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Abstract. We introduce a broad lattice manipulation technique for ex-
pressive cryptography, and use it to realize functional encryption for
access structures from post-quantum hardness assumptions.

Specifically, we build an efficient key-policy attribute-based encryp-
tion scheme, and prove its security in the selective sense from learning-
with-errors intractability in the standard model.

1 Introduction

Attribute-Based Encryption (ABE) is a very powerful notion of encryption,
where ciphertexts are not decipherable according to the ownership of a spe-
cific key (as in public-key encryption), or a specific name (as in identity-based
encryption), but according to the fulfillment of a functional condition expressed
as a predicate that takes multiple attributes as input.

Attribute-based encryption was first coined in a paper by Goyal et al. [22], al-
though the idea was already implicit in the Fuzzy IBE of Sahai and Waters [32],
which for the first time permitted ciphertexts to be addressed on the basis of
a condition that was strictly richer than a mere equality (of keys or identities).
Since then, the notion of ABE has blossomed into an entire research program
known as Functional Encryption [23,11], whereby rich functions driven by in-
puts from both the ciphertext and the key attempting to decrypt it, determine
whether the message, or some function thereof, can be accessed. As an illustra-
tive example of recent developments in this area, Waters very recently built a
functional cryptosystem whose predicates are deterministic finite automata [33].

As impressive as these results may be, almost all of them appear to require
the machinery of bilinear maps [27]—which leaves them completely vulnerable
to quantum cryptanalysis, by virtue of hinging on the classically hard but quan-
tumly easy Discrete Log problem. (Limited instances of construction from yet
other techniques [16,10] do exist, but, with assumptions that hinge on Factor-
ing, they are equally vulnerable to quantum attacks.) With quantum comput-
ers rapidly moving from a scientific to an engineering problem, it behooves us
to have safe cryptographic alternatives ready before they become a reality—
possibly with nary an advance warning. Lattices appear to be our best defense,
for not only are they increasingly conjectured to thwart the quantum threat in a
fundamental way, they also have a rich mathematical structure that makes them
well suited for building “complex” and expressive cryptographic systems.

Lattices have made their apparition in cryptography with the work Ajtai [5],
and have since been used to construct a vast variety of primitives, including one-
way and collision-resistant hash functions [5,26], signatures [12,25], public-key
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encryption [7,30,31], identity-based encryption schemes [21,15,1,2], lossy trap-
door functions [29], and even a couple instances of functional encryption for
inner-product [4] and threshold [3] functions. Lattices have also been very in-
strumental in cracking the long-standing question of realizing fully homomorphic
encryption [19,20,14].

Lattices are indeed rapidly emerging as a mathematical platform of choice for
building increasingly powerful and efficient cryptographic primitives. In addition
to lattice problems being generally conjectured to withstand quantum attacks,
the mathematical properties of these objects make them both relatively efficient
and flexible to enable the construction of powerful cryptosystems. Research in
lattice-based cryptosystems that reduce from the “Learning With Errors” (LWE)
hardness assumption has been particularly active, in no small part because the
average-case LWE problem is itself reducible [31,28] from a slew of worst-case
lattice problems, for a sound foundation.

Despite all of those incentives and successes, the reality is that functional en-
cryption so far remains largely confined to the world of bilinear maps. In recent
years, only a handful of such systems have been successfully realized using lat-
tices, such as the already cited constructions of IBE [21,1], HIBE [15,2], IPE [4],
and FuzzyIBE [3]. Further advances have remained elusive, despite the “pull” ex-
erted by the faster pace of progress in that other world of bilinear maps. Rather
disconcertingly indeed, as attempts are made to translate high-level principles
of bilinear-map functional encryption into lattice analogues, serious difficulties
tend to crop up in the most unexpected places when one tries to prove security.
A pointed example, documented in [3], relates to the unresolved difficulties faced
by those authors when trying to build ABE from LWE.

If anything, this brief history of functional encryption from lattices suggests
that new ideas are in order for progress, beyond the field’s classic paradigms.

1.1 Main Motivations

“Attribute-Based Encryption using Lattices” is by many authors’ account an im-
portant research question, having been posed and left unanswered in an number
of recent works including [15,1,4,3]. Perhaps the best evidence of the problem’s
popularity is none other than a recent attempt by a large corporation to lay
claim on its solution, in an eponymous patent application [17], even though the
problem explicitly remained open to this day. 1 Why such eager enthusiasm?

First and foremost, functional encryption in general and ABE in particu-
lar are extremely powerful cryptographic constructs that would seem almost
incredible—e.g., by the standards of circa 2000. FE and ABE primarily give us
unprecedented flexibility and expressiveness with which recipients can be desig-
nated in a wholesale manner. Not only do there exist direct use cases for such

1 The US patent application [17] appears to refer to a precursor of the “Fuzzy IBE
using Lattices” subsequently published in [3], wherein a superset of the authors
explicitly acknolwedge that it did not extend to a proper ABE. We further opine on
mathematical but not legal grounds that our ABE falls outside of the claims of [17].
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power (we refer to the early literature on the subject for examples), but the
prospects that it opens for protocol building are highly intriguing.

As already alluded to, such rewards would be for naught if the looming threat
of a catastrophic quantum cryptanalysis kept relegating it to where damage
would be contained. It would be foolish to believe that because quantum registers
have only grown from 5 to 7 qubits during the last decade, that their size could
not suddenly become cryptographically devastating during the next one. This is
where lattices come into play.

Compounding their conjectured quantum robustness, lattices also have a num-
ber of rather unique efficiency and implementation advantages. For instance,
while bilinear-map cryptosystems tend to be convenient to work with on paper
thanks to the availability of clean abstractions, this view hides a rather complex
elliptic-curve machinery that must be securely implemented in any physical im-
plementation. In lattice-based cryptography, the situation is reversed: schemes
and proofs tend to be more complex and mirred in details, but implementations
require only small-number arithmetic and basic linear algebra.

Those are the reasons—from quantum peace of mind, to the sheer challenge of
solving compelling theory with practical applications—why it is far from wasted
effort to “reinvent” Attibute-Based Encryption, not from bilinear maps but from
lattices. (And as a bonus, we introduce a new technique whose power likely
reaches into FE far beyond mere ABE.)

1.2 Our Contributions

Our main result is the construction of a functional encryption scheme for mono-
tone access structures, also known as (key-policy) attribute-based encryption,
and reduce its security from LWE.

