
Attribute-Based Encryption

with Fast Decryption

Susan Hohenberger and Brent Waters

1 Johns Hopkins University
susan@cs.jhu.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. Attribute-based encryption (ABE) is a vision of public key
encryption that allows users to encrypt and decrypt messages based on
user attributes. This functionality comes at a cost. In a typical imple-
mentation, the size of the ciphertext is proportional to the number of
attributes associated with it and the decryption time is proportional to
the number of attributes used during decryption. Specifically, many prac-
tical ABE implementations require one pairing operation per attribute
used during decryption.

This work focuses on designing ABE schemes with fast decryption
algorithms. We restrict our attention to expressive systems without
system-wide bounds or limitations, such as placing a limit on the num-
ber of attributes used in a ciphertext or a private key. In this setting,
we present the first key-policy ABE system where ciphertexts can be
decrypted with a constant number of pairings. We show that GPSW ci-
phertexts can be decrypted with only 2 pairings by increasing the private
key size by a factor of |Γ |, where Γ is the set of distinct attributes that
appear in the private key. We then present a generalized construction
that allows each system user to independently tune various efficiency
tradeoffs to their liking on a spectrum where the extremes are GPSW on
one end and our very fast scheme on the other. This tuning requires no
changes to the public parameters or the encryption algorithm. Strate-
gies for choosing an individualized user optimization plan are discussed.
Finally, we discuss how these ideas can be translated into the ciphertext-
policy ABE setting at a higher cost.

1 Introduction

Attribute-based encryption (ABE) [18] is an expansion of public key encryption
that allows users to encrypt and decrypt messages based on user attributes. In
a key-policy ABE (KP-ABE) system, an encrypted message can be tagged with
a set of attributes, such as tagging an email with the metadata “from: Alice”,
“to: IACR board”, “subject: voting”, “date: October 1, 2012”, etc. The master
authority for the system can issue private decryption keys to users including an
access policy, such as giving to Bob a decryption key that enables him to decrypt

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 162–179, 2013.
c© International Association for Cryptologic Research 2013

Attribute-Based Encryption with Fast Decryption 163

any ciphertexts that satisfy “to: Bob” OR (“to: IACR board” AND (January 1,
2011 ≤“date” ≤ December 31, 2012)).

This access control functionality can be very powerful, but also costly. In this
work, we focus on the cost of decryption. In many key-policy ABE systems,
such as that of Goyal, Pandey, Sahai and Waters (GPSW) [13], the decryption
algorithm requires one pairing for each attribute used during decryption. (En-
cryption does not require any pairings, and is thus already fast by comparison.)

It seems conceivable that one might reduce the cost of decryption by making
tradeoffs elsewhere. One tradeoff we allow ourselves in this work is to increase
the private key size, although we ideally want to limit any increase as much
as possible. We do not, however, consider tradeoffs that increase the ciphertext
size or that place any limitations on how the ABE system can be used. That is,
we focus on fast decryption for the most general setting possible – an expres-
sive, large-universe system, where there are no bounds on, say, the number of
attributes that can appear in a ciphertext or private key. While good progress
has been made on efficient ABE in “bounded settings”, as we discuss shortly,
our focus is to develop techniques for improving efficiency in the most general
setting and for applications where it is infeasible to trade system-wide usability
for performance.

Our Contributions. We present the first expressive and “unbounded” key-policy
ABE (KP-ABE) system in a pairing setting, which requires only a constant num-
ber of pairings to decrypt any ciphertext. It builds upon the GPSW system [13].
It reduces the decryption requirements to two pairings and two exponentiations
(these exponents are 1 or 0 if the access policy is a boolean formula), while in-
creasing the number of multiplications by a factor of |Δ|, where Δ is the set of
distinct attributes used during decryption. It also increases the private key size
by a factor of |Γ |, where Γ is the set of distinct attributes used in the private
key.

We discuss several variants of this system, including a method for reducing
the ciphertext size from O(|Δ|) to three group elements (in the small universe
setting only) at the cost of larger private keys. We also discuss the difficulties
of achieving fast decryption for ciphertext-policy ABE (CP-ABE) systems in an
unbounded setting, as well as progress in the bounded setting.

In Section 5, we present generalized decryption and “key storage” algorithms
that allow each system user to independently tune various efficiency tradeoffs to
their liking on a spectrum that ranges from GPSW (shorter keys, slow decryp-
tion) on one end to our main KP-ABE construction (longer keys, fast decryption)
on the other. This tuning requires no changes to the setup, encryption or key
generation algorithms of our base construction. Rather, it is managed transpar-
ently by each user, who can choose among many possible decryption algorithms
where the amount of her private key that she needs to securely store scales ac-
cordingly. We conclude with some strategies for choosing an individualized user
optimization plan.

