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Abstract

Keyword search on encrypted data allows one to issue the search token and

conduct search operations on encrypted data while still preserving keyword privacy.

In the present paper, we consider the keyword search problem further and

introduce a novel notion called attribute-based proxy re-encryption with keyword

search (ABRKS), which introduces a promising feature: In addition to supporting

keyword search on encrypted data, it enables data owners to delegate the keyword

search capability to some other data users complying with the specific access

control policy. To be specific, ABRKS allows (i) the data owner to outsource his

encrypted data to the cloud and then ask the cloud to conduct keyword search on

outsourced encrypted data with the given search token, and (ii) the data owner to

delegate other data users keyword search capability in the fine-grained access

control manner through allowing the cloud to re-encrypted stored encrypted data

with a re-encrypted data (embedding with some form of access control policy). We

formalize the syntax and security definitions for ABRKS, and propose two concrete

constructions for ABRKS: key-policy ABRKS and ciphertext-policy ABRKS. In the

nutshell, our constructions can be treated as the integration of technologies in the

fields of attribute-based cryptography and proxy re-encryption cryptography.

Introduction

Cloud computing platforms assemble vast computational resources and make

them available to users as a service. The cloud users can outsource their heavy

computation tasks and/or storage to cloud providers while still enjoying

promising properties, e.g., low maintenance cost and pervasive accessing. While it

is promising, cloud computing also confronts many challenges against data
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privacy/system vulnerabilities [1–3] and service quality [4, 5]. One possible

solution to prevent these problems is to use the private cloud, where the

underlying infrastructure (i.e., servers, network and storage) is owned and

operated by the cloud users themselves. However, this might depress the benefits

bringing from the cloud computing, when comparing with the public cloud that is

more reliable, elastic (i.e., computational resources can be increased and decreased

quickly) and cost-saving. As such, individual and organizations are considering

migrating from their owned infrastructure to the public cloud.

In order to preserve data privacy against any possible attacks in the public

cloud, it is inevitable for data owners to encrypt their data before outsourcing it to

the cloud, which might hinder the data usage. For example, how the data owner

can search on their outsourced encrypted data? How the data owner can delegate

his search capability to other users in a fine-grained manner? In this paper, we

continue the line of keyword search on encrypted data and attempt to solve the

above questions simultaneously.

To explain the motivation for solving the above questions, we consider the

following motivational application: The data owner, say Alice, encrypted her

personal health data that was collected by sensors attached her and outsourced the

encrypted data to the cloud. In order to facilitate the examination on health

condition, Alice may need to share the encrypted data with professionals, e.g.

doctors that work in some specific department, so that the professionals can

retrieve qualified records from the cloud. In order to assure that only certain

professionals satisfying some policy can conduct keyword search and retrieve

corresponding encrypted data of their interests, Alice needs to delegate keyword

search capability by specifying the fine-grained access control policy.

A straightforward solution toward the above questions can work as follows: the

data owner encrypts his data with attribute-based encryption, and issues proper

keys to data users so that only authorized data users can access these encrypted

data. Unfortunately, solutions based on attribute-based encryption in the

literature do not support keyword search. That is, even satisfying the access

control policy, the authorized user has to download entire encrypted data, rather

than portion of encrypted data of his interest, which will bring in huge

communication overhead. In light of this, we propose a novel notion, dubbed

attributed-based proxy re-encryption with keyword search (ABRKS), allowing

data owners to grant keyword search capability to authorized users complying

with access control policies.

Our Contribution

We introduce a novel notion called attribute-based proxy re-encryption with

keyword search (ABRKS), which allows a data owner to delegate keyword search

capability over his encrypted data to authorized users by while complying with

access control policies. We formally define its syntax and rigorously formalize the

security definitions. We present two flavors of ABRKS constructions, key-policy

ABRKS and ciphertext-policy ABRKS, the security of which are based on the
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standard Multilinear Decisional Diffie-Hellman Assumption in the random oracle

model. Our solutions perfectly solve the motivation example and enjoy three

distinctive properties: (i) The data owner could conduct keyword search on

outsourced encrypted data; (ii) The data owner could delegate keyword search

capability to users by specifying fine-grained access control policies so that only

authorized users satisfying the access control policy can conduct keyword search;

and (iii) There is no interaction happening between data owners and users.

