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Abstract. We propose attribute-based encryption schemes where
encryptor-specified access structures (also called ciphertext policies) are
hidden. By using our schemes, an encryptor can encrypt data with a hid-
den access structure. A decryptor obtains her secret key associated with
her attributes from a trusted authority in advance and if the attributes
associated with the decryptor’s secret key do not satisfy the access struc-
ture associated with the encrypted data, the decryptor cannot decrypt
the data or guess even what access structure was specified by the en-
cryptor. We prove security of our construction based on the Decisional
Bilinear Diffie-Hellman assumption and the Decision Linear assumption.
In our security notion, even the legitimate decryptor cannot obtain the
information about the access structure associated with the encrypted
data more than the fact that she can decrypt the data.

Keywords: Attribute-Based Encryption, Recipient Anonymity, Access
Control on Encrypted Data, Ciphertext Policy.

1 Introduction

In the distributed setting, we need to enforce access control polices to protect
various resources. In such settings, it may be suitable to specify access con-
trol policies based on attributes rather than individual identities, because an
identity may not have enough information about its entity. Attribute-based en-
cryption (ABE) is a mechanism by which we can realize such access control
in a cryptographic way. There are two kind of ABE schemes, key-policy and
ciphertext-policy ABE schemes.

In the key-policy ABE schemes [12,18,19,15], ciphertexts are associated with
sets of attributes and users’ secret keys are associated with access structures. If
the attributes associated with the ciphertext satisfy the access structure of the
secret key, the secret key holder can decrypt the ciphertext successfully. Also
the concept of searchable and predicate encryption [5,21] is related to key-policy
ABE in the sense that successful decryption is conditional on access structure
associated with secret keys.
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On the other hand, in the ciphertext-policy ABE (CP-ABE) schemes [2, 11,
15, 16], the situation is reversed. That is, attributes are associated with secret
keys and access structures are associated with ciphertexts and called ciphertext
policies. The access structures are described with the attributes and therefore
the concept of CP-ABE is closely related to Role-Based Access Control.

In this work, we focus on CP-ABE and construct a CP-ABE scheme where
we can hide encryptor-specified access structures associated with ciphertexts.
Our scheme can be considered as a recipient-anonymous targeted broadcast and
the relation of our scheme to a normal CP-ABE scheme is similar to that of
anonymous identity-based encryption (IBE) to normal IBE. For example, sup-
pose a company wants to hire certain qualified people who satisfy the policy
the company specified and the policy may contain the useful information about
the company’s business strategy. The company can post a message encrypted by
our CP-ABE scheme on a public bulletin board to seek applications. By doing
so, the company can keep the important policy confidential. Since the policy is
hidden, the rival companies cannot know what kind of policy the company used
to hire its employees.

In the ABE schemes, collusion-resistance is an important property. We do
not want the secret key holders to be able to combine their secret keys to
decrypt ciphertexts neither of them can decrypt. By building on the previous
schemes [2, 11], we can also realize collusion-resistant CP-ABE schemes.

Our Results. We construct two CP-ABE schemes with partially hidden ci-
phertext policies in the sense that possible values of each attribute in the system
should be known to an encryptor in advance and the encryptor can hide what
subset of possible values for each attribute in the ciphertext policy can be used
for successful decryption. In our schemes, encryptors can use wildcards to mean
that certain attributes are not relevant to the ciphertext policy in a hidden way.
The security proof of our first construction is given under the Decisional Bilin-
ear Diffie-Hellman assumption and the Decision Linear assumption. Since these
assumptions are general, we can use a large variety of elliptic curves (including
both asymmetric and symmetric bilinear pairings) to implement our first scheme
though we use the symmetric notation for ease of exposition. The security proof
of our second construction is given in the generic group model and the second
construction needs DDH-hard groups, but with a property inherited from [2],
the second construction is more flexible than the first construction in that new
attributes can be added in the ciphertext policy securely with the existing public
parameters being unchanged even after the system setup is done. We mention
this aspect in Sect. 5 in more detail. We describe our constructions in the multi-
valued attribute setting where an attribute can take multiple values and this
setting is a generalization of the access structures used in [11]. In our security
notion, even the legitimate decryptor cannot obtain the information about the
ciphertext policy more than the fact that she can decrypt the data.

Related Work. Bethencourt, Sahai, and Waters [2] proposed the first CP-
ABE scheme. Their scheme allows the ciphertext policies to be very expressive,
but the security proof is in the generic group model and the policies need to
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be revealed in the ciphertexts because decryptors must know how they should
combine their secret key components for decryption. Cheung and Newport [11]
proposed a provably secure CP-ABE scheme and their scheme deals with neg-
ative attributes explicitly and supports wildcards in the ciphertext policies but
the policies need to be revealed as in [2]. Kapadia et al. [14] also proposed a CP-
ABE scheme and their scheme realizes hidden ciphertext policies that have the
same expressiveness as [11], but their scheme is not collusion-resistant and needs
an online semi-trusted server that must know the attributes’ values every user in
the system has and re-encrypt ciphertexts for each user when the user retrieves
the ciphertexts. Such an online semi-trusted server can be a performance bottle-
neck in the system while, in our schemes, encryptors can just post or broadcast
ciphertexts. Lubicz and Sirvent [16] proposed another CP-ABE scheme that has
the same expressiveness as [11] and only 3 pairing computations are needed for
decryption, but the ciphertext policies need to be revealed for decryption. Shi
et al. [21] proposed a predicate encryption scheme that focuses on range queries
over huge numbers, the dual of which can also realize a CP-ABE scheme where
an encryptor can specify a number range in the ciphertext policy. The security
proof of [21] is based on the security notion weaker than ours, which is called
match-revealing security in [21] and the number of attributes must be small
because the decryption cost is exponential in the number of attributes. Boneh
and Waters [5] proposed a predicate encryption scheme based on the primitive
called Hidden Vector Encryption or HVE for short. The scheme in [5] can re-
alize the same functionality as ours by using the opposite semantics of subset
predicates described in [5] (see Appendix A for the details). However, it needs
bilinear groups the order of which is a product of two large primes, so it needs to
deal with large group elements and the numbers of both attributes and possible
values for each attribute specified in the ciphertext policy are fixed at the system
setup while, in our constructions, the number of possible attribute values in the
ciphertext policy can be increased and furthermore in our second construction,
the number of attributes in the ciphertext policy can be increased securely even
after the system setup with the existing public parameters being unchanged.

