
Attribute-based Fine-Grained Access Control with Efficient
Revocation in Cloud Storage Systems

Kan Yang
Dept. of Computer Science

City University of Hong Kong
Hong Kong SAR

kanyang3@student.cityu.
edu.hk

Xiaohua Jia
Dept. of Computer Science

City University of Hong Kong
Hong Kong SAR

csjia@cityu.edu.hk

Kui Ren
University at Buffalo

State University of New York
NY, USA

kuiren@buffalo.edu

ABSTRACT
Cloud storage service allows data owner to host their data in the
cloud and through which provide the data access to the users. Be-
cause the cloud server is not trustworthy in the cloud storage sys-
tem, we cannot rely on the server to conduct data access control. To
achieve data access control on untrusted servers, traditional meth-
ods usually require the data owner to encrypt the data and deliver
decryption keys to authorized users. In these methods, however,
the key management is very complicated and inefficient. In this
paper, we design an access control framework in cloud storage sys-
tems and propose a fine-grained access control scheme based on
Ciphertext-Policy Attribute-based Encryption (CP-ABE) approach.
In our scheme, the data owner is in charge of defining and enforc-
ing the access policy. We also propose an efficient attribute revo-
cation method for CP-ABE systems, which can greatly reduce the
attribute revocation cost. The analysis shows that our proposed ac-
cess control scheme is efficient and provably secure in the random
oracle model.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls, Cryptographic
controls

General Terms
Security, Theory

Keywords
Access Control, Cloud Storage, Attribute Revocation, CP-ABE

1. INTRODUCTION
Cloud storage is an important service of cloud computing [4].

It allows data owners to host their data in the cloud that provides
“24/7/365" data access to the users (data consumers). Cloud stor-
age service separates the roles of the data owner from the data ser-
vice provider, and the data owner does not interact with the user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

directly for providing data access service, which makes data access
control a challenging issue. Existing methods delegate data access
control to a trusted server and let it be in charge of defining and
enforcing access policies [6]. However, the cloud server cannot
be fully trusted by data owners, because the cloud server may give
data access to unauthorized users for profit making (e.g., the com-
petitor of a company). Thus, traditional server-based data access
control methods are no longer suitable for cloud storage systems.
The aim of this paper is to study the data access control issue in
cloud storage system that does not rely on the cloud server.

The Ciphertext-Policy Attribute-based Encryption (CP-ABE) [1,
7] is regarded as one of the most suitable technologies for data
access control in cloud storage systems, because it gives the data
owner more direct control on access policies and the policy check-
ing occurs “inside the cryptography". However, due to the attribute
revocation problem, it is very costly to apply the CP-ABE approach
to the access control in cloud storage systems. We call a user whose
attribute is revoked as a revoked user. There are two basic re-
quirements for the attribute revocation in cloud storage systems:
1) Backward Security The revoked user cannot decrypt any new
published ciphertext with its previous secret key. 2) Forward Se-
curity The newly joined user who has sufficient attributes can still
be able to decrypt the ciphertexts which were published before it
joined the system. Existing attribute revocation methods proposed
for CP-ABE systems cannot be applied into the cloud storage sys-
tems. That is because they rely on the server to do auxiliary access
control during the attribute revocation, which requires the server to
be fully trusted. Thus, in cloud storage systems, the attribute revo-
cation is still an open problem in the design of attribute-based data
access control schemes.

In this paper, we design an attribute-based access control frame-
work for cloud storage systems and propose a fine-grained access
control scheme with efficient attribute revocation. Our scheme does
not require the server to do any auxiliary access control and data
owners are not required to be online all the time. The revocation is
conducted efficiently on attribute level rather than on user level.

The main contributions of this work are summarized as follows.
1) We propose a fine-grained access control scheme for cloud

storage systems, where the data owner is in charge of defining and
enforcing the access policy without relying on any auxiliary access
control by the server. Moreover, our scheme is provably secure in
the random oracle model.

2) We propose a secure and efficient attribute revocation method
for CP-ABE systems. It is secure in the sense that it can achieve
both forward security and backward security, and it is efficient in
the sense that it incurs less computation cost and communication
overhead.

