. To revoke DK2, the

TA updates the AVL by an increment in the version num-

ber of all these attributes, thus updating A_v1 to A_v2, and

D_v1 to D_v2 (Fig. 5).

Then, the TA proceeds with re-generating the decryption

keys of the affected consumers by executing the CP-ABE

primitive KeyGen. The affected consumers are those con-

sumers that have at least one attribute in common with the

revoked decryption key. Let us suppose that the decryption

key of the consumer identified by Cons1 has one attribute

(A_v1) in common with DK2. Such a consumer is thus an

affected one, and the TA re-generates his/her decryption key.

The TA also updates the CAL table (see Fig. 6) by remov-

ing Cons2, whose decryption key has been revoked, and by

upgrading A_v1 to A_v2 in the attribute set of the affected

consumer Cons1.

Then, the TA proceeds to sign, encrypt (with the con-

sumers public keys), and send the re-generated decryption

key to each of the affected data consumer. Such an operation

guarantees correct future decryption for affected data con-

123

Attribute-based encryption and sticky policies for data access control in a smart home… 705

Consumer Attribute List

Attribute setCons ID

{A_v1, C_v1}Cons1

{A_v1, D_v1}Cons2

{B_v1, C_v1}Cons3

{B_v1}Cons4

Consumer Attribute List

Attribute setCons ID

{A_v2, C_v1}Cons1

{B_v1, C_v1}Cons3

{B_v1}Cons4

compromised DK2

{A_v1, D_v1}

Fig. 6 Example of CAL update during a key revocation procedure. On

the left, the table before the key revocation. On the right, the table after

the key revocation

sumers, otherwise their old decryption keys will not decrypt

new cipher-texts. Since the decryption key is encrypted, the

TA can send it through an insecure channel (e.g., a simple

email). Finally, the TA signs the updated AVL and sends it

to the joined NOSs. From this moment, NOSs will encrypt

with the new versions of the attributes. Such an operation

makes useless the compromised decryption key, because the

old version A_v1 and D_v1 are no longer used to encrypt

data. To send the updated AVL, NOSs can do an MQTT sub-

scription to the broker on a special-purpose topic dedicated

to AVL updates from the TA, as just done in [19]. In this way,

the TA can send a single AVL update to the broker, and the

broker will eventually distribute it to all the NOSs.

For each key revocation, supposing n consumers and m

NOSs in the system, the TA must send a single AVL update

and a · n emails, where a ∈ [0, 1] is the ratio of affected

consumers. Such a ratio highly depends on the policy com-

plexity. The authors in [20] computed that, in a large IoT

system, the affected consumers of the average key revoca-

tion can be about a = 12% of the total consumers. Sending

such quantity of emails should not be a problem with state-

of-the-art bulk email software, given that key revocations

should be rare events.

Note that while data encrypted after the key revocation

procedure will not be decryptable by the revoked key, data

encrypted before may still be accessible. This is because the

CP-ABE scheme we employed in this paper provides no effi-

cient re-encryption method [21], to transform a cipher-text

labeled with an old-version attribute (e.g., A_v1) to another

one labeled with a new-version attribute (A_v2). Of course,

trivial (and inefficient) re-encryption methods are always

possible, for example, by sending the old cipher-text to the TA

to be re-encrypted with the new attribute version. We chose

not to implement such methods to keep the system simple.

However, this is surely an advantage point of the sticky poli-

cies approach, since it can protect old data without needing

expensive re-encryption mechanisms.

4 Validation and experiments

For evaluating the approaches, just compared in Sect. 3, a

threat model, an application scenario related to a smart home,

and a test-bed for simulations are firstly presented. Then,

numerical results are provided, with respect to the follow-

ing metrics: storage occupancy, CPU load, and data retrieval

delay.

4.1 Threat model and security analysis

We assume that each NOS has a copy of a trusted certification

authority’s public key. The TA owns a certificate released by

such a CA. We then assume that each NOS knows the public

key of the TA. which is used for digital signature, through

the use of certificates.

The first threat considered is related to the violation

attempts performed by malicious external parties. An exter-

nal party is someone who acts from the outside of the IoT

system, and he does not own any decryption key. His intent

is to access encrypted information. In order to do so, he

can try to eavesdrop a decryption key during a consumer

join/subscription procedure or a key revocation procedure.

Such an attack is avoided because, in both procedures, the

decryption keys are encrypted with the consumer’s public

key. Alternatively, he can try to carry out an active Man In the

Middle (MITM) attack. For CP-ABE, during the NOS join

procedure, when the TA communicates the encryption key

to the new joined NOS, the attacker can try to impersonate

the TA and communicate to the NOS a malicious encryption

key, so that he can decrypt all the cipher-texts produced by

that NOS. Such an attack is avoided because the encryption

key is digitally signed by the TA. Similar is the case of sticky

policy paradigm, where, instead, the TA only communicates

with NOSs, thus reducing the vulnerabilities. Hence, with

respect to such a kind of attack, both the approaches (i.e.,

CP-ABE and sticky policies) are robust.