Recently, Katz, Sahai, and Waters [15] proposed a novel predicate (or func-
tional) encryption scheme supporting inner product predicates and their scheme
is very general and can realize both key-policy and ciphertext-policy ABE
schemes. Their scheme can also realize hidden ciphertext policies that can be
more expressive than ours. However, their scheme is based on a special type of
bilinear groups the order of which is a product of three (or two) large primes while
ours are not. Therefore, their scheme needs to deal with large group elements
and requires new complexity assumptions for the security proof. By using the
dual of the predicate corresponding to polynomial evaluation, the scheme in [15]
can realize the same access structure of ciphertext policies that our schemes
can support (see Appendix B for the details) and then the ciphertext size of
our schemes O(

∑n
i=1 ni) is comparable to that of [15] where n is the number

of attributes in ciphertext policies and ni is the number of possible values for
each attribute i. Fox example, if attribute i is boolean, ni = 2. In the CP-ABE
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Table 1. Comparison of different schemes

Expressiveness of
policy

Anonymity Complexity
assumption

Type of bi-
linear group

Add attrs af-
ter setup

[5] AND-gates on
multi-valued
attributes with
wildcards

yes cDBDH,
C3DH

group of
compos-
ite order
N = pq

no

[2] all boolean for-
mula

no generic
group model

any yes

[11] AND-gates on
postive and neg-
ative attributes
with wildcards

no DBDH any no

[15] all boolean for-
mula

yes new as-
sumptions
based on
composite
order group

group of
compos-
ite order
N = pqr

no

This work1 AND-gates on
multi-valued
attributes with
wildcards

yes DBDH,
D-Linear

any no

This work2 AND-gates on
multi-valued
attributes with
wildcards

yes generic
group model

DDH-hard
group

yes

scheme of [15], the maximum size of the subset of attribute values for each at-
tribute specified in the ciphertext policy for successful decryption is fixed at
the system setup while, in our constructions, the size can be increased. Also,
the number of attributes specified in the ciphertext policy is fixed at the sys-
tem setup while, in our second construction, the number of attributes in the
ciphertext policy can be increased securely even after the system setup with
the existing public parameters being unchanged. However, when the number of
possible attribute values is huge, the scheme in [15] is more advantageous than
ours because it can enjoy the smaller ciphertext size and still realize the wildcard
functionality.

Chase [10] proposed a multi-authority ABE where multiple authorities gen-
erate secret keys for their monitored attributes. The technique of [10] can be
applicable to our schemes too. Abdalla et al. [1] proposed an identity-based en-
cryption scheme where an encryptor can use wildcards to specify recipients of
the ciphertext, but the positions of the wildcards and other ID components need
to be revealed in the ciphertexts.

We summarize the comparison of major different schemes in Table 1.
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2 Preliminaries

2.1 Bilinear Maps

We assume that there is an efficient algorithm Gen for generating bilinear
groups. The algorithm Gen , on input a security parameter 1κ, outputs a tuple,
G = [p, G, GT , g ∈ G, e] where log2(p) = Θ(κ). A function e : G × G → GT

is a bilinear map. Here, G and GT are multiplicative groups of prime order p,
generated by g and e(g, g) respectively. The bilinear map e has the following
properties:

1. Bilinearity: for all a, b ∈ Zp, e(ga, gb) = e(g, g)ab.
2. Non-degeneracy: e(g, g) �= 1.

2.2 Complexity Assumptions

We describe complexity assumptions used in our security proofs.

2.2.1 The Decisional Bilinear Diffie-Hellman (DBDH) Assumption
We use the decisional version of the bilinear DH assumption [4, 13]. Let z1, z2,
z3, z ∈ Z

∗
p be chosen at random and g ∈ G be a generator. The DBDH as-

sumption is that no probabilistic polynomial-time algorithm can distinguish the
tuple [g, gz1, gz2 , gz3 , e(g, g)z1z2z3 ] from the tuple [g, gz1, gz2 , gz3 , e(g, g)z] with
non-negligible advantage.

2.2.2 The Decision Linear (D-Linear) Assumption
The D-Linear assumption was first proposed in [3]. Let z1, z2, z3, z4, z ∈ Z∗

p

be chosen at random and g ∈ G be a generator. The D-Linear assumption
is that no probabilistic polynomial-time algorithm can distinguish the tuple
[g, gz1, gz2 , gz1z3 , gz2z4 , gz3+z4 ] from the tuple [g, gz1, gz2 , gz1z3 , gz2z4 , gz] with
non-negligible advantage.

2.3 Access Structure for Ciphertext

In the CP-ABE scheme, an encryptor specifies an access structure for a cipher-
text, which is called a ciphertext policy. If a decryptor has a secret key whose
associated set of attributes satisfies the access structure, she can decrypt the ci-
phertext. The access structures used in [2] are the most flexible and expressive.
For example, we can use an access structure such as ((A AND B) OR (C AND
D)) in [2]. This means that a recipient must have attributes A and B simultane-
ously or attributes C and D simultaneously in order to decrypt the ciphertext.
Therefore, if a recipient has a secret key associated with a set of attributes {A,
B, C}, she can satisfy the access structure and decrypt the ciphertext. However,
if the recipient has a secret key associated with a set of attributes {A, C}, she
can not satisfy the access structure or decrypt the ciphertext. Actually AND,
OR, and threshold gates can be used for expressing the access structures in [2].
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However, the security proof of [2] is in the generic group model. In order to
obtain a reduction-based security proof, Cheung and Newport proposed another
CP-ABE scheme [11] which is proved to be secure under standard complexity
assumptions. The price of obtaining such security proofs is that the expressive-
ness of ciphertext policies in [11] is somewhat restricted as compared with [2].
However, the expressiveness is not too restrictive and still remains useful.