We achieve this result by way of a new lattice manipulation framework suited
to the handling of complex access policies. Compared to earlier works on lattice-
based IBE and FE, our framework has two distinguishing characteristics: the
reliance on ephemeral lattices for all private-key extractions, and the subsequent
application of a basis splicing technique which allows a recipient to convert an
ephemeral lattice’s basis into a basis for any lattice in a given family, as needed.

We introduce our framework in relation to a number of observations we make
in our attempt to shed some light on the difficulties previously faced. This leads
us to a (rather informal) discussion of FE with uniform and non-uniform policies,
and how the latter appeared hard to tackle based on previous lattice techniques.

Here we focus solely on introducing our framework and building “key-policy”
KP-ABE from it. We defer to future work the study of “ciphertext-policy” CP-
ABE and even more ambitious FE.

2 Preliminaries

We refer to the Appendix—available in the eprint version of the paper [13]—for
background on lattices in cryptography.
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2.1 Attribute-Based Encryption

We follow the definition of the ABE functionality as given by Goyal et al. [22],
albeit for security we consider the notion of ciphertext privacy which implies
both semantic security and recipient anonymity.

Definition 1 (Key-Policy Attribute-Based Encryption). A Key-Policy Attribute-
Based Encryption scheme consists of the following four algorithms:

Setup(λ, �) → (Pub, Msk): This algorithm is input a security parameter λ and
an attribute number �. It outputs a public key Pub and a master key Msk.

Extract(Pub, Msk, Policy) → Key: This algorithm takes a public key Pub, a mas-
ter key Msk, and an access policy Policy. It outputs a decryption key Key.

Encrypt(Pub, Attrib, Msg) → Ctx: This algorithm is input a public key Pub, a
list of attributes Attrib, and a message bit Msg. It outputs a ciphertext Ctx.

Decrypt(Pub, Key, Ctx) → b: This algorithm takes a public key Pub, a decryp-
tion key Key, and a ciphertext Ctx. It outputs the bit b if the attributes Attrib
used to create Ctx satisfy the policy Policy used in the creation of Key.

Definition 2 (Selective-Model KP-ABE Security). A KP-ABE scheme is cipher-
text-private in the selective-attribute model of security if all probabilistic poly-
nomial time (PPT) adversaries have at most a negligible advantage in this game:

Target: The adversary declares the challenge attributes, Attrib†, that it wishes
to be challenged upon.

Setup: The challenger runs the Setup algorithm and gives the public key to the
adversary.

Queries: The adversary is allowed to issue adaptive queries for private keys
corresponding to policies Policy of its choice, as long as Attrib† does not
satisfy Policy.

Challenge: The adversary signals its readiness to accept a challenge, and pro-
poses a message to encrypt. The challenger encrypts the message for the
challenge attributes Attrib†, and then flips a random coin r. If r = 1, the
ciphertext is given to the adversary; if r = 0, a random element of the
ciphertext space is returned.

Queries: This is a continuation of the earlier query phase.
Guess: The adversary outputs a guess r′ of r. The advantage of an adversary

A in this game is defined as |Pr[r′ = r] − 1
2 |

One also defines an adaptive-attribute version of the above game, where the
adversary may defer the choice of target attributes until requesting the challenge.

2.2 Linear Secret Sharing

Definition 3 (LSSS over Zq). An LSSS Π over a set of parties P consists of
an “index map” ρ and a “share-generating matrix” L ∈ Z

�×θ
q with � rows and θ

columns, where � is the number of shares specified by Π , and θ depends on the
structure of Π . For all i = 1, . . . , �, the function ρ maps the i-th row of L to its
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corresponding party. The matrix L maps an input θ-vector v = (s, r2, . . . , rθ),
where s ∈ Zq is the secret to be shared, and r2, . . . , rθ ∈ Zq are random, into an
output �-vector Lv = (s1, . . . , s�) containing the shares of the secret s according
to Π . The share si = (Lv)i is assigned to party ρ(i).

Every LSSS according to the above definition enjoys the linear reconstruction
property. This means that if Π is an LSSS for the access structure A, then the
following is true. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , �} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants {κi ∈ Zq} for i ∈ I,
such that, if the {λi = (Lv)i} are valid shares of any secret s according to Π ,
then

∑
i∈I κiλi = s. It was shown by Beimel [9], that these constants {κi} can

be found in time polynomial in the size of the share-generating matrix L.

Vector Secrets and Reconstruction over Z. For the purpose of this paper, we
will need a slightly modified notion of LSSS, where secrets and shares are �-
dimensional integer vectors in Z

�, and share-generating matrices are defined
over Z rather than over Zq. This creates a few issues:

1. Since secrets and shares are themselves vectors, the vector v of all such shares
should be viewed as a tensor, and the product (L ·v) interpreted accordingly.

2. There is no notion of uniform share distribution over Z: a benign issue here.
3. Reconstruction in Z may require fractional interpolation coefficients κi ∈ Q.

We alleviate this difficulty by relaxing our notion of reconstruction, allowing
the reconstructed vector to be a non-zero multiple of the original vector
(which is non-trivial only if the vector has dimension greater than one).
Such reconstruction is possible using only integer coefficients κi ∈ Z.

Low-Norm Share Generation. We will use the generic construction mechanism
described in Appendix G of [24, eprint] to convert a monotone access structure
into a deterministic LSSS matrix. For access formulas with AND (∧) and OR (∨)
gates only, it has the further advantage to build share-generating matrices L ∈
{0,±1}�×θ with ternary elements in {0,±1}. For such formulas, the (unrelaxed)
reconstruction coefficients κi will be binary in {0, 1} by construction, even when
working in Z, hence already integer and low-norm without further relaxation.

Duplicated Attributes. For ease of exposition, we first restrict our attention to
formulas where each attribute appears exactly once. Since ρ is then the identity
function, we omit it from the notation altogether—until Section 4.5 and the
Example Appendix of [13] where we handle missing and duplicated attributes.