523

Cloud Server

Owners

User 1

User N

User 2

Authority

Figure 1: System Model of Access Control in Cloud Storage

3) We further provide the security analysis and performance anal-
ysis to show that our scheme is secure in the random oracle model
and efficient to be applied into practice.

The remaining of this paper is organized as follows. Section 2
describes the definition of system model and security model. In
Section 3, we describe the attribute-based fine-grained access con-
trol scheme and the efficient attribute revocation method. Section 4
gives the analysis of our scheme in terms of security and efficiency.
In Section ??, we give the related work on data access control and
attribute revocation in ABE system. Finally, the conclusion is given
in Section 5.

2. SYSTEM AND SECURITY MODEL

2.1 Definition of System Model
We consider an access control system for cloud storage service,

as described in Figure 1. There are four entities in the system:
authority, data owners (owner), cloud server (server) and data con-
sumers (users).

The authority is responsible for entitling/revoking/re-granting at-
tributes to/from/to users according to their role or identity in the
system. It assigns secret keys to users when they are entitled at-
tributes and maintains a version number of each attribute. When
an attribute revocation happens, the authority will update the ver-
sion number of the revoked attribute, and generate an update key.
It then sends the update key to all the non-revoked users (for secret
key update) and the cloud server (for ciphertext update).

The owners determine the access policies and encrypt their data
under the policies before hosting them in the cloud (For simplicity,
the data here means the content key1).

The cloud server stores the owners’ data and provides data access
service to users. But the server does not engage in the data access
control. Instead, we assume the ciphertext may be accessed by
all the legal users in the system. But, the access control happens
inside the cryptography. That is only the users who possess eligible
attributes (satisfying the access policy) can decrypt the ciphertext.

Each user is entitled a set of attributes according to its roles or
identity in the system. However, the user’s attribute set may dy-
namically change due to the role changed of the user in the system.
For example, when a user is degraded from the manager to the nor-
mal worker, some of its attributes should be revoked, while some-
times the revoked attribute need to be re-granted to the user. The
1In practical, the data is encrypted with a content key by using
symmetric encryption method, and the content key is encrypted by
using CP-ABE.

user can decrypt the ciphertext only when he/she has sufficient at-
tributes satisfying the access policy associated with the ciphertext.

2.2 Definition of Framework
The framework of the data access control is defined as follows.

DEFINITION 1 (ACCESS CONTROL SCHEME). An access con-
trol scheme is a collection of the following algorithms: Setup,
SKeyGen, Encrypt, Decrypt, UKeyGen, SKUpdate and CTUpdate,
where UKeyGen, SKUpdate and CTUpdate are used for attribute
revocation.

Setup(1λ)→ (MK,PP,{PKx}). The setup algorithm takes no
input other than the implicit security parameter λ . It outputs a mas-
ter key MK, the public parameters PP and a set of all the public
attribute keys {PKx}.

SKeyGen(MK,S,{V Kx}x∈S)→ SK. The key generation algo-
rithm takes as inputs the master key MK, a set of attributes S that
describes the secret key, and the corresponding set of attribute ver-
sion keys {V Kx}x∈S. It outputs the user’s secret key SK.

Encrypt(PP,{PKx},m,A)→CT . The encryption algorithm takes
as inputs the public parameters PP, the set of public attribute key
{PKx}, a message m and an access structure A over the universe of
attributes. The algorithm will encrypt m such that only a user who
possesses a set of attributes satisfying the access structure will be
able to decrypt the message. It outputs a ciphertext CT .

Decrypt(CT,SK)→ m. The decryption algorithm takes as in-
puts the ciphertext CT which contains an access structure A and
the secret key SK for a set of attributes S. If the set of attributes S
satisfies the access structure A, then the algorithm will decrypt the
ciphertext and return a message m.

UKeyGen(MK,V Kx′)→ (Ṽ Kx′ ,UKx′). The update key genera-
tion algorithm takes as inputs the master key MK and the current
version key V Kx′ of the revoked attribute x′. It outputs a new ver-
sion key Ṽ Kx′ of the revoked attribute x′ and an update key UKx′ .

SKUpdate(SK,UKx′)→ S̃K. The secret key update algorithm
takes as inputs the current secret key SK and the update key UKx′

of the revoked attribute x′. It outputs a new secret key S̃K.
CTUpdate(CT,UKx′)→ C̃T . The ciphertext update algorithm

takes as inputs the ciphertext CT and the update key UKx′ . It out-
puts a new ciphertext C̃T .