The access structure and the attribute set associated with the secret key used
in [11] are as follows. Let’s assume that the total number of attributes in the
system is n and the attributes are indexed as {A1, A2, . . . , Ai, . . . , An} or we
may use just i to refer to Ai. We use the notation such as L = [L1, . . . , Ln] =
[1, 0, 1, . . . , 0] in order to describe attribute-value pairs for a user, which we call
the attribute list. For example, the user has the value 1 for A1, 0 for A2, 1 for
A3, . . ., and 0 for An in this case. A trusted authority generates a secret key for
the user based on the user’s attribute list.

In order to specify the access structure for a ciphertext, we use the notation
such as W = [W1, . . . , Wn] = [1, 1, ∗, ∗, 0] where n = 5, which we call the cipher-
text policy. The wildcard ∗ can be used in the ciphtertext policies and it plays
the role of “don’t care” value. This can be considered as an AND-gate on all
the attributes. For example, the above ciphertext policy means that the recip-
ient who wants to decrypt must have the value 1 for A1 and A2 and 0 for A5,
and the values for A3 and A4 do not matter in the AND-gate. If the recipient
has the secret key associated with, let us say, [1, 1, 1, 0, 0], she can decrypt the
ciphertext, but not if the secret key is associated with [1, 1, 1, 0, 1].

Formally, given an attribute list L = [L1, L2, . . . , Ln] and a ciphertext policy
W = [W1, W2, . . . , Wn], L satisfies W if, for all i = 1, . . . , n, Li = Wi or Wi = ∗,
and otherwise L does not satisfies W . We use the notation L |= W to mean that
L satisfies W .

In our constructions, we generalize the access structures in [11]. In [11], each
attribute can take two values 1 and 0, but in our generalized access structures
each attribute can take two or more values and each Wi in W can be any subset
of possible values for Ai. More formally, let Si = {vi,1, vi,2, . . . , vi,t, . . . , vi,ni} be
a set of possible values for Ai where ni is the number of the possible values for Ai.
Then the attribute list L for a user is L = [L1, L2, . . . , Li, . . . , Ln] where Li ∈ Si

and the generalized ciphertext policy W is W = [W1, W2, . . . , Wi, . . . , Wn] where
Wi ⊆ Si. The generalized ciphertext policy W means, let us say,

(A1 = v1,1 ∨ A1 = v1,3)
∧ (A2 = v2,2) ∧ . . .

∧ (Ai = vi,5 ∨ . . . ∨ Ai = vi,ni) ∧ . . .

∧ (An = vn,1 ∨ An = vn,2 ∨ An = vn,3).

When the encryptor specifies a wildcard for Ai, it corresponds to specifying
Wi = Si for Ai. The attribute list L satisfies the ciphertext policy W iff Li ∈ Wi

for 1 ≤ i ≤ n. We achieve recipient anonymity by hiding what subset Wi for each
Ai is specified in the access structure of the AND-gate of all the attributes.
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2.4 Syntax of CP-ABE

Our CP-ABE schemes consist of the following four algorithms.

Setup(1κ). This algorithm takes the security parameter κ as input and gener-
ates a public key PK and a master secret key MK.

KeyGen(MK, L). This algorithm takes MK and an attribute list L as input
and generates a secret key SKL associated with L.

Encrypt(PK, M , W ). This algorithm takes PK, a message M , and an cipher-
text policy W as input, and generates a ciphertext CT .

Decrypt(CT , SKL). This algorithm takes CT and SKL associated with L as
input and returns the message M if the attribute list L satisfies the ciphertext
policy W specified for CT , that is, L |= W . If L �|= W , it returns ⊥ with
overwhelming probability.

2.5 Security Model

We describe the security models for our CP-ABE. Based on [21, 5, 15], we use
the following security game. A CP-ABE scheme is selectively secure if no proba-
bilistic polynomial-time adversary has non-negligible advantage in the following
game.

Selective Game for CP-ABE

Init: The adversary commits to the challenge ciphertext policies W0, W1.

Setup: The challenger runs the Setup algorithm and gives PK to the adversary.

Phase 1: The adversary submits the attribute list L for a KeyGen query. If
(L |= W0 ∧ L |= W1) or (L �|= W0 ∧ L �|= W1), the challenger gives the
adversary the secret key SKL. The adversary can repeat this polynomially
many times.

Challenge: The adversary submits messages M0, M1 to the challenger. If the
adversary obtained the SKL whose associated attribute list L satisfies both
W0 and W1 in Phase 1, then it is required that M0 = M1. The challenger
flips a random coin b and passes the ciphertext Encrypt(PK, Mb, Wb) to
the adversary.

Phase 2: Phase 1 is repeated. If M0 �= M1, the adversary cannot submit L such
that L |= W0 ∧ L |= W1.

Guess: The adversary outputs a guess b′ of b.

The advantage of an adversary in this game is defined as
∣
∣Pr[b′ = b] − 1

2

∣
∣ where

the probability is taken over the random bits used by the challenger and the
adversary. Since the adversary must commit to the challenge ciphertext policies
before the setup phase, this model can be considered to be analogous to the
selective-ID model [8, 9] used in identity-based encryption schemes. The non-
selective-ID model can be found in [2] where the proof is in the generic group
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model. In the game, the adversary can submit L such that L |= W0 and L |= W1
if possible and then the adversary can decrypt the ciphertext. This definition
captures that the adversary cannot obtain the useful information about the
ciphertext policy more than the fact that she can decrypt the ciphertext. The
above notion of security is called match-concealing security in [21].

3 Proposed Schemes

We construct two CP-ABE schemes that achieve recipient anonymity. In [11],
the ciphertext policy needs to be revealed in the ciphertext so that a decryptor
can know which secret key components should be used. Furthermore, in order
to support wildcards for ciphertext policies, the public key components for the
wildcards are prepared in [11] and the decryptor uses the secret key components
corresponding to the wildcards if the wildcards are specified in the ciphertext
policies. In our constructions, we can hide how the ciphertext policy is specified
successfully.