3 Framework

3.1 Functional Encryption from Lattices

The Regev Cryptosystem. Recall that the Regev PKE scheme [31] makes use of
an Ajtai lattice [5], defined as Λ⊥

q (A) = {x : Ax = 0 (mod q)} ⊆ Z
m, where
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q ∈ Z
+ and A ∈ Z

n×m
q together specify the lattice (though not necessarily in a

unique way). In Regev’s PKE scheme, one assumes q fixed and m > n log q. The
private key is a vector d ∈ Z

m with low euclidean norm ‖d‖ 	 q
√

m. The public
key is a pair (A,u) such that Ad = u (mod q). To encrypt a bit m ∈ {0, 1},
one selects a random ephemeral vector s ∈ Z

n
q , and output a pair (c0, c1), where

c0 = s� u + �q/2�m + ν0 and c1 = s� A + ν1, and where the additive terms ν0

and ν1 are low-norm independent discrete gaussian noise terms. To decrypt, the
private-key holder computes the difference Δ = c0 − c1 d in Zq, and interprets
it as “m = 1” if (the smallest non-negative representative of the coset) Δ lies in
{�q/4�, �3 q/4�}, and as “m = 0” otherwise.

Preimage Sampling. The Regev system has served as a starting point for many
“expressive” functional generalizations of public-key cryptography. The key turn-
ing point in this generalization has been the development, in [21], of a “preimage
sampling” technique that, given A and u, allow one to obtain a preimage d such
that Ad = u (mod q) and such that d has the same conditional distribution
given u as if it had been sampled first and its image computed from it. What
makes the preimage-sampling approach cryptographically interesting, is that in
order to sample a preimage of good quality (where the “quality” of a sample is
an inverse measure of its norm), it is (conjectured) necessary to possess a good
quality or low-norm basis B for the lattice Λ⊥

q (A). Furthermore, Ajtai’s original
result [5] does give us an efficient way to co-generate both a uniformly random
matrix A and an associated short basis B for the lattice it induces; whereas
it is a conjectured hard problem to find even a single short vector “after the
fact” for a given random A. Together, these methods provide an effective way to
obtain provably secure trapdoors from lattice hardness assumptions, that have
been used in interesting ways to construct increasingly “expressive” functional
cryptosystems: IBE [21,1], HIBE [15,2], IPE [4], FuzzyIBE [3], and now ABE.

More Expressive Predicates. The combination of the lattice/basis co-generation
algorithm of [5], the basic public-key framework of [31], and the preimage sam-
pling approach of [21], has led to the invention of several functional encryption
schemes for various classes of functions, starting with the identity-based encryp-
tion scheme in the original paper [21]. A handful of other functional encryption
schemes from lattices were later devised, including IBE in the standard model
[15,1], hierarchical IBE [15,2], inner-product encryption [4], and fuzzy IBE [3].
At a high level, all of those schemes find their roots in the Regev PKE system,
which they generalize in various ways following a common principle. The com-
mon principle is to extend Regev so that either or both the matrix A and/or
the syndrome u depend on the functional decryption criterion, rather than be-
ing constant. In IBE, the decryption criterion is a match of identities, so we let
A and/or u be function of the identity. In IPE and FuzzyIBE, the decryption
criterion is an inner product equality or a threshold of equalities, obtained by
splitting A and/or u into multiple shares Ai and/or ui, each of which depending
on one of the attributes of the decryption predicate.
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3.2 Complex Policies and Non-uniformity

In our quest to understand what differentiates successes from failures in earlier
lattice-based FE construction attempts, we are drawn to observe the emergence
of a pattern that we shall attempt to characterize informally (based on inductive
rather than deductive reasoning).

Uniform Policies. The “successes” share a crucial simplifying characteristic: all
attributes taken as formal arguments in the decryption policy are of equal im-
portance; they play symmetrical roles.

– IBE and HIBE use trivial examples of uniform policies, because the decryp-
tion predicate is a mere equality test that treats a full identity string as a
single atomic input (of variable length in the case of HIBE), comparing that
of the ciphertext with that of the private key.

– IPE uses uniform policies, because none of the multiple attributes taken as
inputs to the decryption predicate, plays a different role or is more important
than the others. Indeed, the predicate is of the form, “〈k, c〉 = 0 (mod q) ?”
(where k and c are the key’s and the ciphertext’s attribute vectors). Now let
us consider a permutation π. If we apply it to the components of k and also
to the components of c, one obtains the new predicate, “〈π(k), π(c)〉 = 0
(mod q) ?”, which is in fact unchanged and evaluates to the same value.

– FuzzyIBE uses uniform policies by same reasoning. The only difference is
that here the predicate is a θ-out-of-� threshold equality test between key
and ciphertext attributes.

Non-Uniform Policies. To contrast, consider the following basic ABE decryption
predicate: “(Ak = Ac)∨((Bk = Bc)∧(Ck = Cc)) ?” It falls within the scope of the
ABE model; yet it is non-uniform since the atomic clause that takes attribute A
as input, (Ak = Ac), can by itself truthify the entire predicate, whereas neither
the clause in B nor in C can do the same. The attributes are not symmetrical,
since A carries more weight than either B or C. Per our earlier criterion, some
permutations π of the attributes would not leave the predicate invariant.

Leakage from Non-Uniformity. The authors of [3] observe that the difficulty with
extending existing lattice techniques into ABE stems from the conjunction of two
risk factors: the necessity to prevent short-vector private keys from spilling a full
basis; and the propensity of keys with asymmetrical components to do just that.

To be sure, there are examples of earlier “FE successes” that allow full-bases
to be used as keys: all the HIBE schemes [15,1,2] fall in that category, since full
bases are needed for key delegation. However, we contend that passing out full
bases is not damaging in this case, because HIBE policies are trivially uniform,
involving only a single attribute, so that either there is a full match or there is
no match at all—no need to finesse the power of the decryption key in any way.

The other past “FE success” with multi-vector keys is the FuzzyIBE from [3].
There, a private key is a Regev key randomly secret-shared into a number of
vectors function of the threshold—definitely not a full basis which would give
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too much power. Such sharing finesse led to an attack when one attempted to
extend the scheme to ABE with non-uniform policies, because of dicrepancies in
the relative importance of the private key components. E.g., a key for A∨(B∧C)
would be “heavier” at attribute A. In this situation, an adversary could, by
making multiple key queries for related but distinct policies, obtain a collection
of short vectors whose “heavy” coordinates together leak enough information to
allow the adversary to reconstitute a “rogue” (sub-)basis. The uneven weight of
the coordinates made it difficult to randomize the keys to prevent the “heavy”
coordinates from leaking, without necessarily drowning the “light” coordinates
in noise and render them useless.

3.3 Robust Embedding of Policies

Instead of trying to prevent the reconstitution of rogue bases from private-key
vectors (which was the direction of future research envisioned in [3]), we shall
make our private keys into full bases outright—albeit, bases of ephemeral random
lattices that vary with every invocation of key extraction.