The second threat considers an external party that compro-

mises a NOS. The effects of such an attack are many. First and

foremost, the attacker has access to all the data that the smart

objects will produce (and consequently send to the NOS)

from that moment on. Past data encrypted with CP-ABE and

stored in the NOS cannot be accessed by the attacker. How-

ever, the same cannot be said for past data encrypted with

sticky policies and stored in the NOS, since it is symmet-

rically encrypted and thus the decryption key is known to

123

706 S. Sicari et al.

the NOS. Secondly, the compromised NOS is able to manip-

ulate the data it receives from the smart objects. Now we

analyze the response of the system once the compromise has

been solved, and the security hole that allowed it has been

patched. In both approaches, the symmetric key used by each

sensor managed by the NOS must be renewed, since they

are also stored inside the NOS and they must be considered

compromised. If the sticky policy approach is used, all the

subscribers associated with the attacked NOS have to renew

their credential. Since the subscriber credentials are stored

in the NOS, they must be considered as compromised by the

attacker. Instead, if the CP-ABE approach is used, no further

cryptographic value has to be considered compromised. As

a matter of fact, the NOS possesses only the encryption key,

which is public, and therefore it is of no use for the attacker.

The third threat concerns possible colluding consumers

wanting to acquire data that they cannot obtain singularly.

Concerning this attack, the original Bethencourt’s CP-ABE

scheme [6] is natively collusion-resistant. This means that

two or more consumers cannot combine their decryption keys

in such a way to decrypt data that they cannot access singu-

larly. Please refer to [6] for a mathematical proof of this.

To cope with the threats described above and, there-

fore, to resist active adversaries, the CP-ABE scheme must

be indistinguishable under the adaptive chosen cipher-text

attack (IND-CCA). Moreover, the signature scheme must be

unforgeable under the chosen message attack (EUF-CMA).

As the signature scheme, we chose the ECDSA algorithm

which offers the needed security requirement. The original

CP-ABE scheme that we employed (taken from the work

of Bethencourt et al., [6]) is only proved to be indistinguish-

able under the chosen plaintext attack (IND-CPA). The proof

of that is given by Bethencourt et al., and it is supported

by the complexity of the bilinear Diffie–Hellman (BDH)

problem. For being suitable against active adversaries, we

converted the IND-CPA in an IND-CCA scheme, by apply-

ing the simple and efficient Fujisaki-Okamoto transformation

[22], which only requires the random oracle model assump-

tion. It is worth to note that, in this paper, the focus is on

data security only. IoT devices and the IoT network can be

attacked also on the control layer, for example, on the routing

mechanisms. Secure IoT routing protocols [23] can help in

this case, but they are outside the scope of the present paper.

4.2 Smart home scenario

An application scenario related to a typical smart home is

used for conducting the performance evaluation, presented

in Sect. 4.3. Data from real-world smart home test-bed have

been gathered1; such data regard some smart meters installed

in two houses, named A and B, which include, among the

1 http://traces.cs.umass.edu/index.php/Smart/Smart.

others, the electricity consumption related to: kitchen lights,

bedroom lights, duct heater HRV, and HRV furnace. Note

that the houses have a total of eight rooms and includes

three full-time occupants. Measures are acquired by means

of installed smart objects that collect electricity data every

minute. Detailed information about such a smart home data

set and on how information is thereby collected is available

in [24].

Each person, which interacts with the houses, can be

described by one or more of the following attributes:

– Landlord of the house X (LanX), who is the landlord of

the house, but it does not imply that he/she lives there.

The landlord might rent out the house. For example, the

landlord can be a young man that has rent out an inherited

apartment.

– Tenant of house X (T enX), who manages and lives in the

house. The tenant has access to all the data generated in

the house. The tenant and the landlord role may coincide.

For example, a young woman that has recently bought an

house and moved in, is both tenant and landlord of said

house. Such an attribute is intended as a numerical, while

it represents the date when the person was nominated

tenant. In fact, a date can be represented as a numerical

attribute equal to the number of days since a well-known

date, as typical happens in computer science.

– Guest of the house X (GueX), who has access to the

house, and he/she may not live there. For example, it

can be an old couple’s daughter that lives elsewhere, but

she has Guest rights to check on her parents. He/she has

access to a limited number of data. Such an attribute is

intended as T enX , and it represents the date when the

person was nominated guest.

– Expiring date for the tenant role of house X (ExT enX);

it is also intended as a numerical attribute, as for T enX

and GueX , and it represents the date when the role of

tenant will expire.

– Expiring date for the guest role of house X (ExGueX); it

is also intended as a numerical attribute, as for ExT enX ,

and it represents the date when the role of guest will

expire.

An example of attribute set γ for a person named Robert

(R) is the following:

γ (R) = {LanB,

T en A = 2/2/2000,

ExT en A = 2/2/2020,

T enB = 2/2/2015,

ExT enB = 2/2/2020}

(5)

123

http://traces.cs.umass.edu/index.php/Smart/Smart

Attribute-based encryption and sticky policies for data access control in a smart home… 707

The above statement must be intended as follows: (i)

Robert is the landlord of the house B; (ii) he is the ten-

ant of house A since February 2nd 2000 and of the house

B since February 2nd 2015; (iii) both his tenant roles will

expire on February 2nd 2020. In such a scenario, versioning

of attributes is not considered for readability.