164 S. Hohenberger and B. Waters

1.1 Related Work

To our knowledge, the only prior work to achieve constant pairings in decryption
for an expressive KP-ABE system is that of Attrapadung, Herranz, Laguillaumie,
Libert, de Panafieu and Ráfols [3,2]. The goal of their work was on achieving short
ciphertexts. They were able to achieve very short ciphertexts (constant number
of group elements) using novel applications of aggregation techniques that have
roots in those used to achieve hierarchical identity-based encryption [14,11] with
constant size ciphertexts by Boneh, Boyen and Goh [6] and those used to achieve
practical broadcast encryption by Boneh, Gentry and Waters [8]. Our ideas begin
at this starting point as well. However, Attrapadung et al. brought in an inner
product instance as a base building block which fundamentally demands a bound,
n, on the maximum number of attributes that can appear in a ciphertext. This
choice of n forces a tradeoff between flexibility and performance.

One needs to set n high to cover the “worst” case even if the typical encryption
uses far fewer attributes. Unfortunately, their private key size blows up by a
factor of n, whereas our key size only increases by a factor of the number of
distinct attributes used in that particular key. Moreover, for a ciphertext that
encrypts with |S| attributes, they have an added cost of |S| exponentiations
during decryption. This could be very costly in some situations. Suppose Alice
has the key policy (A1 AND A2) and receives a ciphertext with many attributes
A1, A2, . . . , A1000. In their system, Alice must do 1000 exponentiations, which is
actually much worse than if she was only required to do one pairing per attribute
used in decryption.1

This work aims to avoid these “worst case” penalties. In particular, we want
that a user’s key size be related to the complexity of her key. In their scheme,
it grows with n. In decryption, the computational cost should be related to
how many rows of the LSSS one must use. In their scheme, the number of
exponentiations grows with the number of attributes in the ciphertext. This
is a tradeoff relative to GPSW [13]. Finally, in their scheme, the number of
multiplications is roughly |I| · |S|, the number of rows used in decryption times
the number of attributes in a ciphertext. Ours is |I| · |Δ|, the number of rows
used in decryption times the number of distinct attributes used in decryption.
Note that |Δ| ≤ |S|.

While we have pointed out some of the areas for improvement in Attrapadung
et al. for comparison’s sake, we do wish to stress that this was a pioneering work
that showed that short ciphertexts and fast decryption was possible at all for
KP-ABE. We also refer the reader to that work for an excellent summary of
the efficiency of prior ABE schemes. Our work compliments theirs by taking the
study of fast decryption for ABE into the unbounded realm with tighter growth.

We note that Identity-Based Encryption [19,7,10] was an early forerunner
of ABE and several technique from IBE impact ABE systems. Finally, in this
work, we only consider selective security [9], however, we believe our techniques

1 The polynomial related to Y in their construction grows with the number of at-
tributes in the ciphertext.

Attribute-Based Encryption with Fast Decryption 165

could apply to more recent systems proven adaptively secure using dual system
encryption [15,17].

2 Background

This section covers background information. We make use of the standard def-
initions for access structures and linear secret sharing schemes (LSSS), as well
as the conventions and notation for these employed in several prior ABE works.
These are included in Appendix A for reference.

2.1 Definitions of Security for Key Policy ABE Schemes

Definition 1 (KP-ABE Algorithm Specification). A key-policy attribute-
based encryption system for message space M and access structure space G is a
tuple of the following algorithms:

Setup(λ, U) → (PK,MK). The setup algorithm takes as input a security pa-
rameter λ and a universe description U , which defines the set of allowed
attributes in the system. It outputs the public parameters PK and the master
secret key MK.

Encrypt(PK,M, S) → CT. The encryption algorithm takes as input the pub-
lic parameters PK, a message M and a set of attributes S and outputs a
ciphertext CT associated with the attribute set.

KeyGen(MK,A) → SK. The key generation algorithm takes as input the mas-
ter secret key MK and an access structure A and outputs a private key SK
associated with the attributes.

Decrypt(SK,CT) → M . The decryption algorithm takes as input a private key
SK associated with access structure A and a ciphertext CT associated with
attribute set S and outputs a message M if S satisfies A or the error message
⊥ otherwise.

The correctness property requires that for all sufficiently large λ ∈ N, all universe
descriptions U , all (PK,MK) ∈ Setup(λ, U), all S ⊆ U , all SK ∈ KeyGen(MK,A),
all M ∈ M, all A ∈ G and all CT ∈ Encrypt(PK,M, S), if S satisfies A, then
Decrypt(SK,CT) outputs M .

Security Model for KP-ABE LetΠ = (Setup,Encrypt,KeyGen,Decrypt) be a KP-
ABE scheme for message space M and access structure space G, and consider
the following experiment for an adversaryA, parameter λ and attribute universe
U :

The KP-ABE Experiment KP-ABE-ExpA,Π(λ, U):

Setup. The challenger runs the Setup algorithm and gives the public parame-
ters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an
integer counter j = 0. Proceeding adaptively, the adversary can repeatedly
make any of the following queries:

166 S. Hohenberger and B. Waters

– Create(A): The challenger sets j := j + 1. It runs the key generation
algorithm on A to obtain the private key SK and stores in table T the
entry (j,A, SK).
Note: Create can be repeatedly queried with the same input.