Ephemeral Lattices. Making keys from constantly changing, ephemeral lattices
seems great for security—but how can such keys be useful for decryption in
a Regev-like system, if the lattices used for encryption and key extraction are
different? In a nutshell, the ephemeral lattices (or, rather, the Ajtai matrices
defining them) will have a known structure, featuring both deterministic and
randomized subcomponents. The ephemeral lattice is rather high-dimensional
and its structure will encode the private-key policy attributes. The structure will
allow the recipient to transform this “useless” random-lattice basis, into a basis
for any target lattice, typically of a lower dimension, that belongs in a certain
authorized set that corresponds to the policy encoded into the initial structure.
Thus, if a private key is valid for a given ciphertext, meaning that the attributes
of one satisfy the policy of the other, then the recipient is able to transform it
into a basis for the lattice used in the ciphertext construction, and from there
decryption à la Regev can proceed. Conversely, if a private key is invalid for a
given ciphertext, the encryption lattice will be outside the authorized set, and
the private key will be useless to derive a (short) basis for that lattice.

Basis Splicing. We refer as basis splicing the internal operations that let the
recipient transform the given high-dimensional ephemeral-lattice basis, into a
basis for any desired lower-dimensional lattice in the authorized set. In the case
of ABE, the structure embedded in the ephemeral lattice will be obtained from
an LSSS, and the basis splicing operations will amount to taking linear combina-
tions of the basis vectors. Certain linear combinations will cause all the blinding
randomness to vanish, transforming the initial unknown ephemeral lattice into
a smaller known target lattice in the authorized set.

Security versus Functionality. At an intuitive level, the security benefits that we
derive from our approach are twofold:
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– Private keys as full bases are more robust than single vectors. In a system
where private keys are mere vectors, there is an incentive to obtain more
than one such vector, in a bid to reconctruct a rogue basis. If the key is a
full basis, there is nothing to be gained in trying to obtain another, which
can be generated from the first.

– Ephemeral lattices make a very potent blinding and firewalling mechanism.
This is perhaps the most important aspect of the framework we propose:
since the key-extraction mechanism involves an independently rerandomized
lattice that changes upon each invocation, the private keys are in a very
strong sense firewalled from one another and from the master secret.

These two properties should intuitively make it easy to construct a secure system,
which should translate into easy-to-construct reductionist simulations.

4 Scheme

4.1 Intuition

Setup. The system setup is very straightforward. To each (binary) attribute
Attribi named in the system, is associated a random Ajtai matrix Ai and a
matching trapdoor Bi such that Ai Bi = 0 for small ‖Bi‖. The matrices Ai form
the global public key. The trapdoors Bi form the keying authority’s master key.

In KP-ABE, ciphertexts are created for sets of (binary) attributes, while pri-
vate keys embed the decryption policies. To make it possible to encrypt for a
set of attributes, a natural idea is, for each (binary) attribute in the system, to
create an Ajtai matrix Ai and an associated trapdoor Ti. The matrices Ai will
form the public key; the trapdoors Ti form the master key.

Encryption. To encrypt for an attribute set {Attribi}, one creates a matrix F by
concatenating the public matrices Ai designated by the Attribi, filling the gaps
with the zero matrix 0; one then uses F as an “encryption matrix” à la Regev.2

Key Extraction. To create a private key for a given decryption policy repre-
sented as an LSSS, the key-extraction authority starts by constructing a (high-
dimensional) ephemeral matrix M = [Mdiag|Mlsss], where Mdiag is a block-diagonal
assembly of all the Ai, and Mlsss is a tensor product of the LSSS matrix and a
secret ephemeral randomization matrix. Using its knowledge of the master-key
bases Bi, the authority creates a short basis W for the lattice Λ⊥

q (M), randomizes
it into a structure-less short basis K, and returns K as the private key. Notice
that the basis K is that of a fresh random lattice whose defining Ajtai matrix M
is not even revealed to the recipient.

2 A Regev ciphertext (c0, c1) is created in reference to an Ajtai lattice Λ⊥
q (F) defined

by a known matrix F. We call the matrix F, the Regev encryption matrix. (It is
usually denoted A but we use F to emphasize that it is a function of the encryption
attributes; we reserve the notation Ai for the constant matrices in the public key.)
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Decryption. Given a Regev ciphertext created from some encryption matrix F,
the first step is to transform the private key K into a basis T for the lattice
Λ⊥

q (F), using the basis-splicing technique.
The transformation requires the encryption matrix F to lie in the “span” of

the (undisclosed!) ephemeral matrix M, i.e., that there be a linear combination
of the rows of M that yields M ↪→ [F|0]. By the structure of M = [Mdiag|Mlsss], it
follows that the i-th block-column of F is a multiple of the i-th block of Mdiag, or,
in other words, that F is the concatenation of gi Ai with computable coefficients
gi. Though K was orthogonal to M, it is not orthogonal to [F|0]. We can obtain
orthogonality to [F|0] by multiplying each row of K by an integer coefficient
ḡi ∝ 1/gi (mod q) inversely proportional modulo q to the coefficient gi of the
corresponding column of [F|0] (taking ḡi = 0 when corresponding to the columns
of 0 or those of F associated with a coefficient gi = 0).

The basis K thus transformed is a matrix [T�|0�]� where T has full rank
and is orthogonal to F. The final observation is to take ḡi = (

∏
j:gj �=0 gj)/gi.

Because those ḡi are already in Z, no modular reduction is necessary to ensure
that ḡi ∝ 1/gi (mod q). Hence the norm ‖T‖ remains small when the gi are
binary or small enough. This makes of T a low-norm full-rank set, convertible
into a basis suitable as a trapdoor for sampling low-norm vectors in Λ⊥

q (F).
We see that, by properly constructing M, it is possible for the recipient to

know how its trapdoor K can be transformed into the desired trapdoor T, even
though M itself is not revealed. Once the trapdoor T is obtained, it can be used
to decrypt the ciphertext, e.g., by finding a short preimage d of the encryption
syndrome u, i.e., such that Fd = u (mod q), and applying Regev.3

Issues. For this approach to work, it is necessary that the norm of the recon-
structed trapdoor T be small in order to apply Regev. The only operation that
can cause the norm of T to grow out of hand, is the LSSS-based derivation of
T from K. In general, for circuits containing “proper” threshold gates—not just
∧ nor ∨—with large fan-in, the coefficients gi can become exponentially large,
which would overwhelm the noise tolerance of the Regev decryption scheme un-
less the modulus q is itself chosen to be exponentially large.