2.3 Definition of Security Model
In cloud storage systems, we assume that: 1) The server may

give access permission to the users who are not supposed to. 2)
The server is curious but honest. It is curious about the content of
the encrypted data or the received message, but will execute cor-
rectly the task assigned by the authority. 3) The users, however, are
dishonest and may collude to obtain unauthorized access to data.

We now describe the security model for CP-ABE systems by the
following game between a challenger and an adversary as follows.

Setup. The challenger runs the Setup algorithm and gives the
public parameters, PK to the adversary.

Phase 1. The adversary is given oracle access to secret keys
SK that corresponding to sets of attributes S1,S2, · · · ,Sq1 and the
update keys UK.

Challenge. The adversary submits two equal length messages
M0 and M1. In addition, the adversary gives a challenge access
structure A∗ such that none of the sets S1, · · · ,Sq1 from Phase 1
satisfy the access structure. The challenger flips a random coin b,
and encrypts Mb under the access structure A∗. Then, the ciphertext
CT ∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions: 1) none of
sets of attributes Sq1+1, · · · ,Sq satisfy the access structure corre-

524

sponding to the challenge; 2) none of the updated secret keys S̃K
(generated by the queried SK and update keys UK) can decrypt the
challenge ciphertext.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as Pr[b′=

b]− 1/2. This security model can easily be extended to handle
chosen-ciphertext attacks by allowing for decryption queries in Phase
1 and Phase 2.

DEFINITION 2. A revocable CP-ABE scheme is secure if all
polynomial time adversaries have at most a negligible advantage
in the above game.

3. ATTRIBUTE-BASED ACCESS CONTROL
WITH EFFICIENT REVOCATION

In this section, we first give an overview of our method and then
propose the detailed construction of access control scheme. After
that, we describe our attribute revocation method for CP-ABE.

3.1 Overview of Challenges and Our Solutions
To achieve fine-grained access control, the owner first divides the

data into several components according to the logic granularities
and encrypts each data component with different content keys by
using symmetric encryption techniques. Then, the owner applies
our proposed CP-ABE method to encrypt each content key, such
that only the user whose attributes satisfy the access structure in
the ciphertext can decrypt the content keys. Users with different
attributes can decrypt different number of content keys and thus
obtain different granularities of information from the same data.

To solve the attribute revocation problem, we assign a version
number for each attribute. When an attribute revocation happens,
only those components associated with the revoked attribute in se-
cret keys and ciphertexts need to be updated, instead of all the com-
ponents in the secret keys and ciphertexts. When an attribute is re-
voked from a user, the authority generates a new version key for
this revoked attribute and generate an update key for it. With the
update key, all the users, except the revoked user, who hold the re-
voked attributes can update its secret key (Backward Security). By
using the update key, the components associated with the revoked
attribute in the ciphertext can also be updated to the current version.
To improve the efficiency, we delegate the workload of ciphertext
update to the server by using the proxy re-encryption method, such
that the newly joined user is also able to decrypt the previous pub-
lished data, which are encrypted with the previous public keys (For-
ward Security). Moreover, all the users need to hold only the latest
secret key, rather than keep records on all the previous secret keys.

3.2 Construction of Our Scheme
Let G and GT be the multiplicative groups with the same prime

order p and e : G×G→ GT be the bilinear map. Let g be the
generator of G. Let H : {0,1}∗ →G be a hash function such that
the security will be modeled in the random oracle.

The construction of our access control scheme consists of four
phases: System Initialization, Key Generation by Authority, Data
Encryption by Owners and Data Decryption by Users.
Phase 1: System Initialization

The authority initializes the system by running the Setup al-
gorithm. It randomly chooses α,β ,γ,a ∈ Zp as the master key
MK = (α,β ,γ,a). Then, it generates the public parameters PP as

PP = (g, ga, g1/β , gβ , e(g,g)α)

For each attribute x, the authority generates a random number
vx ∈ Zp as the initial attribute version number V Kx = vx and then

Figure 2: Data Format on Cloud Server

applies it to generate a public attribute key PKx as

PKx = (PK1,x = H(x)vx , PK2,x = H(x)vxγ).