Three possible data requests for each house are made

available, even obtained from the above-mentioned data set:

– Access to the electrical data set: this is a data set related

to the energy consumption of all the electronic and elec-

tric devices inside the house. Only the landlord and the

tenants can access these data. To access them, a viable

policy could be:

T (ElectricalDataset) = {LanX∨

(today ≥ T enX ∧ today ≤ ExT enX)},
(6)

where today is the date when data have been produced.

Note that, due to the way in which numerical attributes

are implemented in [6], the ≥ and ≤ operators return

“false” in the case the numerical attribute does not exist

in the decryption key.

– Video streaming: it provides live images from the inside

of the house. Only who has actual access to the house

can see video streaming from it. To request such a kind

of data, the consumer must be an authorized as an tenant

or a guest. Therefore, a viable policy could be:

T (VideoStream) = {(today ≥ T enX∧

today ≤ ExT enX)∨

(today ≥ GueX∧

today ≤ ExGueX)}.

(7)

– Remote monitoring of house’s current state: this implies

the monitoring of relevant parameters such as tempera-

ture, humidity, lights switched on/off. Only the tenant can

remotely monitor the status of the smart home. A viable

policy could be:

T (Monitoring) = {(today ≥ T enX∧

today ≤ ExT enX)}.
(8)

The examples of policies just presented are derived from

the attributes defined above. They will be used for the per-

formance evaluation in Sect. 4.3.

4.3 Performance evaluation

In the experimental setup, NOS platform is deployed on a

Raspberry Pi, which is a device widely used in IoT appli-

cations. The behavior of a set of consumers subscribing to

Table 2 Configurations

Parameter Value

Number of data producers 6

Number of data consumers 3

Number of attributes per policy 5

Data-rate provision from producers 1 pck/min

Requests’ data-rate from consumers 1 request/min

Duration of the experiments 1 h

Time window of the data gathered from the data set 1 week

obtain information about the smart homes (see Sect. 4.2) is

emulated by means of a laptop, with the following features:

(i) Core i7-4710HQ 2,5 GHz; (ii) 16 gigabytes of RAM;

(iii) OS Ubuntu 16.04. The laptop uses WiFi IEEE 802.11

network to communicate with the Raspberry Pi. The same

WiFi connection is also used for the communications with

the MQTT broker and with the TA module, implemented as

separate components, which interact with NOS on demand

and run on separate laptops. A toolkit available online2 has

been used to implement the required CP-ABE primitives into

the IoT system, as presented in Sect. 3.

Sticky policy and CP-ABE approaches are compared w.r.t.

the following metrics: storage and CPU load overhead, and

data retrieval delay. The obtained results are compared on

the basis of the application scenario, defined in Sect. 4.2.

More in detail, 1 packet per minute is fetched from the

simulated data sources and 1 data request per minute is

simulated from the consumers. The number of data pro-

ducers and consumers is set to 6 and 3, respectively; such

values are derived from the simulation setups of two previ-

ous work on policy enforcement within the NOS architecture

[17] [5], in order to ease the results’ comparison and evalua-

tion. Table 2 summarizes the setup parameters, while Fig. 7

sketches the interactions among the participants to the smart

home scenario and the NOS platform. Note that bold text and

arrows denote the interactions valid for CP-ABE, while the

dashed arrow denotes the interactions valid for sticky poli-

cies; finally, thin arrows are common to both the approaches.

4.3.1 Storage, network, and CPU load

NOS components have the following storage requirements,

which are different in the two approaches, as explained

hereby:

– With regard to the approach based on sticky policies, the

data sources and the consumers must store the credentials

for ciphering the data to be transmitted to NOS. When

2 http://acsc.cs.utexas.edu/cpabe/.

123

http://acsc.cs.utexas.edu/cpabe/

708 S. Sicari et al.

Fig. 7 Scheme of the

performance evaluation setup

producers transmit data to NOS, they may also send the

related sticky policy. Such an aspect unavoidably causes

an increase of the traffic into the network, since not only

the data are transmitted, but also the associated policy.

An average increase of 0.5 kilobytes is measured for

each transmitted data unit, considering the sticky pol-

icy format specified in [5], which approximately consists

of 500 bytes. Whereas, adopting an approach based on

CP-ABE, data sources have not to send a sticky policy

along with the data to NOS, therefore such an incre-

ment is negligible; certainly, such an aspect represents

a relevant advantage of adopting CP-ABE, because IoT

networks usually transmit a huge amount of data. Note

that in CP-ABE the packets’ dimension increases once

the encryption task has been performed by NOS.