The first good news is that, even in the pessimal case, the issue of the LSSS
coefficients is somewhat mitigated by the fact that we only perform LSSS recon-
struction “half-way”, eschewing full-fledged Lagrange interpolation. Indeed, the
worst way in which LSSS coefficients intervene in T is through simple products∏

j gj—and not as ratios of products that would further require denominator
elimination as, say, in the Fuzzy IBE of [3]. Intuitively, the reason why we do
not need to account for—and then eliminate—the common denominator in LSSS
reconstruction, is because what needs to be reconstructed is not the secret de-
cryption itself (such as a short pre image or basis), but merely a multiple of the
(public) encryption matrix F; only a multiple is needed because F induces the
same Ajtai lattice as all its multiples relatively prime to q.

3 Because the private key is a full basis, it allows the recipient to find a preimage for
any syndrome; hence the encryption syndrome u may change with each ciphertext.
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The second and main good news is that, as long as the only gates present are
∧ and ∨, regardless of their size or circuit complexity, the coefficients gi can be
made binary ∈ {0, 1}, thereby ensuring that ‖T‖ ≤ ‖K‖. This restriction is not
as severe as it looks, as it should be emphasized that circuits of ∧ and ∨ gates
already capture most cases of practical interest for (monotone) access policies.
Until now, it was not known how to realize ABE involving even the simplest
non-uniform policies, e.g., involving only one ∧ and one ∨ gate.

4.2 Construction

We assume the existence of the following PPT algorithms for certain lattice
sampling operations. See the Appendix in [13] for some background, and the
rapidly evolving literature for the fastest and tightest instantiations, e.g., [18].

– TrapGen for co-sampling a uniform Ajtai lattice and a short basis for it [5,6];
– SampleGaussian for discrete Gaussian sampling a point on a given Ajtai lattice;
– SamplePreimage for sampling a preimage of a given Ajtai syndrome, with a
discrete Gaussian conditional density [21,8].
– ExtendRight for extending a trapdoor of an Ajtai matrix A into a trapdoor of
any Ajtai matrix of the form [A|Z], as long as A has full rank [15,1].

Remark. (Black-Box Sampling and Algorithm Parameters)
In the scheme description, we view all of the above sampling algorithms as (com-
modity, interchangeable) black boxes, without concern for their precise parameter
requirements. For now, it suffices to know that the available sampling algorithms
are both sufficiently fast and sufficiently tight, to make the entire system security
reducible from the learning-with-error (LWE) hardness assumption with poly-
nomially bounded parameters, so that is can in turn be further (quantumly [31],
or for large moduli classically [28]) reduced from worst-case lattice assumptions.

The KP-ABE scheme consists of four algorithms specified as follows.

kpABE.Setup(1λ, 1�): Given a security parameter λ, and an attribute bound �:
1. Select a security dimension n > Ω(λ) and a base lattice dimension m >

2 n log q, together with a prime modulus q > 2. (See the Appendix for
the constraints on q in function of the desired tightness α of LWE—the
larger the modulus, the weaker the assumption.)

2. Use algorithm TrapGen(1λ) to select, for each i ∈ [�], a uniformly random
n×m-matrix Ai ∈ Z

n×m
q with a full-rank m-vector set Bi ⊆ Λ⊥

q (Ai) that
satisfies a low-norm condition.

3. Select a uniformly random n × m-matrix A0 ∈ Z
n×m
q .

4. Select a uniform random n-vector u ∈ Z
n
q .

5. Output the public key and master key,

Pub =
(
{Ai}i∈[�], A0, u

)
; Msk =

(
{Bi}i∈[�]

)

kpABE.Extract(Pub, Msk, Policy): On input a public key denoted Pub, a master
key denoted Msk, and an access structure denoted Policy, do:
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1. Convert Policy into a (low-norm, and preferably deterministic) Linear
Span Program matrix L ∈ Z

�×(1+θ), assigning the i-th row of L to the
binary attribute of index i ∈ [�]. The columns j ∈ [0, θ] are numbered
from 0 to θ, with θ ≤ � being a function of Policy. The linear encoding
rule we adopt for L is that, for a binary attribute list represented as
Attrib ∈ {0, 1}� or Attrib ⊆ [�], the (monotone) access policy is satisfied
iff the rows of L selected by Attrib contain in their span the row-vector[
1, 0, . . . , 0

] ∈ Z
1+θ.

2. Select θ ephemeral uniform random n×m-matrices Zj ∈ Z
n×m
q for j ∈ [θ].

3. Construct a “virtual encryption matrix” M ∈ Z
� n×(�+1+θ)m
q , consisting

of �×(�+1+θ) blocks of n×m-“sub-matrices”, by translating the sharing
matrix L =

(
li,j

)
i∈[�],j∈[1+θ]

as follows,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

A2

. . .
A�

︸ ︷︷ ︸
Public, constant, from Pub

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

l1,0 A0

l2,0 A0

...
l�,0 A0

︸ ︷︷ ︸
From Pub

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

l1,1 Z1 . . . l1,θ Zθ

l2,1 Z1 . . . l2,θ Zθ

...
...

l�,1 Z1 . . . l�,θ Zθ
︸ ︷︷ ︸

Secret, random, ephemerals

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

mod q

Each row of L maps to a particular attribute according to the map ρ as-
sociated with the secret-sharing scheme. In this section, we are assuming
for simplicity that each attribute (of index #i) appears exactly once (on
the i-th row), making ρ the identity function. This restriction is lifted in
Section 4.5, to handle missing and duplicated attributes.

4. Build a “structureless” random trapdoor K for Λ⊥
q (M), thus satisfying

M · K = 0 (mod q). This can be done using ExtendRight, based on the
fact that M = [Mtrapdoor|Mextension], where Mtrapdoor = Diag(A1, . . . , A�)
has full rank and a trivial trapdoor Diag(B1, . . . , B�).
Unless ExtendRight is already guaranteed to produce an extended basis
W whose vectors are idenpendently and identically distributed, it is nec-
essary to rerandomize it to achieve this condition. Let K be the resulting
“structureless” trapdoor for M.