All the public parameters PP and the public attribute keys {PKx}
are published on the public bulletin board of the authority, such that
all the owners in the system can freely get them.
Phase 2: Secret Key Generation for Users

When a user joins the system, the authority first assigns a set
of attributes S to this user according to its role or identity in the
system. Then, the authority generates the secret key SK for this
user by running the key generation algorithm SKeyGen. It takes
as inputs the master key MK, a set of attributes S that describes
the secret key, and the corresponding set of attribute version keys
{V Kx}x∈S. It then chooses a random number t ∈Zp and generates
the user’s secret key as

SK = (K = g
α

β ·g
at
β ,L = gt ,∀x ∈ S : Kx = gtβ 2

·H(x)vxtβ).

The authority then sends SK to the user via a secure channel.
Phase 3: Data Encryption by Owners

Before hosting the data M to the cloud servers, the owner pro-
cesses the data as follows. 1) It first divides the data into several
data components as M = {m1, · · · ,mn} according to the logic gran-
ularities. For example, the person record data may be divided into
{name, address, security number, employer, salary}; 2) It encrypts
each data component mi with different content keys ki(i = 1, · · · ,n)
by using the symmetric encryption techniques; 3) For each content
key ki(i = 1, · · · ,n), the owner defines the access structure M over
the universe of attributes S and then encrypts ki under this access
structure by running the encryption algorithm Encrypt.

The encryption algorithm Encrypt(PP,{PKx},k,(M,ρ))→CT
can be constructed as follows. It takes as inputs the public param-
eters PP, a set of public attribute key {PKx}, a content key k and
a LSSS access structure (M,ρ). Let M be a l× n matrix, where
l denotes the total number of all the attributes. The function ρ

associates rows of M to attributes. It first chooses a random en-
cryption exponent s ∈Zp and a random vector~v = (s,y2, · · · ,yn) ∈
Zn

p, where y2, · · · ,yn are used to share the encryption exponent s.
For i = 1 to l, it computes λi = ~v ·Mi, where Mi is the vector
corresponding to the i-th row of M. Then, it randomly chooses
r1,r2, · · · ,rl ∈Zp and computes the ciphertext as

CT = (C = ke(g,g)αs, C′ = gβ s, Ci = gaλi(gβ)−ri H(ρ(i))−rivρ(i) ,

D1,i = H(ρ(i))vρ(i)riγ , D2,i = g
ri
β (i = 1, · · · , l)).

The owner then uploads the encrypted data to the server in the
format as described in Figure 2.
Phase 4: Data Decryption by Users

Upon receiving the data from the server, the user runs the de-
cryption algorithm Decrypt to obtain the corresponding content
keys and use them to further decrypt data components. Only the
attributes that the user possesses satisfy the access structure defined
in the ciphertext CT , the user can decrypt the content key and then
use it to decrypt the data component. Because different users may
have different attributes, they are able to decrypt different number
of data components, such that they can get different granularities of
information from the same data.

525

The decryption algorithm Decrypt(CT,SK)→ m is constructed
as follows. It takes as inputs a ciphertext CT attached with the ac-
cess structure (M,ρ) and the secret key for a set of attributes S.
Suppose that the user’s attribute set S satisfies the access structure
and let I ⊂ {1,2, · · · , l} be defined as I = {i : ρ(i) ∈ S}. Then, it
chooses a set of constants {wi ∈ Zp}i∈I and reconstructs the en-
cryption exponent as s = ∑i∈I wiλi if {λi} are valid shares of the
secret s according to M. The decryption algorithm first computes

e(C′,K)

∏i∈I(e(Ci,L)e(D2,i,Kρ(i)))
wi

= e(g,g)αs. (1)

It can then decrypt the content key as k = C/e(g,g)αs. The user
then uses the content keys to further decrypt the data.

3.3 Efficient Attribute Revocation for CP-ABE
When a user is leaving the system, the user should not be able

to decrypt any data stored on the server. Thus, the access right of
this user should be revoked, which is called the User Revocation.
Another scenario is that a user is degraded in the system, some
attributes should be removed from the previous set of attributes it
possesses, which is called the Attribute Revocation.