First we show the construction of [11] and later explain the intuition behind
our approach we take to make it recipient-anonymous. We assume, for nota-
tional simplicity, that the total number of attributes in the system is n and the
attributes are indexed as {1, 2, . . . , i, . . . , n}.

3.1 Construction of [11]

The four algorithms are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G, GT , g ∈ G, e] ←
Gen(1κ), and random w ∈ Z∗

p. For each attribute i where 1 ≤ i ≤ n, the
authority generates random values ai, âi, a

∗
i , ∈ Z∗

p. The authority computes
Y = e(g, g)w and Ai = gai , Âi = g�ai , A∗

i = ga∗
i . The public key PK con-

sists of 〈Y, p, G, GT , g, e, {Ai, Âi, A
∗
i }1≤i≤n〉. The master secret key MK is

〈w, {ai, âi, a
∗
i }1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] be the attribute list for the user
who will obtain the corresponding secret key. The trusted authority picks up
random values si ∈ Z

∗
p for 1 ≤ i ≤ n, sets s =

∑n
i=1 si, and computes D0 =

gw−s. For 1 ≤ i ≤ n, the authority also computes [Di, D
∗
i ] = [gsi/ai , gsi/a∗

i ]
if Li = 1, and [Di, D

∗
i ] = [gsi/�ai , gsi/a∗

i ] if Li = 0. The secret key SKL is
〈D0, {Di, D

∗
i }1≤i≤n〉.

Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a
ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a random
value r ∈ Z∗

p and sets C̃ = MY r and C0 = gr. Also for 1 ≤ i ≤ n, the
encryptor computes Ci as follows: if Wi = 1, Ci = Ar

i ; if Wi = 0, Ci =
Âr

i ; if Wi = ∗, Ci = A∗r
i . The ciphertext CT is 〈C̃, C0, {Ci}1≤i≤n〉. The

encryptor needs to reveal W in CT so that recipients can know which secret
key components should be used for each Ci.
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Note that if W is hidden in CT , the recipients need to try all the possi-
ble combinations of the secret key components for decryption and it takes
exponential time in n, which seems impractical.

Decrypt(CT , SKL). The recipient can check W to know whether L |= W . If
L |= W , she can proceed. The recipient decrypts the CT , 〈C̃, C0, {Ci}1≤i≤n〉
by using her SKL, 〈D0, {Di, D

∗
i }1≤i≤n〉 associated with the attribute list L,

as follows:
1. For 1 ≤ i ≤ n,

D′
i =

{
Di if Wi �= ∗
D∗

i if Wi = ∗.

2.

M =
C̃

e(C0, D0)
∏n

i=1 e(Ci, D
′
i)

.

3.2 Main Idea

We describe how to make the construction of [11] recipient-anonymous. To
achieve our goal, the recipients need to be able to decrypt CT without knowing
W and we also want to support wildcards in a hidden way. For that, we re-
move the public key components {A∗

i }1≤i≤n for the wildcards and the secret key
components {D∗

i }1≤i≤n are not included in SKL. Furthermore, instead of the
ciphertext components {Ci}1≤i≤n, {Ci, Ĉi}1≤i≤n are generated with C0 = gr as
follows: let {Ci, Ĉi} = {Ar1

i , Âr2
i }; if Wi = 1, we set r1 = r and r2 is random; if

Wi = 0, r1 is random and r2 = r; if Wi = ∗, r1 = r2 = r. That is, if Ci = Ar
i

or Ĉi = Âr
i , these ciphertext components are “well-formed” and can be used for

successful decryption and otherwise “malformed” (or random). Each decryptor
uses Ci for decryption if Li = 1 and uses Ĉi if Li = 0 without knowing what is
specified for Wi. By generating the ciphertext like this, we can realize the func-
tionality of wildcards. We can generalize this idea to adapt to the multi-valued
attribute setting.

Finally to make it hard to distinguish the well-formed components from the
malformed components, we use the linear splitting technique in [6,21] and make
our first construction provably secure as shown in Sect. 4.

3.3 Our First Construction

The four algorithms are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G, GT , g ∈ G, e] ←
Gen(1κ) and random w ∈ Z∗

p. For each attribute i where 1 ≤ i ≤ n, the
authority generates random values {ai,t, bi,t ∈ Z∗

p}1≤t≤ni and random points
{Ai,t ∈ G}1≤t≤ni

1. The authority computes Y = e(g, g)w. The public key
1 In the asymmetric bilinear groups, Ai,t must be generated such that Ai,t = gci,t

where ci,t ∈R Z
∗
p and ci,t is known to the authority so that the authority can use ci,t

in KeyGen .



120 T. Nishide, K. Yoneyama, and K. Ohta

PK consists of 〈Y, p, G, GT , g, e, {{A
ai,t

i,t , A
bi,t

i,t }1≤t≤ni}1≤i≤n〉. The master se-
cret key MK is 〈w, {{ai,t, bi,t}1≤t≤ni}1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn ] be the
attribute list for the user who obtains the corresponding secret key. The
trusted authority picks up random values si, λi ∈ Z∗

p for 1 ≤ i ≤ n, sets
s =

∑n
i=1 si, and computes D0 = gw−s. For 1 ≤ i ≤ n, the authority

also computes [Di,0, Di,1, Di,2] = [gsi(Ai,ti)
ai,ti

bi,ti
λi , gai,ti

λi , gbi,ti
λi ] where

Li = vi,ti . The secret key SKL is 〈D0, {{Di,j}0≤j≤2}1≤i≤n〉.
Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a

ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a ran-
dom value r ∈ Z∗

p and sets C̃ = MY r and C0 = gr. Also for 1 ≤ i ≤ n,
the encryptor picks up random values {ri,t ∈ Z∗

p}1≤t≤ni and computes
{Ci,t,1, Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi, [Ci,t,1, Ci,t,2] = [(Abi,t

i,t )ri,t ,

(Aai,t

i,t )r−ri,t ] (well-formed); if vi,t �∈ Wi, [Ci,t,1, Ci,t,2] are random (mal-
formed). The ciphertext CT is 〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉.