– Corrupt(i): If there exists an ith entry in table T , then the challenger
obtains the entry (i,A, SK) and sets D := D ∪ {A}. It then returns to
the adversary the private key SK. If no such entry exists, then it returns
⊥.

– Decrypt(i,CT): If there exists an ith entry in table T , then the challenger
obtains the entry (i,A, SK) and returns to the adversary the output of
the decryption algorithm on input (SK,CT). If no such entry exists, then
it returns ⊥.

Challenge. The adversary submits two equal length messages M0 and M1. In
addition the adversary gives a set of attributes S∗ such that for all A ∈ D,
the set S∗ does not satisfy the access structure A. The challenger flips a
random coin b, and encrypts Mb under S∗. The resulting ciphertext CT∗ is
given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot
– trivially obtain a private key for the challenge ciphertext. That is, it

cannot issue a Corrupt query that would result in an access structure A

which S∗ satisfies being added to D.
– issue a decryption query on the challenge ciphertext CT∗.

Guess. The adversary outputs a guess b′ of b. The output of the experiment is
1 if and only if b = b′.

Definition 2 (KP-ABE Security). A KP-ABE scheme Π is CCA-secure (or
secure against chosen-ciphertext attacks) for attribute universe U if for all prob-
abilistic polynomial-time adversaries A, there exists a negligible function negl
such that:

Pr[KP-ABE-ExpA,Π(λ, U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-
plaintext attacks) if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init
stage before Start where the adversary outputs the challenge attribute set S∗

(instead of waiting until Challenge).

2.2 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be
a generator of G and e : G × G → GT be a bilinear map with the properties:
(1) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

and (2) Non-degeneracy: e(g, g) �= 1. We say that G is a bilinear group if the
group operation in G and the bilinear map e : G× G → GT are both efficiently
computable. We now state an assumption used in the constructions.

Attribute-Based Encryption with Fast Decryption 167

Definition 3 (Decisional BDHE [6]). Let a, s ∈ Zp be chosen at random and
g be a generator of group G of prime order p ∈ Θ(2λ). The decisional q-BDHE
assumption is that all probabilistic polynomial-time algorithms A given the vector
y=

G, p, g, gs, ga, . . . , g(a
q), g(a

q+2), . . . , g(a
2q)

have an advantage negligible in λ of distinguishing e(g, g)a
q+1s ∈ GT from a

random element in R ∈ GT . The advantage of A is defined as

∣
∣
∣
∣
Pr
[

A(y, e(g, g)aq+1s) = 0
]

− Pr
[A(y, R) = 0

]
∣
∣
∣
∣

where the probability is taken over the random choice of a, s in Zp, R in GT and
the generator g, and the random bits consumed by A.

3 ABE with Fast Decryption

3.1 The Base Construction: Small Universe KP-ABE

We first describe a system for a small universe U of attributes, where |U | is a
polynomial in 1λ, and the attributes are the integers 1, . . . , U . Subsequently, we
will describe how to alter this construction to accommodate a large universe
U = {0, 1}∗ of attributes in the random oracle model. When we refer to our base
construction in a setting where large universes are assumed, we mean this close
variant. The message space is GT .

Setup(λ, U) → (PK,MK). The setup algorithm first chooses a bilinear group G

of prime order p ∈ Θ(2λ). It selects a random generator g ∈ G. It next selects
random values h1, . . . , h|U| ∈ G and α ∈ Zp. It then sets the keys as:

PK = (G, p, g, e(g, g)α, h1, . . . , h|U|), MK = (PK, α).

Encrypt(PK,M, S) → CT. The encryption algorithm takes as input the public
parameters PK, a message M ∈ GT to encrypt, and a set of attributes S. It
chooses a random s ∈ Zp. The ciphertext is published as CT = (S,C, Ĉ, {Cx})
where

C = M · e(g, g)αs, Ĉ = gs, {Cx = hs
x}x∈S.

KeyGen(MK,A) → SK. The key generation algorithm takes as input the master
secret key and an LSSS access structure (W,ρ). Let W be an 	× n matrix. The
function ρ associates rows of W to attributes. Let Γ denote the set of distinct
attributes the appear in the access structure matrix W ; that is, Γ = {d : ∃i ∈
[1,], ρ(i) = d}. The algorithm first chooses a random vector v = (α, y2, ..., yn) ∈
Z
n
p . These values will be used to share the master secret α. For i = 1 to 	, it

calculates λi = v · Wi, where Wi is the vector corresponding to the ith row of

168 S. Hohenberger and B. Waters

W . In addition, the algorithm chooses random r1, . . . , r� ∈ Zp. It sets the private
key SK as:

PK, (D1 = gλ1 · hr1
ρ(1), R1 = gr1 , ∀d ∈ Γ/ρ(1), Q1,d = hr1

d), . . . ,

(D� = gλ� · hr�
ρ(�), R� = gr� , ∀d ∈ Γ/ρ(), Q�,d = hr�

d).

In our notation above, we slightly abuse the set minus notation, and by Γ/x,
where Γ is a set and x is a single element, we mean Γ/{x}; i.e., the set Γ with
the element x removed if present.