– Starting for such premises, it is worth to note that the

described behavior also influences the network load. In

fact, for both the approaches, the information which is

transmitted over the network are: (i) the data from pro-

ducers; (ii) the consumers’ requests; (iii) the consumers’

responses (i.e., the data release). Figure 8 shows a reduced

network load when adopting CP-ABE and it is mainly due

to the fact that data sources do not transmit to NOS the

data along with the policy (as happens for the sticky pol-

icy approach). The network load still remains lower for

the CP-ABE approach with respect to the sticky policy

one, even if there is an increment in the packet dimension

when NOS performs the CP-ABE encryption.

– NOSs have to store different kinds of information. Yet, it

is worth remarking that NOSs do not support persistent

storage of IoT data for Raw Data and Normalized Data

collections. In fact, incoming data are only temporarily

cached on the NOSs’ memory while being processed

before being submitted to requesting consumers. Once

data are further pushed to or pulled from the MQTT client

(which handles the topics notification to subscribers), the

data can be safely removed from NOSs. In both sticky

policy and CP-ABE approaches, no further storage is

required for policies, because the policies themselves are

directly associated or embedded into the data. Hence,

NOSs have not to store all the policies managed by the

IoT system, as it happens in traditional approaches, as the

one presented in [17]. However, it is fundamental to eval-

uate if it takes up more memory a sticky policy attached

to the data or the same data encrypted with CP-ABE. The

average memory occupancy on NOS at runtime is 10.2

megabytes with sticky policies, whereas with CP-ABE

it slightly decreases to 8.4 megabytes. Note that such

results have been obtained by equally setting the follow-

ing factors for the two approaches: (i) the frequency of

data fetching from sources (i.e., 1 packet/minute); (ii) the

frequency of execution of the routines for removing data

from non-persistent collections (in the actual environ-

ment, such a task is executed every 5 minutes); (iii) the

number of sources (in the actual setup, 6 data producers

are introduced). Obviously, for CP-ABE, the attributes’

number highly influences the dimension of the encrypted

data; however, it is true also for sticky policies. As a future

work, a wider application context could be considered to

perform a further assessment.

– Concerning the sticky policy based approach, the TA

must store the whole set of the valid scopes and con-

straints used for sticky policies’ composition [5]. The

dimension of this storage obviously depends on the spe-

cific application domain. In the sample implementation,

this was negligible. On the other hand, in the CP-ABE-

based approach the TA has to maintain the AVL and CAL

tables, whose sizes are also negligible as well in our sam-

ple implementation.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 709

Fig. 8 Whiskers-box diagram of mean storage occupancy and CPU load comparison: sticky policies vs CP-ABE approach

The just presented analysis about memory occupancy

reveals that adopting an approach based on CP-ABE would

reduce the memory occupancy and the network load, thus

improving the system’s scalability in the presence of a

higher amount of data. However, CP-ABE approach more

affects the CPU load on NOS with respect to sticky policy

approach, which, on the other side, increases the compu-

tational load on data sources. In fact, following the sticky

policy approach, the data sources are in charge of com-

puting the sticky policies and transmitting them along with

the information to NOS, whereas, following the CP-ABE

approach, the computational load is moved to NOS, which

has to perform the encryption task on each incoming data.

Hence, NOS shows a mean CPU load of 15.4% by adopt-

ing sticky policies, while, when running CP-ABE, the mean

CPU load on NOS is 26.7%. Figure 8 sketches the compar-

ison just discussed about storage occupancy, network and

CPU load.

Taking into account such two perspectives, the most viable

solution appears to be the one based on CP-ABE, because

it brings the advantage of being more efficient for end-

devices, since more powerful and secure devices, as NOSs,

perform the heavier processing tasks. Such a point of view

perfectly fits the principles of the emerging fog computing

paradigm [25], which aims to: (i) reduce network’s latency;

(ii) prevent unnecessary network resources’ consumption;

(iii) enhance service availability; (iv) increase the robust-

ness of the whole IoT system thanks to the removal of

always-online points of failures into the security network

infrastructure. Note that the TA is a single point of failure in

the CP-ABE approach as well, but it has to be online only

when revoking a decryption key, so it is hardly exposed to

attacks.

4.3.2 Data retrieval delay

An important metric to be considered is the delay introduced

by the enforcement framework using sticky policies with

respect to CP-ABE. The main difference between the two

mechanisms resides in how data are disclosed and, therefore,

in how policies are evaluated. Note that “data retrieval delay”

means the time from when a consumer requests topic sub-

scription to when the same consumer receives and decrypts

the relative data. Moreover, as emerged in Sect. 4.3.1, the

packets transmitted by the data sources to NOS in case of

sticky policy approach are approximately 0.5 kilobytes larger

than the same packets sent with CP-ABE.

In the sticky policy approach, to obtain the access per-

mission, the recipients can subscribe to certain topics and

the subscription is accepted only if the request satisfies the

requirements established by the sticky policies associated

with the data. Access permissions are not locally evaluated

by NOSs, but they are delegated to the TA; a query to the

TA is sent for each occurring change and, in general, for

each incoming request, thus clearly spending time for trans-

missions and processing. Different is the approach based on

CP-ABE: once the subscribers obtained the decryption keys

needed for disclosing the authorized information, they have

no longer to make requests to the TA, which, as just said, can

be offline most of the time.