Decrypt(CT , SKL). The recipient tries decrypting the CT ,
〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉 without knowing W by using her SKL,
〈D0, {{Di,j}0≤j≤2}1≤i≤n〉 associated with the attribute list L, as follows:
1. For 1 ≤ i ≤ n,

[C′
i,1, C

′
i,2] = [Ci,ti,1, Ci,ti,2] where Li = vi,ti .

2.

M =
C̃

∏n
i=1 e(C′

i,1, Di,1)e(C′
i,2, Di,2)

e(C0, D0)
∏n

i=1 e(C0, Di,0)
.

If the attribute list L satisfies the hidden ciphertext policy W of the CT , the
recipient can decrypt the CT correctly. For the recipient to know whether the
decryption was successful without knowing the ciphertext policy W , we can use
the technique used in [5] in practice. As in [5], the encryptor picks up a random
k ∈ GT and derives two uniform and independent μ-bit symmetric keys (k0, k1)
from k. The final ciphertext consists of 〈k1,Encrypt(PK, k, W ), Ek0(M)〉 where
Encrypt(PK, k, W ) is the ciphertext of k encrypted under PK and W , and
Ek0(M) is the ciphertext of M encrypted under k0 by using a symmetric en-
cryption scheme. The recipient can use k1 to check whether the decryption was
successful after decrypting k where the false positive probability is approximately
1/2μ. If successful, the recipient can decrypt M by using k0 derived from k. The
security proof is given in Sect. 4.

3.4 Second Construction with More Flexibility

We can also apply the technique in Sect. 3.2 to [2] and make it recipient-
anonymous. With a property inherited from [2], this scheme is more flexible
though the security proof is in the generic group model. The scheme in [2] uses



ABE with Partially Hidden Encryptor-Specified Access Structures 121

a symmetric bilinear group while we use an asymmetric bilinear group. That
is, we assume Gen(1κ) outputs G = [p, G1, G2, GT , g1∈G1, g2∈G2, e] where e :
G1×G2 → GT is a bilinear map. We also use the External Diffie-Hellman (XDH)
assumption used in, for example, [3,20,7] to achieve recipient anonymity, which
holds on MNT curves [17]. In the XDH assumption, it holds that the Decisional
Diffie-Hellman (DDH) problem is hard in G1 and this implies that there does not
exist an efficiently-computable isomorphism ψ : G1 → G2. The four algorithms
are as follows:

Setup(1κ). A trusted authority generates a tuple G = [p, G1, G2, GT , g1 ∈
G1, g2 ∈ G2, e]. and random w, β ∈ Z∗

p. For each attribute i where
1 ≤ i ≤ n, the authority generates random values {ai,t ∈ Z∗

p}1≤t≤ni

and computes points {Ai,t = g
ai,t

1 }1≤t≤ni . The authority computes
Y = e(g1, g2)w and B = gβ

1 . The public key PK consists of
〈Y, B, p, G1, G2, GT , g1, g2, e , {{Ai,t}1≤t≤ni}1≤i≤n〉. The master secret key
MK is 〈w, β, {{ai,t}1≤t≤ni}1≤i≤n〉.

KeyGen(MK, L). Let L = [L1, L2, . . . , Ln] = [v1,t1 , v2,t2 , . . . , vn,tn ] be the
attribute list for the user who obtains the corresponding secret key. The
trusted authority picks up random values s, λi ∈ Z∗

p for 1 ≤ i ≤ n

and computes D0 = g
w+s

β

2 . For 1 ≤ i ≤ n, the authority also computes
[Di,1, Di,2] = [g

s+ai,ti
λi

2 , gλi
2 ] where Li = vi,ti . The secret key SKL is

〈D0, {Di,1, Di,2}1≤i≤n〉.
Encrypt(PK, M , W ). An encryptor encrypts a message M ∈ GT under a

ciphertext policy W = [W1, W2, . . . , Wn]. The encryptor picks up a random
value r ∈ Z∗

p and sets C̃ = MY r and C0 = Br. Also for 1 ≤ i ≤ n,
the encryptor picks up random values ri ∈ Z

∗
p such that r =

∑n
i=1 ri, sets

Ci,1 = gri
1 and computes {Ci,t,2}1≤t≤ni as follows: if vi,t ∈ Wi, Ci,t,2 = Ari

i,t

(well-formed); if vi,t �∈ Wi, Ci,t,2 is random (malformed). The ciphertext CT

is 〈C̃, C0, {Ci,1, {Ci,t,2}1≤t≤ni}1≤i≤n〉.
Decrypt(CT , SKL). The recipient decrypts the CT ,

〈C̃, C0, {Ci,1, {Ci,t,2}1≤t≤ni}1≤i≤n〉 by using her SKL,
〈D0, {Di,1, Di,2}1≤i≤n〉 associated with the attribute list L as follows:

1. For 1 ≤ i ≤ n,
C′

i,2 = Ci,ti,2 where Li = vi,ti .

2.

M =
C̃

∏n
i=1 e(Ci,1, Di,1)

e(C0, D0)
∏n

i=1 e(C′
i,2, Di,2)

.

Under the XDH assumption, it is hard to guess from CT what subset Wi the
encryptor specified for each attribute Ai in the ciphertext policy. The security
proof will be similar to that of [2] and is omitted due to space limitation. We
discuss the flexibility of this scheme in Sect. 5 in more detail.
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4 Overview of Security Proofs

We prove that our first scheme is selectively secure under the DBDH assumption
and the D-Linear assumption. We will give the high-level arguments of the proofs
here and the detailed proofs of the lemmas are given in Appendix C.

Suppose the adversary commits to the challenge ciphertext policies W0, W1 at
the beginning of the game. We use the notation Wb = [Wb,1, Wb,2, . . . , Wb,i, . . . ,
Wb,n].