Moreover, the tedious work, e.g., performing keyword search and re-encrypting

encrypted data, can be outsourced to the cloud without compromising data

privacy.

Related Work

Here we briefly survey the works that are relevant to the problem we attempt to

solve in this paper, while cannot solve it. We summarize the features of the most

relevant techniques, proxy re-encryption with keyword search, attribute-based

encryption, attribute-based encryption with keyword search and attribute-based

proxy re-encryption, and compare them with our ABRKS solutions as shown in

Table 1.

Proxy Re-encryption with Keyword Search

Proxy re-encryption with keyword search (PRES) was introduced in [6], which

allows a data owner to delegate keyword search capability to other users. PRES

was further revised by [7] and/or enhanced by various papers, e.g., [8–11].

However, all these PRES solutions only considered coarse-grained access control

enforcement, i.e., delegating the search capability to one specific authorized user.

In contrast, we consider the fine-grained access control enforcement when the

data owner needs to delegate search capability in this paper.

Attribute-based Encryption

Attribute-based encryption (ABE) was first introduced by [12], which is to specify

fine-grained access control on encrypted data, such that only data users with

proper credentials (i.e., satisfying the access control policy) can decrypt the

ciphertexts. There are two flavors of ABE depending on the manner of associating

access control policy: key-policy ABE (KP-ABE) [13–15] associates the decryption

key with the access control policy and ciphertext-policy ABE (CP-ABE) associates

the ciphertext with the access control policy [16–18]. While ABE allows data

owners to achieve fine-grained access control enforcement on encrypted data,

unfortunately it cannot support keyword search.

Attribute-based Encryption with Keyword Search

The concept of attribute-based encryption with keyword search (ABKS) was

introduced by [19] and [20] independently. It allows data owner to grant search

capability to authorized users by specifying fine-grained access control when

encrypting plaintext. However, it does not support the data owner delegating

ABRKS
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search capability to authorized users when encrypted data were stored in the

cloud.

Attribute-based Proxy Re-encryption

Attribute-based proxy re-encryption (ABPRE) was introduced by [21] and

enriched by [22–26] with various features. However, these solutions do not

support the function of keyword search on encrypted data. Generally speaking,

the solution in this paper can be regarded as an extension to ABPRE with the

feature of keyword search on encrypted data.

Preliminary

Cryptographic Assumptions

Multilinear Maps

The concept of multilinear maps was introduced in [27] and came to reality thanks

to [28, 29]. Given a security parameter ‘ and an ‘-bit prime p, a 4-multilinear map

consists of 4 cyclic groups (G0,G1,G2,G3) of order p, and 3 mappings

ei : G0|Gi?Giz1, i~0,1,2. The 4-multilinear map should satisfy the following

properties with respect to i, i~0,1,2: (i) Given that 0[G0 is a generator of G0, then

iz1~ei( 0, i) is a generator of Giz1; (ii) Va,b[Zp, ei(
a
0,

b
i )~ei( 0, i)

ab; and (iii) ei
can be efficiently computed.

4-Multilinear Decisional Diffie-Hellman Assumption (4-MDDH)

Given the 4-multilinear map and 0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z, where a,b,c,w,r/

R
Zp that

are unknown, Z/
R
G3, 1~e0( 0, 0)[G1, 2~e1( 0, 1)[G2 and 3~e2( 0, 2)[G3,

there exists no probabilistic polynomial algorithm A that can determine whether
abcwr
3 ~Z or not with a non-negligible advantage with respect to security

parameter ‘, where the advantage is defined as

jPr½A( abcwr
3 , 0,

a
0,

b
0,

c
0,

w
0 ,

r
0)~1�

{Pr½A(Z, 0,
a
0,

b
0,

c
0,

w
0 ,

r
0)~1�j:

Table 1. Property summary for PRES, ABE, ABPRE, ABKS in the literature and the solution in this paper.