123

710 S. Sicari et al.

Fig. 9 Whiskers-box diagram of mean data retrieval delay comparison:

sticky policies vs CP-ABE approach

For such a reason, the data retrieval delays are different,

as shown in Fig. 9. Hence, CP-ABE allows to spend less

time from two perspectives: (i) the data transmission from

the source to NOS; (ii) the data disclosure. Figure 9 shows a

comparison of the mean distribution of the delays generated

by the two approaches, measured with the considered proto-

typical implementation over a period of one hour. Data rate

strictly depends on the fetching of data acquisition of the

used data set, which is every minute. The considered time

window concerns a week of measurements.

Going in depth into the analysis of delays, Fig. 10 presents

the encryption time required by CP-ABE for the three differ-

ent kinds of data, managed within the smart home, which are:

the electrical data set, the streaming video, and the remote

monitoring, as explained in Sect. 4.2.

Finally, Fig. 11 shows the time required for decryption in

CP-ABE, by varying the kind of data requested.

Summarizing, CP-ABE approach demonstrates to have

several advantages, with respect to the adoption of sticky

policies, in terms of memory occupancy on the IoT platform

and delay.

5 Related work

Typically, current proposals, addressing security and pri-

vacy issues in the IoT, focus on data communications by

enforcing data exchanges according to strict protection con-

straints, considering, at the same time, the heterogeneity of

devices and communication technologies. In fact, devices

can be characterized by different protocols. For example,

Fig. 10 Whiskers-box diagram of mean encryption time required by

CP-ABE

Fig. 11 Whiskers-box diagram of mean decryption time required by

CP-ABE

many smart devices can natively support IPv6 communica-

tions [26] [27], while other existing deployments might not

support the IP protocol within the local area scope and this

requires the design of ad-hoc gateways and middleware [28].

This is the reason for introducing NOS middleware in the

envisioned solution.

Relevant contributions on security-oriented IoT middle-

ware include: VIRTUS [29], which relies on the open

eXtensible Messaging and Presence Protocol (XMPP) to pro-

vide secure event-driven communications; Otsopack [30] and

123

Attribute-based encryption and sticky policies for data access control in a smart home… 711

Naming, Addressing and Profile Server (NAPS) [31], which

are data-centric frameworks based on the usage of HTA

and REpresentational State Transfer (REST) interfaces. With

respect to such frameworks, NOS is more recent and adopts a

lightweight technology, based on Node.js in an event-driven

fashion, which perfectly fits the requirements of IoT applica-

tions. Also various projects have the final purpose of deliv-

ering a framework able to dynamically integrate user data

(e.g., location, behavior) in privacy and security protocols,

as reported in [32]. As an example, within the EU FP7 project,

the RERUM middleware is based on the open-source Ope-

nIoT that was selected as the most efficient solution, mainly

due to its open-source nature and the fact that it was devel-

oped under the concepts of the broadly accepted Architec-

tural Reference Model (ARM) of the EU lighthouse project

Internet of Things Architecture (IoT-A) [33]. RERUM added

a service manager and a security server, acting all security-

and privacy-related functionalities; such a server can be

developed as a standalone component talking to the RERUM

middleware via pre-defined interfaces or as an integrated

component of the RERUM middleware. Then, the communi-

cations among the RERUM middleware and the IoT gateways

take place though a virtual private network (VPN), in order

to ensure that only authorized gateways are sending data to

the RERUM middleware in a secure way. An access control

mechanism, integrated with the RERUM middleware, is also

in place. As previously stated, NOS middleware is adopted

in this work due to its lightweight nature, which differs from

the complexity of the solution proposed by RERUM project.

Other solutions make also use of cloud computing [34], but

the role of cloud is out of the scope of the present work.

The IoT middleware named NOS, firstly implemented and

presented in [4], tried to definitely fill the gap by provid-

ing an efficient processing and assessment of the IoT data.

Such functionalities have been further coupled with a pol-

icy enforcement framework based on sticky policies [5],

and relevant security requirements have been addressed, as

detailed in Sect. 2.1. The novelty introduced in this paper

is the ABE paradigm’s integration into NOS and its com-

parison with the sticky policy based approach. It is worth to

remark that the presented solutions based on sticky policies

and CP-ABE mechanisms are both conceived to include the

presence of multiple NOSs. They can easily and securely

share data, acting as intermediaries with each other. A mech-

anism for policies’ synchronization could be required by a

specific application domain. With this regard, a solution able

to synchronize the policies among different NOSs has been

already provided in [19].

Regarding ABE, some IoT-focused cryptographic schemes

[35–37] and architectures [20,38–41] can be found in the

literature. In [35], the first KP-ABE scheme for wireless sen-

sor networks (WSNs) is presented. The proposed scheme is

composed by one trusted network controller, several users,

and several sensor nodes. Each user owns a secret key gen-

erated by the network controller, according to a policy that

describes the type of data he/she can access. Each sensor

node is pre-loaded with a set of attributes and their rela-

tive public quantities, generated by the network controller. In

[36], a lightweight KP-ABE scheme for the IoT is presented.