In order to satisfy the requirements of attribute revocation, our
revocation method includes three phases: Update Key Generation
by Authority, Secret Key Update for non-revoked Users and Cipher-
text Update by Cloud Server. Suppose an attribute x′ is revoked
from a user µ . The attribute x′ is denoted as the Revoked Attribute
and the user µ is denoted as the Revoked User. We also use the
term of Non-revoked Users to denote the set of users who possess
the revoked attribute x′ but has not been revoked.
Phase 1: Update Key Generation by Authority

When there is an attribute revocation, the authority runs the up-
date key generation algorithm UKeyGen(MK,V Kx′)→ (Ṽ Kx′ ,UKx′).
It takes the master key MK and the current version key V Kx′ of
the revoked attribute x′ as inputs. It generates a new attribute ver-
sion key Ṽ Kx′ by randomly choosing a number ṽx′ ∈Zp(ṽx′ 6= vx′).
Then, the authority computes the update key as

UKx′ = (UK1,x′ =
ṽx′

vx′
, UK2,x′ =

vx′ − ṽx′

vx′γ
).

It outputs a new version key Ṽ Kx′ of the attribute x′ and an up-
date key UKx′ that can be used for updating the secret keys of non-
revoked users and the ciphertexts that are associated with the re-
voked attribute x′. Then, the authority sends the update key UKx′

to all the non-revoked users (for secret key updating) and the cloud
server (for ciphertext updating) via secure channels.

The authority also updates the public attribute key of the revoked
attribute x′ as P̃Kx′ = (P̃K1,x′ = H(x′)ṽx′ , P̃K2,x′ = H(x′)ṽx′ γ).
After that, the authority broadcasts a message to all the owners that
the public attribute key of the revoked attribute x′ is updated. Then,
all the owners can obtain the new public attribute key of the revoked
attribute from the public bulletin board of the authority.
Phase 2: Secret Key Update for Non-revoked Users

Each non-revoked user submits two components L = gt and Kx′

of the secret key SK to the authority. Upon receiving these compo-
nents, the authority runs the SKUpdate to compute a new compo-
nent K̃x′ associated with the revoked attribute x′ as

K̃x′ = (Kx′/Lβ 2
)UK1,x′ ·Lβ 2

= gtβ 2
·H(x′)ṽx′ tβ .

Then, it returns the new component K̃x′ to the non-revoked user.
The user’s secret key is updated by replacing the component Kx′

associated with the revoked attribute x′ with the new one K̃x′ :

S̃K = (K, L, K̃x′ , ∀x ∈ S\{x′} : Kx).

Note that only the component associated with the revoked at-
tribute x′ in the secret key needs to be updated, while all the other
components are kept unchanged.
Phase 3: Ciphertext Update by Cloud Server

To ensure that the newly joined user who has sufficient attributes
can still decrypt those previous data which are published before it
joined the system, all the ciphertexts associated with the revoked
attribute are required to be updated to the latest version. Intuitively,
the ciphertext update should be done by data owners, which will in-
cur a heavy overhead on the data owner. To improve the efficiency,
we move the workload of ciphertext update from data owners to
the cloud server, such that it can eliminate the huge communica-
tion overhead between data owners and cloud server, and the heavy
computation cost on data owners. The ciphertext update is con-
ducted by using proxy re-encryption method, which means that the
server does not need to decrypt the ciphertext before updating.

Upon receiving the update key UKx from the authority. The
cloud server runs the ciphertext update algorithm CTUpdate(CT,
UKx′)→ C̃T to update the ciphertext associated with the revoked
attribute x′. It takes as inputs the ciphertext CT and the update key
UKx′ . It updates the ciphertext associated with x′ as

C̃T = (C̃ =C, C̃′ =C′, ∀i = 1 to l : D̃2,i = D2,i,

i f ρ(i) 6= x′ : C̃i =Ci, D̃1,i = D1,i,

i f ρ(i) = x′ : C̃i =Ci · (D1,i)
UK2,x′ , D̃1,i = (D1,i)

UK1,x′)

It is obvious that our scheme only requires to update those compo-
nents associated with the revoked attribute in the ciphertext, while
the other components are not changed. In this way, our scheme can
greatly improve the efficiency of attribute revocation.