Scheme Proxy Re-encryption Keyword Search Access Control

PRES [6–11] H H |

ABE [12–18] | | H

ABKS [19, 20] | H H

ABPRE [21–26] H | H

ABRKS(Our solution) H H H

doi:10.1371/journal.pone.0116325.t001
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Access Control Policy

Linear Secret Sharing Scheme

A linear secret sharing scheme (LSSS) can be used to represent an access control

policy P via (M,p), where M~(Zp)
l|k is an l|k dimensional matrix with entries

belonging to Zp and p : f1, . . . ,lg?UAtt is an injective function that maps a row

into an attribute. Given an attribute set S5UAtt where UAtt is the attribute

universe, we denote F(S,P)~1 if S satisfies the access control policy P. Specifically,

an LSSS consists of two algorithms:

Share((M,p),s): This algorithm is to distribute a secret value s with respect to

the attributes specified by p: It selects u2, . . . ,uk/
R
Zp, sets v~(s,u2, . . . ,uk) and

computes lp(i)~Mi
:v where Mi is the ith row of M. Then it assigns secret share

lp(i) to the attribute p(i).

Combine(S,(lp(i), . . . ,lp(l)),(M,p)): This algorithm is to assemble the secret

value from the secret shares associated with respect to the attributes: It selects a

subset I~fijp(i)[Sg such that the attribute set fp(i)ji[Ig satisfies the access

control policy (M,p), and then computes the coefficients ci,i[I such thatP
i[I ciMi~(1,0, . . . ,0). The recovered secret will be

P
i[I cilp(i)~s.

The correctness of algorithm Combine is guaranteed by the following lemma:

Lemma 1 ([17]) Let (M,p) be an LSSS representing an access control policy P. For

all attributes in S that do not satisfy P, there is a polynomial-time algorithm that

outputs vector w~(w1, . . . ,wk)[Z
k
p such that w1~1 and Mi

:w~0 for all i[½1, . . . ,l�,
where p(i)[S.

Definition

System Model

The system model of attribute-based proxy re-encryption with keyword search is

shown in Fig. 1, consisting of three parties: the trusted authority, the cloud server

and cloud users that can be either data owner or data users wishing to share the

data owner’s data. The trusted authority is responsible for initiating system public

parameters and issuing private keys to cloud users with respect to their attributes.

A data owner (say Alice) encrypts her data and the keyword index and outsource

the encrypted data and the associated encrypted keyword index to the cloud

server. Moreover, the data owner can retrieve encrypted data of her interest by

issuing a search token with respect to some keyword to the cloud. On the other

hand, the data owner is capable of granting search capability to other authorized

users by issuing re-encryption keys (which is associated with access control

policies) to the cloud. The cloud server provides storage and computation service

for cloud users. Especially, the cloud server can transform the stored encrypted

data with re-encryption keys from the data owner, so that the authorized data user

(say Bob) is able to generate search tokens and ask the cloud server to conduct

keyword search on the re-encrypted data for retrieving encrypted data of his

ABRKS
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interest. In this model, we assume that the data owner and data users require no

direct interaction.

Functional Definition

We now present the formal definition of attribute-based proxy re-encryption with

keyword search, which consists of two variants: key-policy ABRKS (KP - ABRKS)

whose private keys are associated with access control policies, and ciphertext-

policy ABRKS (CP - ABRKS) whose ciphertexts after re-encryption are associated

with access control policies. To unify the presentation, let IEnc denote the input of

the encryption function ReKeyGen and IKeyGen denote the input of the key

generation function KeyGen. Therefore, IEnc and IKeyGen respectively correspond

to an attribute set and an access policy in KP - ABRKS, whereas IEnc and IKeyGen
respectively correspond to an access policy and an attribute set in CP - ABRKS.

We denote F(IKeyGen,IEnc)~1 if and only if IEnc satisfies IKeyGen in KP-ABRKS or

IKeyGen satisfies IEnc in CP-ABRKS.

To be specific, an ABRKS scheme consists of algorithms as follows:

Fig. 1. System model of attribute-based access control for proxy re-encryption with keyword search.

doi:10.1371/journal.pone.0116325.g001
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(param,mk)/Setup(1‘): Taking as input a security parameter ‘, this algorithm
is run by the trusted authority to initiate the public parameter param and a master

private key mk.

skIKeyGen/KeyGen(mk,param,IKeyGen): Taking as input IKeyGen, the master key

mk and public parameter param, this algorithm is run by the trusted authority to

issue a private key skIKeyGen associated with IKeyGen for a data user.