The math behind the proposed scheme is based on elliptic-

curve cryptography, rather than pairing-based cryptography

as the majority of the other ABE schemes. This makes the

scheme more efficient from the point of view of encryption

and decryption times. In [37], a CP-ABE scheme allowing for

constant-size keys and cipher-texts is presented. This makes

the scheme more scalable, especially in case of battery-

limited devices and bit-rate-limited channels, as in the typical

IoT application. The scheme allows only AND operators to

be used in the Boolean formulas of the policies, so it provides

for limited expressiveness. The above cryptographic schemes

are unsuitable to be used in the present paper, which aims at

comparing CP-ABE and sticky policy approaches. This is

either because they follow a KP-ABE approach instead of a

CP-ABE one ([35,36]), or because they provide for too little

policy expressiveness compared to sticky policies ([37]).

In [38], a secure publish-subscribe protocol for medical

wireless body area network (WBANs) using ABE is pro-

posed. The conceived architecture follows a star-topology

network, where a smart phone (or a similar device) manages

the communication among various nodes placed over/inside

the user’s body, monitoring his/her health conditions. Each

node can publish its data and subscribe to data generated from

other nodes. In [39], a secure MQTT for IoT is introduced,

along with the possibility of using ABE. The proposed archi-

tecture is composed by one public key generator (PKG), one

broker and several devices, which can act both as subscribers

and publishers. Each device owns the public key and a secret

key associated with some attributes that describes its fea-

tures. Then, each device subscribes to certain topics in order

to receive the data of interest. In [20], a system for smart

cities using ABE is presented. The application offers a ser-

vice of real-time road monitoring in a smart city scenario.

Smart objects (e.g., cameras) are placed along the roads and

store their sensed data on a cloud storage service. Users can

pay a subscription and obtain an ABE decryption key, in

order to retrieve and decrypt the video streams of the city

traffic in real time. In [40], a system for protecting location

data in smart buildings using CP-ABE is presented. Their

approach is based on the concept of “bubbles,” which are

coalitions of smart objects defined according to relationships

between their owners. As emerged, ABE schemes are not

widely adopted in IoT scenarios yet. For such a reason, the

analysis conducted in such a paper contributes in assessing

ABE capabilities, feasibility, and potentialities within an IoT

middleware in an IoT typical scenario.

123

712 S. Sicari et al.

6 Discussion and conclusions

The paper has presented a comparison between CP-ABE

and sticky policy approaches in a smart home environment.

The analysis, conducted by means of a prototypical imple-

mentation of the two solutions, revealed the potentialities of

CP-ABE in guaranteeing a secure-aware and efficient data

flow management with respect to approaches based on sticky

policies. In fact, with CP-ABE, the dimension of the packets

sent from the data sources to the IoT platform is reduced;

also, the memory occupancy on the IoT platform itself is

lower than the one obtained by adopting the sticky policies

approach. Furthermore, the mechanisms provided by means

of CP-ABE limits the delay of packets’ transmission from the

producer to the consumer. One main drawback of CP-ABE

is the CPU load required for performing the encryption task.

Concerning robustness toward different possible attacks, CP-

ABE appears to be more resilient. Based on the analysis

performed throughout the paper and based on the results

obtained in Sect. 4.3, we suggest some scenarios in which

CP-ABE is recommended over sticky policy and vice versa,

to help developers in choosing the right technique based

on their needs. The experimental results show us that the

sticky policy approach strains less the CPU compared to the

CP-ABE approach, therefore suggesting us that a NOS is

able to manage more smart objects when the sticky policy

approach is used. Due to this, the sticky policy approach is

recommended if the developers want to maximize the amount

of smart objects managed by a single NOS. Furthermore,

after a revocation happens, data stored on NOSs are readily

encrypted under new credentials, a feature that is not avail-

able when using CP-ABE. These characteristics make sticky

policy ideal in environments with an high density of smart

objects, like a smart building, and/or for applications that

needs secrecy of past data. Instead, the CP-ABE approach

leverages the fact that usually the NOSs are notably more

resourceful than the IoT smart objects, and it offers lim-

ited interactions with the TA. These characteristics make

CP-ABE ideal in environments with a low density of smart

objects, in which the NOS(s) can easily manage the encryp-

tion of the data generated by smart objects. The CP-ABE

approach suits both small-scale scenarios and wide-area low-

density scenarios. Small-scale scenarios are, for example, the

smart home presented in this work, or a small factory like

the one presented in [42]. Wide-area low-density scenarios

are, for example, a smart city with many smart objects (e.g.,

cameras, smart street-light) scattered throughout the city, in

which each NOS can manage a small cluster of them. This

is because CP-ABE is inherently more scalable than sticky

policies w.r.t. the TA interactions, as just said. If the sticky

policy approach is used in the last scenario, the TA could have

been a bottleneck. With regard to the future work, we plan to

evaluate the presented solution in presence of more than one

NOS and considering the TA as a fog- or cloud-based solu-

tion, in order to prevent it from representing a single point of

failure and a bottleneck for the IoT system. Another goal is

trying to analyze the correlation among the number of NOSs

and data sources/users to manage. More in detail, the authors

would investigate how many NOSs are required to efficiently

manage a certain distribution of IoT entities. Moreover, the

mechanism of key revocation will be deeper studied, evalu-

ating the time and the cost required to secure the IoT system

in case of keys’ or policies’ revocation. Finally, power con-

sumption on real IoT devices will be investigated.