These keys contain GPSW [13] keys with the addition of the “helper values”
Qi,d. The key size is proportional to |Γ | · 	, which is the number of distinct
attributes that appear in the access matrix times the number of rows in the
matrix. Since |Γ | ≤ 	, we have |Γ | · 	 ≤ 	2.

Decrypt(SK,CT) → M . The decryption algorithm takes as input a key SK =
(PK, (D1, R1, {Q1,d}), . . . , (D�, R�, {Q�,d})) for access structure (W,ρ) and a ci-

phertext CT = (C, Ĉ, {Cx}x∈S) for set S. LetW be an 	×nmatrix. The function
ρ associates rows of W to attributes. If S does not satisfy the access structure, it
outputs ⊥. Suppose that S satisfies the access structure and let I ⊆ {1, 2, . . . , 	}
be a set of indices and {ωi}i∈I ∈ Zp be a set of constants such that:

1. For all i ∈ I, ρ(i) ∈ S.

2.
∑

i∈I ωi ·Wi = (1, 0, 0, . . . , 0).

We then define Δ = {x : ∃i ∈ I, ρ(i) = x}. That is, I is the set of indices
corresponding to the rows used in one possible way to decrypt the ciphertext
and Δ is the set of distinct attributes associated with these rows. In general,
there can be multiple such I that satisfy the above constraints. Typically, one
will wish to minimize the size of I. Note that Δ ⊆ S, where S is the attributes
used to encrypt the ciphertext, and Δ ⊆ Γ , the set of attributes used to create
the private key.

Next we define the function f which transforms a set of attributes into an
element of G as:

f(Δ) =
∏

x∈Δ

hx.

To decrypt, the algorithm will first do a pre-processing step on the private key.
For each i ∈ I, it will compute the value

D̂i = Di ·
∏

x∈Δ/ρ(i)

Qi,x = gλif(Δ)ri .

Next, the algorithm will do a pre-processing step on the ciphertext by computing
the value

L =
∏

x∈Δ

Cx =
∏

x∈Δ

hs
x = f(Δ)s.

Attribute-Based Encryption with Fast Decryption 169

The algorithm now recovers the value e(g, g)αs by computing

e(Ĉ,
∏

i∈I

D̂ωi

i)/e(
∏

i∈I

Rωi

i , L) =

e(gs,
∏

i∈I

gλiωif(Δ)riωi)/e(
∏

i∈I

griωi , f(Δ)s) =

e(g, g)αs · e(g, f(Δ))s
∑

i∈I riωi/e(g, f(Δ))s
∑

i∈I riωi = e(g, g)αs.

The decryption algorithm can then divide out this value from C and obtain
the message M . The decryption algorithm requires the computation of only two
pairing operations.

3.2 Efficiency and Tradeoffs

The main feature of the above scheme is that decryption only requires two pair-
ings. While decryption also requires two exponentiations per row used, if the
LSSS is derived from an AND/OR tree then the exponents wi will be 1. (That
is, they will be either 0 or 1, but the wi = 0 rows should not be used.) Thus,
decryption can be very fast. There are two tradeoffs:

1. The private key size and generation time blows up by roughly a factor of |Γ |
compared to GPSW, where Γ is the set of distinct attributes used in making
the key.

2. Decryption reduces the number of pairings, but requires modular multipli-
cations of roughly a factor of |Δ| compared to GPSW, where Δ is the set of
distinct attributes used in decryption.

Thus, while there is a blow-up, this increase is tied only to the number of distinct
attributes “touched” by the corresponding operation, and not by a global bound.
Depending on the application, one should take into consideration whether the
blow up in key size is worth it. Moreover, the decryption time could actually
increase over GPSW [13] once Δ becomes sufficiently large. However, it would
have to be so large that 2 pairings plus |I| · |Δ| multiplications dominates |Δ|
pairings and |I| multiplications. As one benchmark, it required 8.22ms to com-
pute a pairing for a BN256 curve with the RELIC library on a modern PC while
roughly 0.0034ms to compute a modular multiplication. Thus, in a setting where
|I| = |Δ| (the number of rows of the access matrix touched during decryption
is the same as the number of distinct attributes touched), the decryption algo-
rithm would need to touch over 2416 distinct attributes before GPSW would
be faster. Should this occur, however, it is worth noting that the above private
keys actually contain a GPSW key; thus, if this threshold was ever reached, one
could revert back to doing GPSW decryption.

In Section 5, we will provide a generalized construction for finer-grained trade-
off optimization.

170 S. Hohenberger and B. Waters

3.3 Large Universe Realizations

The construction in Section 3.1 can be transformed so that any string can be
a valid attribute; that is, U = {0, 1}∗, as follows: Assume that all parties have
access to a hash function H : {0, 1}∗ → G, which will be treated as a random
oracle. Remove the values h1, . . . , h|U| from the public parameters PK. For any
attribute x ∈ {0, 1}∗, define the value hx = H(x). Otherwise, follow the con-
struction as written. Thus, the efficiency is the same, modulo additional hash
function evaluations. Regarding the proof of security, let q be the maximum
number of unique queries made to the random oracle. Then, this large universe
construction is selectively, CPA-secure under the Decisional q-BDHE assump-
tion in the random oracle model. The proof will follow the outline of that in
Section 4 except that Setup no longer outputs any hx values and instead B must
simulate the random oracle as follows. It should initialize an empty table TRO

at the beginning of the experiment. On each query for attribute x to the ran-
dom oracle, B should first look to see if x is in TRO and if so, return the value
associated with it.