The proof uses a sequence of hybrid games to argue that the adversary cannot
win the original security game denoted by G with non-negligible probability. We
begin by slightly modifying the game G into a game G0. Games G and G0 are
the same except for how the challenge ciphertext is generated. In G0, if the
adversary did not obtain the SKL whose associated attribute list L is such that
L |= W0 ∧ L |= W1, then the challenge ciphtertext component C̃ is a random
element of GT regardless of the random coin b. The rest of the ciphertext is
generated as usual. If the adversary obtained the SKL whose associated attribute
list L is such that L |= W0 ∧ L |= W1 then the challenge ciphertext in G0 is
generated correctly. That is, G = G0 in this case.

Lemma 1 Under the DBDH assumption, for any polynomial time adversary
A, the difference of advantage of A in game G and game G0 is negligible in the
security parameter κ.

Next, we modify G0 by changing how to generate the ciphertext components
{{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n and define a sequence of games as follows.

For vi,t such that (vi,t ∈ W0,i ∧ vi,t ∈ W1,i) or (vi,t �∈ W0,i ∧ vi,t �∈ W1,i),
the components {Ci,t,1, Ci,t,2} are generated as in the real scheme through the
sequence of all the games.

If there is vi,t such that (vi,t ∈ W0,i ∧vi,t �∈ W1,i) or (vi,t �∈ W0,i ∧vi,t ∈ W1,i),
the components {Ci,t,1, Ci,t,2} generated properly in game G�−1 are replaced
with the random values in the new modified game G� regardless of the random
coin b. Every time we replace such components {Ci,t,1, Ci,t,2} with the random
values, we define a new modified game. We repeat this replacement one by
one until we have no component that satisfies (vi,t ∈ W0,i ∧ vi,t �∈ W1,i) or
(vi,t �∈ W0,i ∧ vi,t ∈ W1,i). In the last game of the sequence, the advantage of the
adversary is zero because the adversary is given a ciphertext chosen from the
same distribution regardless of the random coin b.

By replacing the well-formed ciphertext components in G�−1 with the random
values in G� in this way, we can embed a D-Linear challenge in the ciphertext
such that the distinguisher of G�−1 and G� leads to the distinguisher of the
D-Linear challenge.

Lemma 2 Under the D-Linear assumption, for any polynomial time adversary
A, the difference of advantage of A in game G�−1 and game G� is negligible in
the security parameter κ.
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By considering the sequence G, G0, G1, . . . of games starting with the original
game G, no polynomial adversary can win the game G with non-negligible ad-
vantage by the lemmas above.

5 Adding Attributes After Setup

In our schemes, it is easy to add new possible values vi,t’s of each attribute
Ai in the ciphertext policy even after Setup is executed, because we have only
to add the public key components for the new values of Ai and the existing
public parameters can remain unchanged. That is, the access structure for the
ciphertext policy can be extended accordingly though the ciphertext size is also
increased. However, in our first scheme, it cannot be done securely to simply add
new attributes Ai′ ’s in the ciphertext policy with the existing public parameters
being unchanged after Setup is executed and some users already have their
secret keys. The reason is as follows. Suppose there are three attributes A1, A2, A3
in the system when Setup is executed and a user obtains her secret key SKL

where the attribute list L = [L1, L2, L3] = [1, 1, 0]. After that, a new attribute
A4 is added in the system and the corresponding public key components for
A4 are generated and published. Then an encryptor may specify a ciphertext
policy W = [W1, . . . , W4] = [∗, ∗, 0, 1], requiring the legitimate recipients to
have the value 1 for A4. In this case, the user who has the above SKL can
decrypt the ciphertext encrypted under the ciphertext policy W even if she
does not have the secret key component for A4, because L satisfies [W1, W2, W3]
partially and it enables the user to combine all the secret key components to
reconstruct s =

∑n
i=1 si in the exponent for decryption. The similar situations

can also happen in [11, 15, 5, 21] if we consider the setting where new attributes
may be added in the ciphertext policy dynamically after Setup is executed. As
mentioned in [18], we may be able to prepare redundant filler attributes reserved
for future use, but it increases the ciphertext size unnecessarily.

The second scheme can avoid this situation with the property inherited from
[2] and we can add new attributes in the ciphertext policy securely after Setup
is executed where the existing public parameters can remain unchanged. Note
that in this scheme, the encryptor splits random r in the ciphertext CT such
that r =

∑n
i=1 ri and it forces decryptors to have the secret key components for

all the attributes specified in the ciphertext policy even if the attributes in the
ciphertext policy were added after the decryptors obtained their secret keys. If a
user wants to decrypt the ciphertext with the ciphertext policy including newly
added attributes, she must obtain a new secret key including the newly added
attributes from the trusted authority again.

Additionally, in the second scheme, an encryptor can specify a variable-length
ciphertext policy. For example, the encryptor can specify the ciphertext policy
W = [Wi1 , Wi2 , . . . , Wim ] where m < n and n is the number of all the attributes
in the system. Since there are several attributes that do not appear in the ci-
phertext policy, the partial information on the ciphertext policy is leaked. That
is, it means that the wildcards are specified for the attributes not appearing in
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the ciphertext policy. However, it may be acceptable to the encryptor in some
cases and it can reduce the size of the ciphertext.
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A Realization of CP-ABE with [5]

We show how the scheme in [5] can realize the access structure of the ciphertext
policy considered in this work by using HVE. For ease of exposition, suppose
there are two attributes A1, A2 in the system and A1 can take values v1,1, v1,2
and A2 can take values v2,1, v2,2, v2,3. When an encryptor encrypts a message,
the encryptor specifies a vector corresponding to (v1,1, v1,2, v2,1, v2,2, v2,3) as a
ciphertext policy. For example, if (v1,1, v1,2, v2,1, v2,2, v2,3) = (1, 0, 1, 0, 1), this
means (A1 = v1,1) ∧ (A2 = v2,1 ∨ A2 = v2,3). A decryptor with A1 = v1,1 ∧ A2 =
v2,3 obtains her secret key the vector of which corresponds to (1, ∗, ∗, ∗, 1). The
decryptor can decrypt the ciphertext if the vectors of both the ciphertext and
the secret key match up except the wildcards. In this scheme, the length of the
vectors (5 in the example above) is fixed at the system setup. Therefore, the
numbers of both attributes and possible values for each attribute specified in
the ciphertext policy are fixed at the system setup.