(skuid,pkuid)/PrivKeyGen(param,uid): Taking as input a user’s identity uid,

the master key mk and public parameter param, this algorithm is run by the

trusted authority to generate a pair of keys (skuid,pkuid).

rkuid?IEnc/ReKeyGen(skuid,IEnc): Taking as input a user’s private key skuid and

IEnc, this algorithm is run by the data owner to generate the re-encryption key

rkuid?IEnc .

cph/Enc(kw, param,pkuid): Given a keyword kw, the public parameter param,

and the data owner’s public key pkuid, this algorithm is run by the data owner to

output an original ciphertext cph.

cphR/ReEnc(cph, param, rkuid?IEnc): Given a ciphertext of uid, the public

parameter param, and a re-encryption key rkuid?IEnc , this algorithm is run by the

cloud server to output a re-encrypted ciphertext cphR.

token/TokenGen(skuid, kw): This algorithm is run by the data owner to

generate a token token, which can be used to conduct the search operation over

original encrypted keywords.

tokenR/TokenGenR(skIKeyGen ,kw): This algorithm is run by a data user to

generate a token tokenR, which can be used to conduct the keyword operation

over re-encrypted keywords.

Search(token,cph): This algorithm, run by the cloud server, returns 1 if the

original encrypted keyword cph and the token token correspond to the same

keyword; otherwise it returns 0.

SearchR(tokenR,cphR): This algorithm, run by the cloud server, returns 1 if (i)

F(IKeyGen,IEnc)~1 and (ii) the re-encrypted keyword cphR and the token tokenR

correspond to the same keyword; otherwise it returns 0.

Correctness We say an ABRKS scheme is secure if, for (param,mk)/Setup(1‘),

(skuid,pkuid)/PrivKeyGen(param,uid), skIKeyGen/ KeyGen(mk, param, IKeyGen),

then the follows should hold:

N Given cph/Enc(kw,param,pkuid) and token/TokenGen(skuid,kw), Search

(token,cph) always returns 1;

N Given cphR/ReEnc(cph,param,rkuid?IEnc) and tokenR/TokenGen(skIKeyGen ,

kw), where rkuid?IEnc/ReKeyGen(skuid,IEnc), Search
R(tokenR,cphR) always

returns 1 if F(IKeyGen,IEnc)~1.

Security Definitions

The security of ABRKS requires that the ciphertexts and tokens leak nothing

about the underlying keywords. Informally, the adversary is allowed to query

ABRKS
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ciphertext of any plaintext and tokens except those corresponding to two

keywords in the challenge phase. We expect that the adversary cannot distinguish

the challenge ciphertext that is generated from one of keywords kw0 and kw1. To

formalize aforementioned security notion, we define the selective chosen keyword

security game as follows. Note that in our corruption model, the adversary is not

allowed to get the re-encryption key from uncorrupted users to corrupted users.

Note that in our security model we consider the static corrupted model in the

sense that the set of corrupted users has to be selected in the setup phase.

Setup

The adversary A selects a set of corrupted users denoted by CoList and I�Enc, and

sends them to the challenger. The challenger runs Setup to produce param,mk,

sends param to A and keeps mk private.

Phase 1

A can query the following oracles in polynomially many times:

N Opk,sk(uid): It runs (skuid,pkuid)/PrivKeyGen(param,uid). If uid [= CoList,

it returns the public key pkuid to A; otherwise uid[CoList, then it returns

the key pair (pkuid,skuid) to A. We assume that before querying oracles Ork,

OReEnc and Otoken, the user’s private key skuid has been generated.

N OKeyGen(IKeyGen): If F(IKeyGen,I
�
Enc)~1, it aborts. Otherwise, it runs

skIKeyGen/KeyGen(mk, param, IKeyGen) and returns the private key skIKeyGen
to A.