Funding Open access funding provided by Universitá degli Studi

dell’Insubria within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest Sabrina Sicari declares that she has no conflict of

interest. Alessandra Rizzardi declares that she has no conflict of inter-

est. Michele La Manna declares that he has no conflict of interest.

Pericle Perazzo declares that he has no conflict of interest. Gianluca

Dini declares that he has no conflict of interest. Alberto Coen-Porisini

declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey.

Comput. Netw. 54(15), 2787–2805 (2010)

2. Sahai, A., Waters, B.: Fuzzy identity-based encryption. Eurocrypt

3494, 457–473 (2005)

3. Pearson, S., Mont, M.C.: Sticky policies: an approach for managing

privacy across multiple parties. Computer 44(9), 60–68 (2011)

4. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini,

A.: A secure and quality-aware prototypical architecture for the

internet of things. Inf. Syst. 58, 43–55 (2016)

5. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Security

towards the edge: sticky policy enforcement for networked smart

objects. Inf. Syst. 71, 78–89 (2017)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-

based encryption. In: IEEE Symposium on Security and Privacy,

2007. SP’07. pp. 321–334 (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Attribute-based encryption and sticky policies for data access control in a smart home… 713

7. (1999) IBM and eurotech, ”mqtt v3.1 protocol specifi-

cation”. http://public.dhe.ibm.com/software/dw/webservices/ws-

mqtt/mqtt-v3r1.html

8. Rizzardi, A., Sicari, S., Miorandi, D., Coen-Porisini, A.: AUPS:

an open source AUthenticated publish/subscribe system for the

internet of things. Inf. Syst. 62, 29–41 (2016)

9. Node.JS (2009). http://nodejs.org/

10. MongoDB. (2009). http://www.mongodb.org/

11. Mosquitto ”an open source mqtt v3.1/v3.1.1 broker”. (2009). http://

mosquitto.org

12. Karjoth, G., Schunter, M., Waidner, M.: Privacy-enabled services

for enterprises. In: 13th International Workshop on Database and

Expert Systems Applications, 2002. Proceedings, IEEE, pp. 483–

487 (2002)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based

encryption for fine-grained access control of encrypted data. In:

Proceedings of the 13th ACM conference on Computer and Com-

munications Security, pp. 89–98 (2006)

14. Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi,

S.R., Rahmani, A.M., Liljeberg, P.: On the feasibility of attribute-

based encryption on Internet of Things devices. IEEE Micro 36(6),

25–35 (2016)

15. Girgenti, B., Perazzo, P., Vallati, C., Righetti, F., Dini, G., Anastasi,

G.: On the feasibility of attribute-based encryption on constrained

IoT devices for smart systems. In: 2019 IEEE International Confer-

ence on Smart Computing (SMARTCOMP), IEEE, pp. 225–232

(2019)

16. Ambrosin, M., Conti, M., Dargahi, T.: On the feasibility of

attribute-based encryption on smartphone devices. In: Proceedings

of the 2015 Workshop on IoT challenges in Mobile and Industrial

Systems, ACM, pp. 49–54 (2015)

17. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini,

A.: Security policy enforcement for networked smart objects. Com-

put. Netw. 108, 133–147 (2016)

18. Baccelli, E., Cragie, R., Der Stok, P., Brandt, A.: Applicability

Statement: The Use of the Routing Protocol for Low-Power and

Lossy Networks (RPL) Protocol Suite in Home Automation and

Building Control. RFC 7733, RFC Editor, (2016). https://www.rfc-

editor.org/rfc/rfc7733.txt

19. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Dynamic

policies in internet of things: enforcement and synchronization.

IEEE Internet Things J. 4, 2228–2238 (2017)

20. Rasori, M., Perazzo, P., Dini, G.: ABE-Cities: an attribute-based

encryption system for smart cities. In: Proceedings of IEEE

SMARTCOMP 2018 (to appear), pp. 1–8 (2018)

21. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and

fine-grained data access control in cloud computing. In: Infocom,

2010 Proceedings IEEE, pp. 1–9 (2010)

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and

symmetric encryption schemes. In: Annual International Cryptol-

ogy Conference, Springer, pp. 537–554 (1999)

23. Perazzo, P., Vallati, C., Arena, A., Anastasi, G., Dini, G.: An

implementation and evaluation of the security features of RPL.