The ciphertext update can not only guarantee the forward secu-
rity of the attribute revocation, but also can reduce the storage over-
head on the users (i.e., all the users need to hold only the latest se-
cret key, rather than to keep records on all the previous secret keys).
The cloud server in our system is required to be semi-trusted. Even
when the cloud server is not semi-trusted in some circumstance,
which means that the server will not update the ciphertexts cor-
rectly. The forward security cannot be guaranteed, but our system
can still achieve the backward security (i.e., the revoked user can-
not decrypt the new published ciphertexts encrypted with the new
public attribute keys).

4. ANALYSIS OF OUR PROPOSED ACCESS
CONTROL SCHEME

4.1 Security Analysis
We conclude the security analysis as the following Theorems:

THEOREM 1. When the decisional q-parallel BDHE assump-
tion holds, no polynomial time adversary can selectively break our
system with a challenge matrix of size l∗×n∗, where n∗ ≤ q.

PROOF. Suppose we have an adversary A with non-negligible
advantage ε =AdvA in the selective security game against our con-
struction and suppose it chooses a challenge matrix M∗ with the
dimension at most q columns. Under the constraint that none of the
updated secret keys S̃K (generated by both the queried secret keys
SKs and update keys UKs) can decrypt the challenge ciphertext, we
can build a simulator B that plays the decisional q-parallel BDHE
problem with non-negligible advantage. The detailed proof will be
shown in the full version of our work.

THEOREM 2. Our proposed access control scheme is secure
against the unauthorized access.

526

Table 1: Comparison of Storage Overhead
Entity Our Scheme [3]

Authority (4+na) · |p| 2|p|
Owner (2+na)|g|+ |gT | 2|g|+ |gT |
Server |gT |+(3l +1)|g| 2|gT |+(3l +3)|g|+ l·|nu|·|p|

2
User (2+na,i) · |g| (2na,i +1)|g|+ log(nu +1)|p|

PROOF. From the definition of the unauthorized access, there
are two scenarios: 1) Users who do not have sufficient attributes
satisfying the access structure may try to access and decrypt the
data. 2) When one or some attributes of the user are revoked, the
user may still try to access the data with his/her previous secret key.

For the first scenario, the users who do not have sufficient at-
tributes cannot decrypt the ciphertext by using their own secret
keys. We also consider the collusion attack from multiple users,
in our scheme, the user’s secret key is generated with a random
number, such that they may not be the same even if the users have
the same set of attributes. Thus, they cannot collude their secret
keys together to decrypt the ciphertext.

For the second scenario, suppose one attribute is revoked from a
user, the authority will choose another version key to generate the
update key and sends it to the server for updating all the ciphertexts
associated with the revoked attribute, such that the ciphertexts are
associated with the latest version key of the revoked attributes. Due
to the different values of the version key in the ciphertext, the re-
voked user is not able to use the previous secret key to decrypt the
ciphertext.

4.2 Performance Analysis
We give the analysis of our scheme by comparing with [3] in

terms of storage overhead, communication cost and computation
efficiency. Let |p| be the size of elements in Zp. Let |g| and |gT |
be the element size inG andGT respectively. Let na and nu denote
the total number of attributes and users in the system respectively.
Let na,i denote the number of attributes the user i possesses and let
l denote the number of attributes associated with the ciphertext.

4.2.1 Storage Overhead
Table 2 shows the comparison of storage overhead on each entity

in the system. The main storage overhead on the authority comes
from the master key in [3]. Besides the master key, in our scheme,
the authority needs to hold a version key for each attribute. Both
the public parameters and the public attribute keys contribute the
storage overhead on the owner in our scheme, which is linear to
the total number of attributes in the system. Although the data is
stored on the server in the format as shown in Figure 2, we do not
consider the storage overhead caused by the encrypted data, which
are the same in both our scheme and [3]. Our scheme only requires
the server to store the ciphertext, while the server in [3] needs to
store both the message head and the ciphertext which is also linear
to the number of users in the system. The storage overhead on
each user in our scheme is associated with the number of attributes
it possesses, while in [3] the storage overhead on each user is not
only linear to the number of attributes it possesses but also linear
to the number of users in the system. Usually, the number of users
are much larger than the number of attributes in the system, which
means that our scheme incurs less storage overhead.