N Ork(uid,IEnc): If IEnc(= I�Enc and uid [= CoList, it aborts because it is not

allowed to query re-encrypted key from an uncorrupted user to IKeyGen
where F(IKeyGen,IEnc)~1. Otherwise, it runs (skuid,pkuid)/PrivKeyGen

(param,uid) and rkuid?IEnc/ReKeyGen(skuid,IEnc), and returns the re-

encryption key rkuid?IEnc .

N OReEnc(uid,IEnc): It runs (skuid,pkuid)/PrivKeyGen(param,uid), rkuid?IEnc

/ReKeyGen(skuid,IEnc) a n d cphR/ReEnc(cph,param,rkuid?IEnc), a n d

returns re-encrypted keyword cphR to A.

N Otoken(uid,kw): It runs token/TokenGen(skuid,kw), and returns the token

token for kw over original encrypted keyword to A.

N OtokenR(IKeyGen,kw): It runs token
R/TokenGen(skIKeyGen ,kw) and returns the

token tokenR for kw over re-encrypted keyword to A.

Challenge

A selects an uncorrupted user uid� [= CoList and two equal-length keywords

(kw0,kw1), where (i) (uid
�,kw0) or (uid

�,kw1) have never been queried on Otoken

and (ii) if (IKeyGen,kw1), then (IKeyGen,kw0) and (IKeyGen,kw1) have not been

ABRKS
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queried to OtokenR . A sends them to the challenger. The challenger selects

s/
R
f0,1g, runs cph�/Enc(kws,param,pkuid�) and forwards cph� to A.

Phase 2

A queries the oracles the same as Phase 1 except that

N (uid�,kw0) and (uid�,kw1) are not allowed to query on Otoken.

N If F(IKeyGen,I
�
Enc)~1, then (IKeyGen,kw0) and (IKeyGen,kw1) should not been

queried to OtokenR

Guess

A outputs a guess s’. We say that A wins the game if s~s’.

Definition 1

We say that an ABRKS scheme achieves selective security against chosen-keyword

attack if any probabilistic polynomial-time adversary A wins the selective security

game defined above with a negligible advantage with respect to the security parameter

‘, where the advantage is defined as j Pr½s’~s�{1=2j.

Methods

The Basic Idea

In our ABRKS scheme, the critical part is how to support keyword search over re-

encrypted ciphertexts while being able to enforce access control. In order to

achieve this, our intuition (shown in Fig. 2) is to compose the re-encrypted

ciphertext with two components: one is associated with the keyword and is

transformed from original encrypted ciphertext; the other one is associated with

the access control policy and can be derived from the re-encryption key where the

access control policy is determined by the data owner.

KP - ABRKS Construction

Recall that an access control policy is represented by (M,p), where M is an l|k

dimensional matrix and Max is the maximum number of attributes associated

with a ciphertext. Note that let x/
R
X denote selecting element x from the set X

uniformly at random. The KP-ABRKS scheme can be constructed as follows:

Setup(1‘): Given the security parameter ‘, the algorithm generates the public

parameters and the master key as follows:

N Generate a 4 multi-linear map: fei : G0|Gi?Giz1ji~0,1,2g, where

(G0, . . . ,G3) are cyclic groups of order p respectively. Let 0[G0 be a

generator of G0, and iz1~ei( 0, i) be the generator of Giz1 for i~0,1,2.

ABRKS
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N Let H : f0,1g�?G0,H1 : f0,1g
�?Zp be two secure hash functions modeled

as random oracles.

N Let hj/
R
G0,j~0, . . . ,Max and define a function Q(y)~P

Max
j~0 h

(yj)
j where

y[Zp.

N Choose a,b/
R
Z
�
p and set the public parameters and master key as

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,H,H1,h0, . . . ,hmax),

mk~(a,b):

KeyGen(mk, (M,p)): Given an access control policy (M,p), this algorithm

generates the private key as follows:

N Select u2, . . . ,uk/
R
Zp, set v~(ab,u2, . . . ,uk), and compute lp(i)~Mi

:v for

i~1, . . . ,l.