In: International Conference on Ad-Hoc Networks and Wireless,

Springer, pp. 63–76 (2017)

24. Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht,

J.: Smart*: an open data set and tools for enabling research in

sustainable homes. SustKDD 111, 112 (2012)

25. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applica-

tions and issues. In: Proceedings of the 2015 Workshop on Mobile

Big Data, ACM, pp. 37–42 (2015)

26. Palattella, M., Accettura, N., Vilajosana, X., Watteyne, T., Grieco,

L., Boggia, G., Dohler, M.: Standardized protocol stack for the

internet of (important) things. Commun. Surv. Tutor. IEEE 15(3),

1389–1406 (2013)

27. Bagci, I., Raza, S., Chung, T., Roedig, U., Voigt, T.: Combined

secure storage and communication for the Internet of Things. In:

2013 IEEE International Conference on Sensing, Communications

and Networking, SECON 2013, New Orleans, LA, United States,

pp. 523–631 (2013)

28. Boswarthick, D., Elloumi, O., Hersent, O.: M2M Communications:

A Systems Approach, 1st edn. Wiley, Hoboken (2012)

29. Conzon, D., Bolognesi, T., Brizzi, P., Lotito, A., Tomasi, R., Spir-

ito, M.: The VIRTUS middleware: an XMPP based architecture for

secure IoT communications. In: 2012 21st International Confer-

ence on Computer Communications and Networks, ICCCN 2012,

Munich, Germany, pp. 1–6 (2012)

30. Gòmez-Goiri, A., Orduna, P., Diego, J., de Ipina, D.L.: Otsopack:

lightweight semantic framework for interoperable ambient intelli-

gence applications. Comput. Hum. Behav. 30, 460–467 (2014)

31. Liu, C.H., Yang, B., Liu, T.: Efficient naming, addressing and pro-

file services in Internet-of-Things sensory environments. Ad Hoc

Netw. 18, 85–101 (2013)

32. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security,

privacy and trust in internet of things: the road ahead. Comput.

Netw. 76, 146–164 (2015)

33. Moldovan, G., Tragos, E.Z., Fragkiadakis, A., Pohls, H.C., Calvo,

D.: An IoT middleware for enhanced security and privacy: the

RERUM approach. In: 8th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), IEEE, pp. 1–5

(2016)

34. Mukherjee, B., Wang, S., Lu, W., Neupane, R., Dunn, D., Ren, Y.,

Su, Q., Calyam, P.: Flexible IoT security middleware for end-to-

end cloud-fog communication. Future Gener. Comput. Syst. 87,

688–703 (2018)

35. Yu, S., Ren, K., Lou, W.: FDAC: toward fine-grained distributed

data access control in wireless sensor networks. IEEE Trans. Par-

allel Distrib. Syst. 22(4), 673–686 (2011)

36. Yao, X., Chen, Z., Tian, Y.: A lightweight attribute-based encryp-

tion scheme for the Internet of Things. Future Gener. Comput. Syst.

49, 104–112 (2015). https://doi.org/10.1016/j.future.2014.10.010

37. Odelu, V., Das, A.K., Khan, M.K., Choo, K.K.R., Jo, M.: Expres-

sive CP-ABE scheme for mobile devices in IoT satisfying constant-

size keys and ciphertexts. IEEE Access 5, 3273–3283 (2017)

38. Picazo-Sanchez, P., Tapiador, J.E., Peris-Lopez, P., Suarez-Tangil,

G.: Secure publish-subscribe protocols for heterogeneous medical

wireless body area networks. Sensors 14(12), 22619–22642 (2014)

39. Singh, M., Rajan, M., Shivraj, V., Balamuralidhar, P.: Secure

MQTT for Internet of Things (IoT). In: 2015 Fifth International

Conference on Communication Systems and Network Technolo-

gies (CSNT), IEEE, pp. 746–751 (2015)

40. Hernández-Ramos, J.L., Pérez, S., Hennebert, C., Bernabé, J.B.,

Denis, B., Macabies, A., Skarmeta, A.F.: Protecting personal data

in IoT platform scenarios through encryption-based selective dis-

closure. Comput. Commun. 130, 20–37 (2018)

41. Rasori, M., Perazzo, P., Dini, G.: A lightweight and scalable

attribute-based encryption system for smart cities. Comput. Com-

mun. 149, 78–89 (2020)

42. La Manna, M., Perazzo, P., Rasori, M., Dini, G.: Fabelous: an

attribute-based scheme for industrial internet of things. In: 2019

IEEE International Conference on Smart Computing (SMART-

COMP), IEEE, pp. 33–38 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://nodejs.org/
http://www.mongodb.org/
http://mosquitto.org
http://mosquitto.org
https://www.rfc-editor.org/rfc/rfc7733.txt
https://www.rfc-editor.org/rfc/rfc7733.txt
https://doi.org/10.1016/j.future.2014.10.010

	Attribute-based encryption and sticky policies for data access control in a smart home scenario: a comparison on networked smart object middleware
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Networked smart objects architecture
	2.2 Sticky policies
	2.3 Cipher-text-policy attribute-based encryption

	3 Integration of CP-ABE into NOS architecture and comparison with sticky policies
	3.1 Key management

	4 Validation and experiments
	4.1 Threat model and security analysis
	4.2 Smart home scenario
	4.3 Performance evaluation
	4.3.1 Storage, network, and CPU load
	4.3.2 Data retrieval delay

	5 Related work
	6 Discussion and conclusions
	References