If x is not in TRO, B creates a new table entry (x, i, hx) for it as follows. Let i
be the number of unique attributes queried to the random oracle (including x)
at the time of this query. Let zx be a random value in Zp. Then set

hx :=

{

gzx if x ∈ S∗;
gzxga

i

if x �∈ S∗.

An interesting question is whether one can achieve fast decryption for a large
universe in the standard model. Lewko and Waters [16] gave a large universe con-
struction for KP-ABE in the standard model. However, their technique requires
that each attribute in the ciphertext have some “local” randomness associated
with it. This does not work with our methods here which leverage the fact that
there is only one random exponent that propagates through the ciphertext.

3.4 Short Ciphertext Realizations

In Section 3.1, we focused on optimizing decryption time. For some applications
where bandwidth or storage space is a practical concern, one might prefer to
optimize on ciphertext size. In the small universe construction, we can compress
the ciphertext into only three group elements (as opposed to 2 + |S| group
elements in Section 3.1) plus the description of the attribute set S. The main
tradeoff is that private key sizes must scale by a factor of the size |U | of the
universe (compared to GPSW [13]), as opposed to scaling by only Γ as above.

We now sketch the main idea. During encryption, instead of including the set
{Cx = hs

x}x∈S in the ciphertext, it now includes the product of these values,
the “aggregate”

∏

x∈S Cx = f(S)s. Thus, the ciphertext contains three group
elements of the form:

C = M · e(g, g)αs, Ĉ = gs,
∏

x∈S

Cx = f(S)s.

Attribute-Based Encryption with Fast Decryption 171

When generating the private key, replace Γ with U ; that is, instead of only having
“helper values” Qi,x for attributes x used in the access matrix, one now must
include helpers for any attribute in the universe. This will allow the decryptor to
handle an aggregate of any set of attributes. Thus, following the setup as before,
the private keys are of the form:

PK, (D1 = gλ1 · hr1
ρ(1), R1 = gr1 , ∀d ∈ U/ρ(1), Q1,d = hr1

d), . . . ,

(D� = gλ� · hr�
ρ(�), R� = gr� , ∀d ∈ U/ρ(), Q�,d = hr�

d).

The key size is proportional to |U | · 	, which is size of the attribute universe
times the number of rows in the matrix. Due to the dependence on |U |, this
aggregation unfortunately only works for small universes of attributes.

Finally, run the decryption algorithm as it is written, but understand that Δ
will always be S due to the aggregate. This will increase the number of modular
multiplications over Section 3.1, but not the number of pairings.

3.5 CP-ABE Variants

One might consider trying to apply these techniques in the CP-ABE setting [5,12]
by analogously modifying an “unrestricted” CP-ABE construction, such as Wa-
ters [20, Section 3]. A natural analogy would arise in a CP-ABE system where
the ciphertext size and encryption time blows up by a factor of X, where X is the
number of distinct attributes used in the ciphertext access structure. In some
applications, one might consider this to be a less palatable tradeoff. That is, one
might not be willing to increase the transmission costs (i.e., ciphertext size) and
encryption time, even if it meant faster decryption times.

We note, however, that if one is willing to consider “bounded” systems, where
a value kmax can be set system-wide as the maximum number of times a single
attribute can appear in a particular formula (or access structure), then one can
achieve fast decryption without an increase in ciphertext size or encryption time.
One such example is the CP-ABE construction of Waters [20, Section 5]. The
critical part of the decryption algorithm appears in that paper as

e(C′,K)/

(
∏

i∈I

(e(Ci, L) · e(C′,Kρ(i)))
ωi

)

which seems to require a non-constant (2|I|+1) pairings. However, this equation
is identical to:

e(
∏

i∈I

C−ωi

i , L) · e(C′,K
∏

i∈I

K−ωi

ρ(i))

which requires only two pairings. The observation that this bounded scheme
offers fast decryption was previously made in its Charm [1] implementation.

172 S. Hohenberger and B. Waters

4 Proof of the Base Construction

Theorem 1 (Security of the Small Universe KP-ABE). The KP-ABE
scheme Π in Section 3.1 for attribute universe U is selectively secure against
chosen-plaintext attacks under the Decisional |U |-BDHE assumption in G.