N For each i[½1,l�, select ri/
R
Z
�
p and set

Ai~
lp(i)
0 Q(H1(p(i)))

ri ,Bi~
ri
0 :

N The private key is set to

sk~((M,p),(A1,B1), . . . (Al,Bl)):

PrivKeyGen(mk,param,uid): Given a user’s identity uid, this algorithm selects

xuid /
R
Zp and sets

skuid~xuid,pkuid~
xuid
0 :

Fig. 2. The high level idea of enabling keyword search over re-encrypted ciphertext by re-encryption.

doi:10.1371/journal.pone.0116325.g002
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Enc(kw,param,pkuid): Given a keyword kw[f0,1g�, this algorithm selects r/
R
Zp,

and sets C1~
r
0 and C2~e2(H(kw)r,e1(

a
0,e0(pkuid,

b
0))). It sets the original

encrypted keyword as

cph~(C1,C2):

ReKeyGen(skuid,S): Taking as input the data owner’s private key skuid~xuid and

an attribute set S, this algorithm generates the re-encryption key as follows:

N Select d/
R
Zp and set R1~d=xuid,R2~

d
0 .

N Set Ratj~Q(H1(atj))
d for each atj[S.

N Set the re-encryption key as rkuid?S~(R1,R2,fRatjgatj[ S):

ReEnc(cph,param,rkuid?S): Given the original ciphertext cph~(C1,C2) and the

re-encryption key rkuid?S, it computes C’2~CR1
2 and re-encrypts cph to

cphR~(C1,C’2,R2,fRatjgatj[ S).

TokenGen(skuid,kw): Given the private key skuid~xuid of data user uid and a

keyword kw, this algorithm sets the token for the keyword kw over original

encrypted keywords as

token~H(kw)xuid :

TokenGenR(sk,kw): Given the data user’s private key sk, this algorithm

computes A’i~e0(H(kw),Ai) and B’i~e0(H(kw),Bi) for i~1, . . . ,l. It sets the

token for the keyword kw over re-encrypted keywords as

tokenR~((M,p),(A’i,B’i)i[½1,l�):

Search(token,cph): Given the original encrypted keyword cph and a token

token generated by the data owner, this algorithm outputs 1 if e2(token,e1(C1,

e0(g
a
0,g

b
0)))~C2, and 0 otherwise.

SearchR(tokenR,cphR): Given the re-encrypted keyword cphR and a token

tokenR generated by the data users, the search can be done as follows:

N If the attribute set S associated with cphR satisfies the access control policy

specified by (M,p) associated with tokenR, compute ci such thatP
p(i) [ S ciMi~(1,0, . . . ,0), and let

K~ P
p(i) [ S

(
e1(R2,A’i)

e1(Rp(i),B’i)
)ci :

If e2(K,C1)~C’2, output 1 and 0 otherwise.

N Otherwise, output 0.

ABRKS
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Correctness

The correctness of the KP - ABRKS scheme can be verified as follows:

If token and the original ciphertext correspond to the same keyword, we have

e2(token,e1(C1,e0(g
a
0,g

b
0)))~e2(H(kw)xid ,e1(

r
0,e0(

a
0,

b
0)))

~e2(H(kw),e1(
xid
0 ,e0(

a
0,

b
0)))

r

~C2:

If the attribute set S satisfies the access control policy specified by (M,p), and

tokenR and the re-encrypted ciphertext correspond to the same keyword,

K~ P
p(i) [ S

(
e1(R2,A’i)

e1(Rp(i),B’i)
)ci :

~ P
p(i) [ S

(
e1(

d
0,e0(H(kw),

lp(i)
0 Q(H1(p(i)))

ri))

e1(Q(H1(p(i)))
d,e0(H(kw), ri))

)ci

~e1( 0,e0(H(kw), 0))
abd:

such that

e2(K,C1)~e2(H(kw),e1( 0,e0( 0, 0)))
abdr

~C’2:

CP - ABRKS Construction

We also elaborate the construction of the CP-ABRKS scheme as follows.

Setup (N,nmax): This algorithm takes as input N, the number of attributes in the

system and nmax the maximum of columns of M. It generates the public

parameters and the master key as follows:

N Generate a 4 multi-linear map: fei : G0|Gi?Giz1ji~0,1,2g, where

(G0, . . . ,G3) are cyclic groups of order p respectively. Let 0[G0 be a

generator of G0, and iz1~ei( 0, i) be a generator of Giz1 for i~0,1,2.