5. A redundant form of the policy-based private key may be output, as,

Key =
(

K, L
)

However, two optimizations can be made:
(a) If the sharing matrix L is deterministic in Policy, it may be omitted.
(b) It is not necessary to transmit all of K since the decryptor will only

ever need the upper-left quadrant of dimension (�+1)m× (�+1)m,
which we denote by K′ ∈ Z

(�+1) m×(�+1)m.
Hence, the private key for Policy may be given in compressed form, as,

Key = K′
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kpABE.Encrypt(Pub, Attrib, Msg): On input a public key Pub, an attribute list
Attrib ⊆ [�], and a message bit Msg ∈ {0, 1}, do:
1. Assemble an “encryption matrix” F ∈ Z

n×(�+1) m
q , obtained as the con-

catenation of, for each i ∈ [�], either Ai if i ∈ Attrib, or 0 if i �∈ Attrib,
and A0, as follows,

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1
.=

A1

or 0

∣
∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
∣

F�
.=

A�

or 0
︸ ︷︷ ︸

Ai included iff i ∈ Attrib

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F0
.=

A0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2. Select a uniform random n-vector s ∈ Z
n
q .

3. Select a low-norm Gaussian noise scalar ν0 ∈ Z according to some para-
metric distribution Ψα (see Appendix), and compute the scalar,

c0 =
(

s� · u + ν0 + � q

2
� · Msg

)
mod q

4. Select a low-norm Gaussian noise vector ν1 ∈ Z
(�+1) m whose components

are identically and independently distributed from Ψα, and compute the
vector,

c1 =
(

s� · F + ν1

)
mod q

5. Output the ciphertext,

Ctx =
(

c0, c1

)

(It is not necessary to transmit the components of c1 that contain only
added ν1-noise, i.e., we only need to transmit the components of c1 at
coordinates where Fi �= 0.)

kpABE.Decrypt(Pub, Key, Ctx): Given a public key Pub, a policy-based key Key
(for known policy Policy), and a ciphertext Ctx (for known attributes Attrib):
1. Find an as-short-as-feasible �-vector g ∈ Z

� satisfying the two conditions:

g� ·L = [d, 0, . . . , 0] ∝ [1, 0, . . . , 0] ; ∀i ∈ [�] : (gi = 0)∨ (i ∈ Attrib)

Namely, one finds a linear combination of the rows of L that yields some
small d-multiple of [1, 0, . . . , 0] with d ∈ Z \ {0}, using only rows corre-
sponding to attributes in Attrib. This is possible iff Attrib satisfies Policy.

2. Notionally apply the linear combination g to the “block-rows” of M, to
transform the “virtual” encryption matrix M into a “real” encryption
matrix M′ that matches the encryption matrix F of the given ciphertext
(up to constant factors):

M′ =

⎡

⎢
⎣

g1 A1

or 0

∣
∣
∣
∣

g2 A2

or 0

∣
∣
∣
∣ . . .

∣
∣
∣
∣

g� A�

or 0

∣
∣
∣
∣
∣

d · A0

∣
∣
∣
∣
∣

0 · Z1

∣
∣ . . .

∣
∣ 0 · Zθ

︸ ︷︷ ︸
0

⎤

⎥
⎦ mod q
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This is defined, even though the decryptor does not know the Zi, for
they all cancel out.

3. Let M′′ be the matrix containing only the |Attrib| + 1 non-zero “block-
columns” of M′ as shown above. Let K′′ be the matrix obtained by re-
moving from K the matching rows and columns—i.e., rows and columns
with the same indices as the columns removed from M′. (Dimension-wise,
we obtain M′′ ∈ Z

n×(|Attrib|+1) m
q and K′′ ∈ Z

(|Attrib|+1) m×(|Attrib|+1) m.) We
have M′ ·K = 0; therefore M′′ ·K′′ = 0, and K′′ is a short basis of Λ⊥

q (M′′).
4. Likewise, let F′′ be the matrix retaining the |Attrib|+ 1 non-zero “block-

columns” of F; and let c′′1 be the ciphertext vector from which only the
matching components of c1 remain.

5. We now build a trapdoor for the encryption matrix F, or, rather, its
reduced form F′′. Let 1 be the m × m identity matrix, and define the
diagonal matrices,

G =

⎡

⎢
⎢
⎢
⎢
⎣

g1 · 1
. . .

g� · 1

d · 1

⎤

⎥
⎥
⎥
⎥
⎦

; G′′ =

⎡

⎢
⎢
⎣

non-zero
diagonal
blocks
of G

⎤

⎥
⎥
⎦ ∈ Z

(|Attrib|+1) m×
(|Attrib|+1) m

Notice F′′ · G′′ = M′′ (mod q). Since M′′ · K′′ = 0 (mod q), we have
F′′ ·G′′ ·K′′ = 0 (mod q). Compute T′′ = G′′ ·K′′, whose norm is bounded
as ‖T′′‖ ≤ ‖G′′‖ ‖K′′‖ ≤ max{gi, d} ‖K‖. The result T′′ is our desired
trapdoor for sampling short vectors in Λ⊥

q (F′′).
6. Using SamplePreimage with trapdoor T′′, find a short solution f ′′ of F′′ ·

f ′′ = u (mod q).
7. Compute v = c0 − (f ′′)� · c′′1 mod q, and represent its coset as an integer

v ∈ [−� q
2�, � q

2�].
8. Output the decrypted message bit as,

b =

{
0 if ‖v‖ ≤ � q

4�
1 if ‖v‖ ≥ � q

4�

4.3 Correctness

Theorem 4. For usual values of the lattice parameters in Regev-like encryption
systems, the key-policy attribute-based encryption scheme of the previous section
will correctly decrypt authorized ciphertexts with overwhelming probability.

Proof. To see this, suppose that the “independent” initial bases and short vectors
(namely, Bi, Yi, ei,j , di,j) are sampled with a suitable Gaussian parameter σ,
for instance using the tools from [21,8]. Then, the norm of all “dependent” bases
and vectors that are supposed to be short, will be bounded by multiples of σ to
which certain “growth coefficients” will have applied. To bound those, we note
that the only processes in the whole system that will induce “growth”, are:
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– in Extract: the randomized invocation of ExtendRight to obtain K, which
merely multiplies the norm of the master-key trapdoors by a constant factor
independent of the data;

– in Decrypt: the calculation of the trapdoor T′′ from K′′, which as we already
noted multiplies the norm of K′′ by a factor ≤ max{gi, d} that only depends
on the linear-sharing reconstruction vector g, itself function of the function
Policy and its inputs Attrib.