Proof. Let U be an attribute universe, where |U | is a polynomial in 1λ. For
notational convenience, we will assume each of the |U | attributes is a unique
integer between 1 and |U |.2 Next suppose there exists a PPT adversary A that
causes the selective, CPA security experiment KP-ABE-Expsel-CPAA,Π (λ, U) to output
1 with non-negligible probability. Then, we can construct a PPT adversary B
that violates the Decisional |U |-BDHE assumption in G as follows:

Init: A outputs a set S∗ of attributes for the challenge ciphertext.
Setup: B receives the Decisional |U |-BDHE challenge input

(G, p, g, gs, ga, . . . , g(a
|U|), g(a

|U|+2), . . . , g(a
2|U|), P)

for security parameter λ. It chooses random α′, z1, . . . , z|U| ∈ Zp and sets

e(g, g)α := e(g, g)α
′ · e(ga, ga|U|

) (implicitly defining α as (α′ + a|U|+1)) and

for x ∈ [1, |U |], sets hx :=

{

gzx if x ∈ S∗;
gzxga

x

if x �∈ S∗.

It sets the public parameters PK as (G, p, g, e(g, g)α, h1, . . . , h|U|) and sends
them to A. Note that all parameters are well distributed due to the α′ and
zx values.

Phase 1: B initializes an empty table T , an empty set D and a counter j = 0.
B responds to A’s queries as follows:
1. Create(A): B sets j := j + 1. It parses A as (W,ρ), where W is an 	 × n
matrix. B will now work in two steps. First, it will create a valid private key,
but not necessarily a well-distributed one. Then, it will re-randomize the key
to ensure it is well distributed.

Let K be the set of rows where the attributes are in S∗ (i.e., for i ∈
K, ρ(i) ∈ S∗.) and K ′ be the rows where attributes are not in S∗ (i.e.,
K ′ = [1,]/K). Define an n dimensional vector v over Zp. Let v1 = 1 (i.e.,
first element of v is 1) and for all i ∈ K,v · Wi = 0. (Here Wi is the
n-dimensional vector that is row i of the matrix W .) To see that this is
well-defined, consider that since S∗ does not satisfy W , it must be the case
that (1, 0, 0..., 0) is not in the span of rows Wi for i ∈ K. It then follows from
linear algebra that such a vector v exists.

Next, B will make a private key for secret sharing with the vector αv (i.e.,
the vector v with all the components scaled up by α.) This shares the secret

2 A more proper notation would define an injective function t() mapping attributes to
integers from 1 to |U | and then wherever we refer to an attribute x to instead refer
to t(x). However, this is more cumbersome.

Attribute-Based Encryption with Fast Decryption 173

α since v1 = 1, although the key may not be well distributed. This will be
addressed later through re-randomization. The shares λi for i ∈ [1,] are
computed as (αv) ·Wi.

For i ∈ K, we have that all components are just the identity element
(recall that the key is not re-randomized yet; we add the hx components in
shortly with the randomization): Di = Ri = Hi,x = g0 for x ∈ Γ (recall Γ
is the set of distinct attributes used in key generation). This follows because
for all i ∈ K,λi = 0.

For i ∈ K ′, we first compute ci = v ·Wi. Note that λi = ci · α = ci · (α′ +
a|U|+1). To produce these key components, we need a cancellation technique.

Set Ri = g−cia
(|U|+1)−ρ(i)

, which implicitly defines ri = −ci·a(|U|+1)−ρ(i). This
is computable from B’s challenge input since ρ(i) is between 1 and |U |. Set

Di = gciα
′ ·Rzi

i

= gciα
′ · g−zicia

(|U|+1)−ρ(i)

= gciα
′ · gcia|U|+1 · g−zicia

(|U|+1)−ρ(i) · g−cia
|U|+1

= gciα · (gzi)ri · (gaρ(i)

)ri

= gciα · hri
ρ(i)

Next, we turn to computing the helper values. For all x ∈ Γ/ρ(i), set Qi,x =
hri
x by computing as follows:

hri
x :=

{

(gzx)ri = g−zxcia
(|U|+1)−ρ(i)

if x ∈ S∗;
(gzx)ri · (gax

)ri = g−zxcia
(|U|+1)−ρ(i) · g−cia

(|U|+1)−ρ(i)+x

if x �∈ S∗.

This last part is computable since ρ(i) �= x for the helper values and recall
that the zx values were chosen by B during Setup.

At this point, B has constructed the components of a valid private key.
Next, we give a public-key re-randomization algorithm that can be applied
by B to any valid private key, before it sends the key to A. To re-randomize,
choose random y2, ..., yn ∈ Zp. Consider the vector (0, y2, y3, ..., yn). This will
be used to secret share 0 to re-randomize the key. Let λ′

i = (0, y2, y3, ..., yn) ·
Wi for i ∈ [1,].

For all i ∈ [1,], the first step to re-randomization is to let D#
i := Di ·gλ′

i .
The next step is to re-randomize all the ri values, which are used in all key
components. To do this, choose a fresh r′i ∈ Zp and set

D′
i := D#

i · hr′i
ρ(i) R

′
i := Ri · gr′i Q′

i,x := Qi,x · hr′i
x , ∀x ∈ Γ/ρ(i)

We claim that the above re-randomization procedure correctly re-randomizes
any “valid” key. A valid key is one which is generated from some sharing of
α, but not necessarily a well distributed one. The above algorithm propa-
gates new random values r′1, . . . , r′� completely through all key components,
and then also generates a fresh secret sharing for α used in D′

1, . . . , D
′
�.