4.2.2 Communication Cost
As illustrated in Table 3 the communication cost in the system

is mainly caused by the keys and ciphertexts. In our scheme, the

Table 2: Comparison of Communication Cost
Communication Our Scheme [3]Cost between

Auth.&User 4|g|+na,i|g| |g|+2na,i|g|
Auth.&Owner 2|g|+ |gT |+na|g| 2|g|+ |gT |

Server&User |gT |+(3l +1)|g| |gT |+(2l +1)|g|+
(l · |nu|/2+ log(nu +1))|p|

Server&Owner |GT |+(3l +1) · |G| (l +1)|GT |+2l|G|

communication cost between the authority and the user comes from
both the user’s secret keys and the update keys, while in [3] only
the secret key contributes the communication cost between the au-
thority and the user. The communication cost between the authority
and the owner mainly comes from the public keys. In our scheme,
when there is an attribute revocation, the owner needs to get the
latest public attribute key of the revoked attributes, which also con-
tributes the communication between the authority and the owner.

In our scheme, the communication cost between the server and
the user comes from the ciphertext. But in [3], besides the cipher-
text, the message head (which contains the path keys) also con-
tributes the communication cost between the server and the users,
which is linear with the number of all the users in the system. Thus,
our scheme incurs less communication cost between the server and
the user than [3]. The ciphertext contributes the main communi-
cation cost between the server and the owner. Because the size of
ciphertext in our scheme is much smaller than the one in [3], the
communication cost between the sever and the owner is much less
than the one in [3].

4.2.3 Computation Efficiency
We implement our scheme and [3] on a Linux system with an

Intel Core 2 Duo CPU at 3.16GHz and 4.00GB RAM. The code
uses the Pairing-Based Cryptography (PBC) library version 0.5.12
to implement the schemes. We use a symmetric elliptic curve α-
curve, where the base field size is 512-bit and the embedding degree
is 2. The α-curve has a 160-bit group order, which means p is a
160-bit length prime. The size of the plaintext is set to be 1 KByte.
All the simulation results are the mean of 20 trials.

We compare the computation efficiency between our scheme and
[3] in terms of encryption, decryption and re-encryption 2. From
the Figure 3(a), we can see that the time of encryption is linear
with the total number of attributes in the system. The encryption
phase in our scheme is more efficient than the one in [3]. That is be-
cause, in [3], the owner first encrypts the data by using the CP-ABE
scheme and sends the ciphertext to the server. Upon receiving the
ciphertext from the owner, the server will re-encrypt the ciphertext
with a randomly generated encryption exponent. Then, the server
encrypts this exponent with a set of attribute group keys by using
the broadcast encryption approach. Correspondingly, in the phase
of decryption, the user should first decrypt the exponent with its
own path key and uses it to decrypt the data together with the se-
cret key. In our scheme, however, the user only needs to use the
secret key to decrypt the data, which is more efficient than the [3]
as illustrated in the Figure 3(b).

During the attribute revocation, our scheme only requires to up-
date those components associated with the revoked attribute of the
ciphertext, while the [3] should re-encrypt all the components of the
ciphertext. Besides, the re-encryption in [3] should generate a new

2Note that we do not consider the computation of symmetric en-
cryption for data components since they are the same in both our
scheme and [3].

527

20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 o

f
E

n
c
ry

p
ti

o
n

 (
s)

Total Number of Attributes

 Our Scheme

 Hur's Scheme

(a) Encryption

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
 o

f
D

e
c
ry

p
ti

o
n

Number of Attributes the User Possesses

 Our Scheme

 Hur's Scheme

(b) Decryption

20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 o

f
R

e
-e

n
c
ry

p
ti

o
n

/U
p

d
a
te

 (
s)

Total Number of Attributes

 Our Scheme

 Hur's Scheme

(c) Re-encryption

Figure 3: Computation Cost Comparison

encryption exponent and encrypt this new exponent with the new
set of attribute group key by using broadcast encryption approach.
Thus, as illustrated in Figure 3(c), the time of re-encryption phase
in [3] is linear with the total number of attributes, while the time
of ciphertext update in our scheme is constant to the number of
revoked attributes.