B Realization of CP-ABE with [15]

We show how the scheme in [15] can realize the access structure of the ciphertext
policy considered in this work by using the dual of the predicate corresponding
polynomial evaluation. Similarly, for ease of exposition, suppose there are two
attributes A1, A2 in the system and A1 can take values v1,1, v1,2 and A2 can
take values v2,1, v2,2, v2,3. In this scheme, decryption succeeds if the vector for
the ciphertext (a1, a2, . . . , an) and the vector for the secret key (x1, x2, . . . , xn)
satisfy the condition that

∑n
i=1 aixi = 0.

When an encryptor encrypts a message with the ciphertext policy (A1 =
v1,1) ∧ (A2 = v2,1 ∨ A2 = v2,3), she prepares two polynomials f1(x) = c1x + c0
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and f2(x) = d2x
2 +d1x+d0 such that f1(v1,1) = 0, f2(v2,1) = 0 and f2(v2,3) = 0

and specifies the vector (c1, c0, d2, d1, d0) as the ciphertext policy. A decryptor
with A1 = v1,1 ∧ A2 = v2,3 obtains her secret key the vector of which cor-
responds to (v1,1, 1, v2

2,3, v2,3, 1). For example, when the encryptor specifies a
wildcard for attribute A2 in the ciphertext policy, she simply uses f2(x) = 0
where d2 = d1 = d0 = 0. In this scheme, the length of the vectors (5 in the
example above) is fixed at the system setup. Therefore, the maximum size of the
subset of attribute values for each attribute specified in the ciphertext policy for
successful decryption is fixed at the system setup. Also, the number of attributes
specified in the ciphertext policy is fixed at the system setup. However, when the
number of possible attribute values is huge and the maximum size of the subset
of attribute values specified in the ciphertext policy is small, the scheme in [15]
is more advantageous than ours because it can enjoy the smaller ciphertext size
and still realize the wildcard functionality.

C Proofs of Lemmas

C.1 Proof of Lemma 1

Proof. We prove our lemma by assuming that a polynomial adversary A has
non-negligible difference ε between its advantage in game G and its advantage in
game G0. We build a simulator B that can play the DBDH game with advantage
ε.

Given a DBDH challenge [g, gz1, gz2 , gz3 , Z] by the challenger where Z is ei-
ther e(g, g)z1z2z3 or random with equal probability, the simulator B creates the
following simulation.

Init: The simulator B runs A. A gives B two challenge chiphertext policies
W0 = [W0,1, . . . , W0,n], W1 = [W1,1, . . . , W1,n]. Then B flips a random coin
b ∈ {0, 1}.

Setup: To provide a public key PK to A, B sets Y to e(g, g)z1z2 . This implies
w = z1z2. For each attribute i where 1 ≤ i ≤ n, B generates {Ai,t}1≤t≤ni

such that Ai,t = gαi,t if vi,t ∈ Wb,i and Ai,t = gz1αi,t if vi,t �∈ Wb,i where
{αi,t ∈ Z∗

p}1≤t≤ni are random. Then B publishes public parameters as in the
real scheme by picking up {ai,t, bi,t}1≤t≤ni at random for 1 ≤ i ≤ n.

Phase 1: A submits an attribute list L = [L1, . . . , Ln] in a secret key query.
We consider only the case where L �|= W0 ∧ L �|= W1. The reason for this is
by our definition if L |= W0 ∧ L |= W1, then the challenge messages M0, M1
will be equal. In this case, the games G and G0 are the same, so there is no
difference of advantage of A in G and G0. Therefore, B simply aborts and
takes a random guess.
When L �|= W0 ∧ L �|= W1, there must be k ∈ {1, . . . , n} such that Lk(=
vk,tk

) �∈ Wb,k.
For 1 ≤ i ≤ n, B picks up s′i ∈ Z∗

p at random. It then sets sk = z1z2 +s′k and
for every i �= k, sets si = s′i. Finally it sets s =

∑n
i=1 si = z1z2 +

∑n
i=1 s′i.
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The D0 component of the secret key can be computed as

D0 = gw−s = gz1z2−s = g−
�n

i=1 s′
i .

For k, B computes the components [Dk,0, Dk,1, Dk,2]= [gsk(Ak,tk
)ak,tk

bk,tk
λk ,

gak,tk
λk , gbk,tk

λk ] as follows:

Dk,0 = gsk(Ak,tk
)ak,tk

bk,tk
λk

= gz1z2+s′
k(Ak,tk

)ak,tk
bk,tk

λk

= gz1z2+s′
k(gz1αk,tk )ak,tk

bk,tk
λk

= gs′
k(gz1αk,tk )ak,tk

bk,tk
λ′

k

where λk is chosen at random such that

λk = − z2

αk,tk
ak,tk

bk,tk

+ λ′
k

and random λ′
k is known to B.

B can compute the components [Dk,1, Dk,2] easily.
For i �= k, B can also compute [Di,0, Di,1, Di,2] easily.

Challenge: A submits two challenge messages M0 and M1. B sets C̃ = MbZ
and C0 = gz3 which implies r = z3 and generates, for Wb, the cipher-
text 〈C̃, C0, {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n〉. When vi,t ∈ Wb,i, B can generate
{Ci,t,1, Ci,t,2} correctly because Ai,t does not contain unknown z1 and when
vi,t �∈ Wb,i, {Ci,t,1, Ci,t,2} can be simply chosen at random.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guess b′ of b. If b′ = b, B outputs 1 and otherwise outputs
0. By our assumption, the probability that A guesses b correctly in game G
has a non-negligible ε difference from that of it guessing b correctly in G0.
When Z = e(g, g)z1z2z3 , A is in game G and when Z is random, A is in
game G0. Therefore the simulator B has advantage ε in the DBDH game.