174 S. Hohenberger and B. Waters

This properly redistributes the only variable parts of the key. That is the
distribution after applying this transformation to any valid key with policy
(W,ρ) has the same distribution as a fresh key generated by running KeyGen
for (W,ρ).

2. Corrupt(i): If there exists an ith entry in table T , then B obtains the
entry (i,A, SK) and sets D := D ∪ {A}. It then sends SK to A. If no such
entry exists, then it returns ⊥.

Challenge: A outputs two messages M0,M1 and B chooses a random bit b. B
then constructs and sends to A the challenge ciphertext

CT∗ = (C∗ := Mb · P, C′ := gs, ∀x ∈ S∗, C∗
x := (gs)zx).

Phase 2: B responds to A’s queries in the same manner as in Phase 1, except
that it refuses to answer any Corrupt query that would result in an access
structure A which S∗ satisfies being added to D.

Guess: Eventually, A outputs a bit b′. If b = b′, then B outputs 0 (guessing

that P = e(g, g)a
|U|+1s), else it outputs 1 (guessing that P is random.)

Thus, B’s responses to A are distributed identically as in the KP-ABE-
Expsel-CPAA,Π (λ, U) experiment. Whenever A causes the output of this experiment
to be 1, B will also correctly answer its Decisional BDHE challenge.

5 Exploring a Spectrum of Efficiency Tradeoffs

We now focus on the tradeoff between private key size and decryption time. We
generalize the construction ideas of the last section to give a spectrum of possible
“unbounded” schemes, where GPSW is one extreme and Section 3 (longer keys,
faster decryption) is the other. We do this in two steps. We first present a
generalized decryption algorithm. We then show how the size of the private
key scales depending on how one chooses to take advantage of this generalized
decryption algorithm. We conclude with strategies for keeping both key size and
decryption time low.

5.1 A Generalized Decryption Algorithm

To begin, we present a generalized decryption algorithm for the GPSW cipher-
texts (which are the same as the encryption algorithm presented in Section 3.1).
The main idea is to break Δ (the set of distinct attributes associated with the
rows of the access matrix used in one chosen way to decrypt the ciphertext) into
y disjoint subsets Δ1, Δ2, . . . , Δy. Recall that we defined the function f as

f(Δ) =
∏

x∈Δ

hx ∈ G.

Further, let us establish the notation for a function w that (informally) takes in
a attribute and outputs which set the attribute is in. More formally, let w : Δ →
[1, y] be a map such that w(x) = j if and only if x ∈ Δj .

Attribute-Based Encryption with Fast Decryption 175

The decryption algorithm then proceeds as follows. For each i ∈ I, it will
compute the value

D̂i = Di ·
∏

x∈Δw(ρ(i))/ρ(i)

Qi,x = gλif(Δw(ρ(i)))
ri .

Next, for each j ∈ [1, y], it will compute the value

Lj =
∏

x∈Δj

Cx =
∏

x∈Δj

hs
x = f(Δj)

s.

The algorithm now recovers the value e(g, g)αs by computing

e(Ĉ,
∏

i∈I

D̂ωi

i)/

⎛

⎝

y
∏

j=1

e(
∏

i:ρ(i)∈Δi

Rωi

i , Lj)

⎞

⎠ .

The decryption algorithm can then divide out this value from C and obtain the
message M .

We observe that this will take (1 + y) pairings and roughly |Δ1|2 + |Δ2|2 +
· · · + |Δy |2 modular multiplications. (Recall that the ωi values will be either 0
or 1 when the access structure is a boolean formula, so no exponentiations come
into play in this case.) Thus, when y = 1, we have the scheme from Section 3.1
(which can be trivially extended to large universes in the random oracle model
as shown in Section 3.3) and when y = |Δ|, this corresponds to GPSW.

5.2 Reducing Private Key Overhead

At this point, the private key still contains “helper” values such that each of the
	 rows has helpers for all other attributes in Δ. However, we can reduce the size
of the private key by eliminating all helper values Qi,x where where attribute
ρ(i) ∈ Δd, attribute x ∈ Δd′ and d �= d′, i.e., where the two attributes were
separated into distinct subsets. This is because only helpers within subsets will
be used in the generalized decryption algorithm. We note that the security of
the base system trivially implies security of this system, since for each private
key in this reduced setting the components given out are a strict subset of the
private key components in the base system.

5.3 Different Tradeoff Strategies

We now discuss how one might take advantage of the generalized algorithm and
corresponding private key reduction. The choice of y and the subsets Δ1, . . . , Δy

is critical to the decryption performance of a particular user. Roughly, one ex-
pects decryption time to increase with y, but the size of the private key to
decrease as the size of each Δi decreases. However, a nice feature of this ap-
proach is that each user can tune their own performance based on how they
think they are likely to use their private key. A user might choose to retain her
entire private key on her PC, but upload only a portion of her private key to her
mobile device (where secure storage may be more limited.)