Bounding max{gi, d} for access-structure circuits with many gates can be te-
dious, but we note that max{gi, d} will be dominated by the presence of large
threshold gates. On the contrary, ∧ and ∨ gates are essentially harmless, as
shown below.
Claim. For a circuit consisting only of ∧ and ∨ gates, max{gi, d} = 1.

Proof. There exists a deterministic construction of a linear sharing matrix L that
guarantees binary reconstruction coefficients in this case (see Preliminaries).

We defer to the full paper the exact quantification of the various norm and
noise parameters. Of course, while the growing norm of supposedly short vectors
can be compensated by commensurately increasing the modulus q, this is best
avoided for efficiency reasons.

4.4 Security

Theorem 5. If there exists a probabilistic polynomial-time algorithm A with ad-
vantage ε > 0 in a selective-security key-policy attack against the above scheme,
then there exists a probabilistic polynomial-time algorithm B that decides the
(Zq, n, Ψ̄α)-LWE problem with advantage ε/2, where α = O(poly(n)).

Proof. In the LWE problem, the decision algorithm is given access to a sampling
oracle, O, which is either a pseudo-random sampler Os with embedded secret
s ∈ Z

n
q , or a truly random sampler O$. Our decider algorithm B will simulate an

attack environment for, and exploit the prowesses of A, to decide which oracle
it is given. The reduction proceeds as follows.

Instance. B requests from O and obtains ((1+ �)m+1) LWE samples that we
denote as, [

(w−1, v−1)
] ∈ (Zn

q × Zq)
[

(w1
0, v

1
0), . . . , (w

m
0 , vm

0 )
] ∈ (Zn

q × Zq)m

[
(w1

1, v
1
1), . . . , (w

m
1 , vm

1 )
] ∈ (Zn

q × Zq)m

...
[

(w1
� , v

1
� ), . . . , (w

m
� , vm

� )
] ∈ (Zn

q × Zq)m

Target. A announces a target attribute vector, denoted Attrib†, on which it
wishes to be challenged.

Setup. B constructs the public key Pub as follows:
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1. The vector u ∈ Z
n
q is constructed from the LWE samples of index −1:

simply set u = w.
2. The matrix A0 ∈ Z

n×m
q is built from the LWE samples of index 0: set

A0 = [w1
0| . . . |wm

0 ].
3. For each i ∈ [�] such that attribute i ∈ Attrib†, the matrix Ai is con-

structed from the LWE samples of index i in a similar way as above: for
i ∈ Attrib†, set Ai = [w1

i | . . . |wm
i ].

4. For each i ∈ [�] such that attribute i �∈ Attrib†, the matrix Ai is con-
structed as in the real scheme using TrapGen, which provides an asso-
ciated low-norm full-rank matrix Bi such that Ai · Bi = 0. (The LWE
samples of all indices i �∈ Attrib† will remain unused.)

The resulting public key Pub is given to A.
Queries. A is allowed to make adaptive queries for keys Key for policies Policy

that the target attribute list Attrib† does not satisfy. B constructs and returns
a key Key for each query Policy, as follows.
1. As in the real scheme, derive from Policy a (low-norm) linear sharing

matrix L ∈ Z
�×(1+θ).

2. Let φ = |Attrib†|. Make L′ from L, keeping only the rows of index i such
that i ∈ Attrib†. Make L′′ from L′ by dropping the leftmost column of
index j = 0 (keeping j = 1, . . . , θ).

3. W.l.o.g., suppose that Attrib† = {i1, i2, . . . , iφ} = {1, 2, . . . , φ}; i.e., the
first φ attributes, from 1 to φ, are arbitrarily assumed to be the attacker’s
targets.

4. W.l.o.g., suppose that the φ left-most columns of L′′ form a φ-dimensional
square matrix of full rank. The columns of L from which L′′ is derived can
always be reordered to achieve this, since the order of its columns (other
than that of index j = 0) is arbitrary. Notice that this step requires
that the challenge Attrib† do not satisfy the query Policy. If it did, by
definition some non-zero [d, 0, . . . , 0]� would be in the span of L, and thus
[0, . . . , 0]� non-trivially in that of L′′; therefore the φ left-most columns
of L′′ would not be full-rank.

5. Invoking TrapGen, sample φ random matrices Zi ∈ Z
n×m
q with short

bases Yi ∈ Z
m×m, for all i ∈ Attrib† (i.e., w.l.o.g., i = 1, . . . , φ are the

indices of the Zi with trapdoor Yi).
6. Build a “virtual encryption matrix” M exactly as in the real scheme (see

below about the boxes), as,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

. . .
Aφ

. . .
A�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

l1,0 A0

...
lφ,0 A0

...
l�,0 A0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

l1,1 Z1 . . . l1,φ Zφ

...
...

lφ,1 Z1 . . . lφ,φ Zφ

. . . l1,θ Zθ

...
. . . lφ,θ Zθ

...
...

l�,1 Z1 . . . l�,φ Zφ
. . . l�,θ Zθ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

mod q

7. Denote by Z the (φn × φm)-submatrix of M made of the blocks lj,i Zi

whose i, j ∈ [φ]. Per Lemma 6, we can build (from the Yi) a single
trapdoor Y for Z as a whole.
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Lemma 6. For i = 1, . . . , φ, let Zi ∈ Z
n×m
q and Yi ∈ Z

m×m such that
Zi Yi = 0 (mod q). Suppose also that each Yi is a basis of Λ⊥

q (Zi) and
has low norm ‖Yi‖ ≤ β ∈ R. Define,

Z =

⎡

⎢
⎣

l1,1 Z1 · · · l1,φ Zφ

...
. . .

...
lφ,1 Z1 · · · lφ,φ Zφ

⎤

⎥
⎦ mod q

Then, for any full-rank integer matrix
(
li,j

)
with i, j ∈ [φ], the Ajtai

lattice induced by Z ∈ Z
φn×φm
q admits an efficiently computable (in fact

constant) trapdoor Y ∈ Z
φm×φm i.e., such that Y is a basis of Λ⊥

q (Z)
with bounded norm ‖Y‖ ≤ β.

Proof. Take,

Y =

⎡

⎢
⎣

Y1 0
. . .