��

C.2 Proof of Lemma 2

Proof. We prove our lemma by assuming that a polynomial adversary A has non-
negligible difference ε between its advantage in game G�−1 and its advantage
in game G�. We build a simulator B that can play the D-Linear game with
advantage ε.

Given a D-Linear challenge [g, gz1, gz2 , Z, gz2z4 , gz3+z4 ] by the challenger where
Z is either gz1z3 or random with equal probability, the simulator B creates the
simulation. Note that this D-Linear assumption is equivalent to that of Sect.
2.2.2.

As mentioned in Sect. 4, in G�−1, the ciphertext components {Ci�,t�,1, Ci�,t�,2}
are generated as in the real scheme, whereas, in G�, the components are random
regardless of the random coin b and we assume that (vi�,t�

∈ W1,i�
∧vi�,t�

�∈ W0,i�
)

without loss of generality.
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Init: The simulator B runs A. A gives B two challenge chiphertext policies
W0 = [W0,1, . . . , W0,n], W1 = [W1,1, . . . , W1,n]. Then B flips a random coin
b ∈ {0, 1}. If b = 0, B aborts and takes a random guess. The reason for this
is by our definition if b = 0 where (vi�,t�

∈ W1,i ∧ vi�,t�
�∈ W0,i), we have

G�−1 = G� because the distribution of the challenge ciphertext in game G�−1
is the same as that of game G�, so there is no difference of advantage of A
in G�−1 and G�. We proceeds assuming b = 1.

Setup: To provide a public key PK to A, B sets Y to e(g, g)w where w is
known to B. For each attribute i where 1 ≤ i ≤ n, B generates {Ai,t}1≤t≤ni

such that Ai,t = gαi,t if vi,t ∈ Wb,i and Ai,t = gz1αi,t if vi,t �∈ Wb,i where
{αi,t ∈ Z∗

p}1≤t≤ni are random. Then B publishes public parameters as in the
real scheme by picking up {ai,t, bi,t}1≤t≤ni at random for 1 ≤ i ≤ n with
the exception that, for ai�,t�

and bi�,t�
, B sets ai�,t�

= z1 and bi�,t�
= z2 and

can compute A
ai�,t�
i�,t�

= gαi�,t�
ai�,t� and A

bi�,t�
i�,t�

= gαi�,t�
bi�,t� without knowing

z1, z2.

Phase 1: A submits an attribute list L = [L1, . . . , Ln] in a secret key query. If
Li�

�= vi�,t�
, B can generate the corresponding secret key easily.

Let’s assume Li�
= vi�,t�

. B needs to compute the secret key components
[Di�,0, Di�,1, Di�,2] = [gsi� (Ai�,t�

)ai�,t�
bi�,t�

λi� , gai�,t�
λi� , gbi�,t�

λi� ] where
ai�,t�

= z1, bi�,t�
= z2.

B can compute Di�,0 as

Di�,0 = gsi� (Ai�,t�
)ai�,t�

bi�,t�
λi�

= gsi� (Ai�,t�
)z1z2λi�

= gsi� (gαi�,t� )z1z2λi�

= gs′
i�

where si�
is chosen at random such that

si�
= s′i�

− αi�,t�
z1z2λi�

and random s′i�
is known to B. B can compute the components [Di�,1, Di�,2]

easily without knowing z1, z2.
Here we can assume L �|= W0∧L �|= W1 because Li�

= vi�,t�
∧vi�,t�

�∈ W1−b,i�
.

That is, we have L �|= W1−b and therefore L �|= Wb, so there must be k ∈
{1, . . . , n} such that Lk(= vk,tk

) �∈ Wb,k. Then B generates [Dk,0, Dk,1, Dk,2]
as follows: B sets sk = s′k + αi�,t�

z1z2λi�
where s′k is random and known to

B and computes

Dk,0 = gsk(Ak,tk
)ak,tk

bk,tk
λk

= gs′
k+αi�,t�

z1z2λi� (gz1αk,tk )ak,tk
bk,tk

λk

= gs′
k(gz1αk,tk )ak,tk

bk,tk
λ′

k

where λk is chosen at random such that

λk = λ′
k − αi�,t�

z2λi�

αk,tk
ak,tk

bk,tk
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and random λ′
k is known to B. B can compute the components [Dk,1, Dk,2]

easily without knowing z2.
Also, for i �= i�, k, B can compute [Di,0, Di,1, Di,2] easily.
Finally by computing

s =
n∑

i=1

si

= si�
+ sk +

∑

i�=i�,k

si

= s′i�
− αi�,t�

z1z2λi�
+ s′k + αi�,t�

z1z2λi�
+

∑

i�=i�,k

si

= s′i�
+ s′k +

∑

i�=i�,k

si,

the component D0 = gw−s of the secret key can be computed.

Challenge: A submits two challenge messages M0 and M1. B sets C0 = gz3+z4

which implies r = z3 + z4. If L �|= W0 ∧ L �|= W1 for every queried L, B sets
C̃ to be random and otherwise sets C̃ = Mbe(g, gz3+z4)w. B generates, for
Wb, the ciphertext components {{Ci,t,1, Ci,t,2}1≤t≤ni}1≤i≤n as in G�−1 with
the exception that the components {Ci�,t�,1, Ci�,t�,2} are computed as

Ci�,t�,1 = (A
bi�,t�
i�,t�

)ri�,t� = (Az2
i�,t�

)z4 = (gαi�,t�
z2)z4 ,

Ci�,t�,2 = (A
ai�,t�
i�

)r−ri�,t� = (gαi�,t�
z1)z3 = Zαi�,t�

without knowing z2z4, z1z3. This implies that ri�,t�
= z4 and Z = gz1z3 and

if Z = gz1z3 , the components are well-formed and A is in game G�−1.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guess b′ of b. If b′ = b, B outputs 1 and otherwise outputs
0. By our assumption, the probability that A guesses b correctly in game
G�−1 has a non-negligible ε difference from that of it guessing b correctly in
G�. When Z = gz1z3 , A is in game G�−1 and when Z is random, A is in
game G�. Therefore the simulator B has advantage ε in the D-Linear game.
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