176 S. Hohenberger and B. Waters

1. Group attributes by expected ciphertext attributes. Group together any at-
tributes that are likely to appear together in a ciphertext, such as attributes
relating to a certain work project, activity, role or time period. For instance,
one might group together the attributes “cryptography”, “encryption”, and
“pairings” and form a distinct group for the attributes “audubon”, “pere-
grine falcon”, “glaucous gull”. Of course, the subsets of Δ need not be dis-
tinct3 and it could be more efficient to place an attribute into two or more
groups, but this should be done with care or the decryption time will increase
without reducing the private key size.

2. Group attributes by observing the private key. It may be possible to deduce
from the access structure which attributes are likely to be used together
during decryption. For instance, suppose the structure is a formula and the
only time that attributes A and B appear, they appear as “A AND B”. Then
clearly one should place A and B into the same group Δi.

3. Break into y equal sized subsets of attributes. One could also try the sim-
ple approach of choosing a y and randomly creating y equal-sized subsets.
In many practical applications, the average overhead incurred on future ci-
phertexts would be dependent on the overhead from past ciphertexts, so one
could try a random setting and then observe performance.

4. Benchmark and set experimentally. One can also imagine starting with any
combination of the three above techniques and then applying machine learn-
ing tools to evolve to a good balance point for any particular user.

We leave an evaluation of these strategies and their performance as an interesting
open problem.

Acknowledgments. The authors thank Matthew Green for helpful input and
discussions and the anonymous reviewers for helpful comments. This work was
performed while the authors were at Zeutro, LLC.

References

1. Ayo Akinyele, J., Belvin, G., Garman, C., Pagano, M., Rushanan, M., Martin, P.,
Miers, I., Green, M., Rubin, A.: Charm: A tool for rapid cryptographic prototyping
(2012), http://www.charm-crypto.com/

2. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

3. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-
Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer,
Heidelberg (2011)

4. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3 If the subsets are not distinct, then one needs to generalize the function w to output
a subset of indices.

http://www.charm-crypto.com/

Attribute-Based Encryption with Fast Decryption 177

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

9. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

10. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

11. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

12. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

14. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

15. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

16. Lewko, A., Waters, B.: Unbounded HIBE and Attribute-Based Encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

17. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

18. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

19. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

20. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

178 S. Hohenberger and B. Waters

A Access Structures and Notation

A.1 Access Structures

Definition 1 (Access Structure [4]) Let {P1, P2, . . ., Pn} be a set of parties.
A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then
C ∈ A. An access structure (respectively, monotone access structure) is a col-
lection (resp., monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn},
i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the
access structure A will contain the authorized sets of attributes. We restrict our
attention to monotone access structures. However, it is also possible to (inef-
ficiently) realize general access structures using our techniques by defining the
“not” of an attribute as a separate attribute altogether. Thus, the number of
attributes in the system will be doubled. From now on, unless stated otherwise,
by an access structure we mean a monotone access structure.

A.2 Linear Secret Sharing Schemes

The construction will use linear secret sharing schemes, as slightly adapted from
Beimel [4]:

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares of the parties form a vector over Zp.
2. There exists a matrix M with 	 rows and n columns called the share-generating

matrix for Π. There exists a function ρ which maps each row of the matrix
to an associated party. That is for i = 1, . . . , 	, the value ρ(i) is the party as-
sociated with row i. When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp are randomly
chosen, then Mv is the vector of 	 shares of the secret s according to Π. The
share (Mv)i belongs to party ρ(i).

It is shown in [4] that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊆ {1, 2, . . . , 	} be defined as I = {i : ρ(i) ∈ S}. Then, there exist
constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s accord-
ing to Π , then

∑

i∈I ωiλi = s. It is shown in [4] that these constants {ωi} can
be found in time polynomial in the size of the share-generating matrix M .

Like any secret sharing scheme, it has the property that for any unauthorized
set S /∈ A, the secret s should be information theoretically hidden from the
parties in S.

Attribute-Based Encryption with Fast Decryption 179

Note on Convention. We use the convention that vector (1, 0, 0, . . . , 0) is the
“target” vector for any linear secret sharing scheme. For any satisfying set of
rows I in M , we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span
of the rows of the set I. Moreover, there will exist a vector w such that w ·
(1, 0, 0 . . . , 0) = −1 and w ·Mi = 0 for all i ∈ I.

Using Access Trees. Some prior ABE works (e.g., [13]) described access formulas
in terms of binary trees. Using standard techniques [4] one can convert any
monotonic boolean formula into an LSSS representation. An access tree of 	
nodes will result in an LSSS matrix of 	 rows.

	Attribute-Based Encryptionwith Fast Decryption
	Introduction
	Related Work

	Background
	Definitions of Security for Key Policy ABE Schemes
	Bilinear Maps

	ABE with Fast Decryption
	The Base Construction: Small Universe KP-ABE
	Efficiency and Tradeoffs
	Large Universe Realizations
	Short Ciphertext Realizations
	CP-ABE Variants

	Proof of the Base Construction
	Exploring a Spectrum of Efficiency Tradeoffs
	A Generalized Decryption Algorithm
	Reducing Private Key Overhead
	Different Tradeoff Strategies

	References