0 Yφ

⎤

⎥
⎦

We have that Z · Y = 0 (mod q), that Y is a basis for Λ⊥
q (Z), and that

‖Y‖ ≤ maxi ‖Yi‖.
8. Observe that we now have a trapdoor for every lattice defined by a

submatrix of M encased in one of the boxes shown in Step 6. Let us
notionally reorder the columns of M by swapping the φ left-most Ai-
block-columns with the φ left-most Zi-block-columns. We get a matrix
M′ = [M′

trapdoor|M′
extension], where M′

trapdoor is full-rank, block-diagonal,
and each of its blocks has an associated trapdoor. We can thus trivially
build a trapdoor for all of M′

trapdoor. By invoking ExtendRight, we extend
this into a trapdoor W′ for all of M′. Reordering the rows of W′ yields a
trapdoor for the original M above: call it W.

9. Randomize W into a structure-less basis K whose norm matches that of
the real scheme. (This step is only necessary if ExtendRight does not al-
ready produce a basis whose vectors all have the target discrete Gaussian
distribution already; if they do, let K = W.)

This concludes the simulation of the private-key extraction. The adversary
A is given the resulting Key =

(
K, L

)
. Notice that it has exactly the same

distribution as in the real scheme.
Challenge. A signals that it is ready to accept a challenge, and chooses a

message bit Msg† ∈ {0, 1}. B responds with a ciphertext Ctx† =
(
c†0, c

†
1

)

assembled from the LWE instance, as follows:
1. Let c†0 = v−1 + � q

2� · Msg†.
2. Let c†1 =

[
v1
1, . . .v

m
1︸ ︷︷ ︸

if 1∈Attrib†

, . . . , v1
� , . . .v

m
�︸ ︷︷ ︸

if �∈Attrib†

, v1
0, . . .v

m
0︸ ︷︷ ︸

always

]

Observe that when the vi come from a genuine LWE oracle, the foregoing
is a well-formed Regev-like encryption of Msg† for the encryption matrix F



Attribute-Based Functional Encryption on Lattices 139

indicated by the challenge Attrib†. On the contrary, when the vi come from
a random fake LWE oracle, the ciphertext is independent of the message bit
since c†0 in particular is uniformly and independently distributed.

Continuation. A is allowed to continue making further private-key extraction
queries, after having obtained the challenge ciphertext.

Decision. A eventually emits a guess, whether Ctx† was actually a valid en-
cryption of Msg ∈ {0, 1} as requested. B uses the guess to decide whether
the LWE oracle O was genuine. If A says “valid”, then B says “genuine”; if
A says “invalid”, then B says “fake”.

If the adversary succeeds in guessing Msg† with probability at least 1
2 + ε, then

our decision algorithm B will correctly guess the nature of the LWE oracle with
probability at least 1

2 + ε
2 . This concludes the proof of the security reduction.

4.5 Extensions

So far we have assumed, merely for simplicity of notation, that policies will
only encode monotone access structures given as formulas where each attribute
appears as argument exactly once. We now show how to list such limitations.

Duplicated Attributes. Arbitrary monotone policies will generally be ex-
pressed as formulas where various attributes appear zero, once, or even multiple
times. Accordingly, we show how to handle policies that can comport arbitrarily
many ∧ and ∨ gates, and an arbitrary wiring of the attribute inputs to feed
them, including duplication.4 The idea is very simple:

kpABE.Setup’ is unchanged from the original version: to each attribute one
continues to associate one Ajtai matrix Ai and its trapdoor Bi.

kpABE.Setup’ also remains the same: the ciphertext is constructed as before,
around a Regev encryption matrix F that either includes or excludes each
submatrix Ai depending on whether or not the respective attribute i ∈ Attrib.

kpABE.Extract’ must be modified to allow for duplicate occurrences of the same
attribute in the Boolean expression of Policy. This is done as follows:
1. Give each occurrence of some attribute #i in Policy a unique label, say

#i.1 and #i.2, and accordingly rewrite the policy Policy into Policy′ as
a function of the augmented attributes. Policy′ has the same topology
(structure and size) as Policy, but its input literals are now unique. Keep
track of the mapping from the augmented attributes i′ to the original
attributes i by means of a surjective map ρ : i′ �→ i.

2. Construct the sharing matrix L in the regular way from the augmented-
attribute formula Policy′. For each original attribute #i, there will be as
many rows in L as the number of occurrences of #i in the original Policy.

4 We must however continue to caution on the use of t-out-of-n threshold gates ≥t,
because unless t = 1 or t = n we cannot guarantee in general that the LSSS matrix
L and the reconstruction coefficients will be small. Fortunately, as long as repeated
attribute inputs are allowed, every possible monotone access structure can be ex-
pressed using only ∨ and ∧ gates, in such a way that L is a binary or ternary matrix.
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3. Construct the “virtual encryption matrix” M from L as before. Since the
augmented attributes that emanate from the same original attribute, all
refer to the same public matrix Ai, the key-extraction matrix M will thus
contain multiple copies of Ai, albeit on different columns.

Once M has been constructed with possibly duplicated Ai on its left-side
block-diagonal, key extraction both in the real scheme and in the simula-
tion will proceed as usual. The only effect of the duplication is that, in the
simulation, knowledge of trapdoors Bi will be linked to the presence of the
original attributes—not the augmented ones—in Attrib†.

kpABE.Decrypt’ requires a small adjustment to cope with duplicated attributes
in the Policy encoded in the decryption key. Essentially, before applying the
decryption algorithm, the decryptor needs to avail himself as many copies
of the attribute as he will need. This is done by duplicating the various
fragments of c1 that correspond to the attributes that need to be duplicated,
before using the result in the normal decryption process.

This construction is very efficient as the ciphertext size remains unchanged in
|Attrib|, and the private key size has the same dependency on |Policy| as it did
without attribute duplication (of course, |Policy| can now grow arbitrarily).

5 Conclusion

In this paper, we have introduced a new cryptographic framework for perform-
ing complex lattice basis manipulations, of the kind that seemingly can unlock
the construction of very powerful and expressive cryptosystems such as func-
tional encryption. We demonstrated its power and flexibility by building the
first known attribute-based cryptosystem from “learning with errors”, a (conjec-
tured) quantum-resistant hardness assumption tied to many lattice problems.

Acknowledgments. The author would like to thank Dan Boneh for suggesting
a simplification of the scheme and its proof by way of the ExtendRight abstrac-
tion, and to thank the TCC 2013 program committee for what appears to be a
very thorough review.
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