5. RELATED WORK
The attribute-based encryption (ABE) technique [1, 2, 5, 7] is re-

garded as one of the most suitable technologies for data access con-
trol in cloud storage systems.There are two complementary forms
of ABE, Key-Policy ABE (KP-ABE) [2] and Ciphertext-Policy ABE
(CP-ABE) [1,7]. In KP-ABE, attributes are used to describe the en-
crypted data and access policies over these attributes are built into
user’s secret keys; while in CP-ABE, attributes are used to describe
the user’s attributes and the access policies over these attributes are
attached to the encrypted data.

In [8], the authors proposed a fine-grained data access control
scheme based on the KP-ABE approach [2]. In their scheme, the
data owner encrypts the data with a content key and then encrypt
the content key by using the KP-ABE technique. The data owner
assigns the access structure and the corresponding secret key to
users by encrypting them with the user’s public key and stores it
on the server. However, their scheme requires the data owner to
always be online for user joining, which is not appropriate in cloud
storage systems. Some access control schemes are proposed based
on CP-ABE [1,3], since CP-ABE is considered to be more suitable
for data access control in cloud storage systems than KP-ABE. It
allows data owners to define an access structure on attributes and
encrypt the data under this access structure, such that data owners
can define the attributes that the user needs to possess in order to
decrypt the ciphertext. However, the revocation issue in CP-ABE
is still an open problem.

To deal with the attribute revocation issue in ABE system, Yu et
al. [9] proposed an attribute revocation method for CP-ABE, but
they require the server to decide which users can update their se-
cret keys according to the revoked user identity list, such that the
server is required to be fully trusted. Hur et al. [3] also proposed an
attribute revocation scheme in CP-ABE by allowing the server to
re-encrypt the ciphertext with a set of attribute group keys. It can
conduct the access right revocation on attribute level rather than
on user level. During the attribute revocation, the server needs to
change the attribute group key for the attribute which is affected by
the membership change and re-encrypts the ciphertext with the new
set of group attribute keys. This may incur high computation cost
on the server. Also the server should be fully trusted. However, the

server in cloud storage systems cannot be trusted and thus [3] can-
not be applied in our problem. Therefore, the attribute revocation
is still an open problem in attribute-based data access control.

6. CONCLUSION
In this paper, we proposed a fine-grained data access control

scheme based on CP-ABE approach, where the owner was in charge
of defining and enforcing the access policy. We also proposed an ef-
ficient attribute revocation method for CP-ABE, which can greatly
reduce the cost of attribute revocation. Although this work is spe-
cific to cloud storage systems, but it is true that an untrusted remote
storage system is an application of the work.

7. ACKNOWLEDGMENT
This work is supported by Research Grants Council of Hong

Kong [Project No. CityU 114112] and in part by US National Sci-
ence Foundation under grants CNS-1262277 and CNS-1116939.

8. REFERENCES
[1] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy

attribute-based encryption. In S&P’07, pages 321–334. IEEE
Computer Society, 2007.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based
encryption for fine-grained access control of encrypted data.
In CCS’06, pages 89–98. ACM, 2006.

[3] J. Hur and D. K. Noh. Attribute-based access control with
efficient revocation in data outsourcing systems. IEEE Trans.
Parallel Distrib. Syst., 22(7):1214–1221, 2011.

[4] P. Mell and T. Grance. The NIST definition of cloud
computing. Technical report, National Institute of Standards
and Technology, 2009.

[5] A. Sahai and B. Waters. Fuzzy identity-based encryption. In
EUROCRYPT’05, pages 457–473. Springer, 2005.

[6] K. Sohr, M. Drouineaud, G.-J. Ahn, and M. Gogolla.
Analyzing and managing role-based access control policies.
IEEE Trans. Knowl. Data Eng., 20(7):924–939, 2008.

[7] B. Waters. Ciphertext-policy attribute-based encryption: An
expressive, efficient, and provably secure realization. In
PKC’11, pages 53–70. Springer, 2011.

[8] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure,
scalable, and fine-grained data access control in cloud
computing. In INFOCOM’10, pages 534–542. IEEE, 2010.

[9] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data
sharing with attribute revocation. In ASIACCS’10, pages
261–270. ACM, 2010.

528