N Select elements h1,1,h1,2, . . . ,hnmax,N from G0 uniformly at random.

N Let H : f0,1g�?G0 be a secure hash function modeled as a random oracle.

N Select a,b,c/
R
Zp and set the public parameters and master key as

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,

h1,1, . . . ,hnmax ,N ,H),

mk~(a,b):
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KeyGen(mk,S): Given an attribute set S, this algorithm generates the private key as

follows:

N Choose t1, . . . ,tnmax
/
R
Zp, and set D~ ab

0
at1
0 .

N For each j[½1,nmax� set Lj~
tj
0 and for each x[S set Dx~P

nmax

j~1 h
tj
j,x:

N The private key is set to

sk~(D,fLjgj[ ½1,nmax �
,fDxgx[ S):

PrivKeyGen(param,uid): This algorithm is the same as PrivKeyGen algorithm in

KP - ABRKS.

Enc(kw,param,pkuid): This algorithm is the same as Enc algorithm in KP -

ABRKS.

ReKeyGen(skuid,(M,p)): Taking as input a user’s private key skuid~xuid and an

access control policy (M,p), where M is an l|nmax matrix (If the number of

columns of M is kvnmax, it can simply ‘‘pad out’’ the rightmost nmax{k columns

with zeros.), this algorithm generates the re-encryption key as follows:

N Select d/
R
Zp and set R1~d=xuid,R2~

d
0 .

N Choose nmax{1 random elements u2, . . . ,unmax
/
R
Zp, let the vector~u~(u1~d,

u2, . . . ,unmax
)[Znmax

p , and set Ri,j~
aMi,juj
0 h{d

j,p(i) for each i~1, . . . ,l and j~1, . . . ,

nmax.

N Set the re-encryption key as rkuid?(M,p)~(R1,R2,fRi,jgi[ ½1,l�,j[ ½1,nmax�
).

ReEnc(cph,param,rkuid?(M,p)): Given an original encrypted keyword

cph~(C1,C2) and the re-encryption key rkuid?(M,p), the algorithm computes

C’2~CR1
2 and re-encrypts cph to

cphR~((M,p),C1,C’2,R2,fRi,jgi[ ½1,l�,j[ ½1,nmax �
):

TokenGen(skuid,kw): This algorithm performs as same as TokenGen algorithm in

KP - ABRKS.

TokenGenR(sk,kw): Given credentials sk, this algorithm computes

D’~e0(H(kw),D), L’j~e0(H(kw),Lj) for j~1, . . . ,nmax and D’x~e0(H(kw),Dx) for

x[S. It sets the token for the keyword kw over re-encrypted keywords as

tokenR~(S,D’,fL’jgj[ ½1,nmax�
,fD’xgx[ S):

Search(token,cph): This algorithm performs the same as Search algorithm in KP -

ABRKS.

SearchR(tokenR,cphR): Given the re-encrypted keyword cphR and a token

tokenR generated by the data users, the search can be done as follows:

N If the attribute set S associated with tokenR satisfies the access control policy

specified by (M,p) associated with cphR, compute ci such that
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P
p(i) [ S ciMi~(1,0, . . . ,0), and let

K~e1(R2,D’)=( P
j~1,...,nmax

e1( P
p(i) [ S

R
ci
i,j,L’j)) P

p [ S
e1(R2,D’p(i)):

If e2(K,C1)~C’2, output 1 and 0 otherwise.

N Otherwise, output 0.

Correctness

The correctness of the CP-ABRKS scheme can be verified similar to that of KP-

ABRKS scheme.

Discussion

KP - ABRKS Security

Theorem 1

Assume that 4-MDDH assumption holds, our KP-ABRKS scheme achieves selective

security against chosen-keyword attack in the random oracle model.

Proof: The proof strategy is to reduce the security of our construction to the

hardness of 4-MDDH assumption. That is, we show that if there exists a

probabilistic polynomial time adversary A breaking selective security game of KP-

ABRKS against chosen-keyword attack with a non-negligible advantage E, then we

can simulate a challenger solving 4-MDDH problem with a non-negligible

advantage (1=ez1=qT)
E
2, where qT is a polynomial large number, which should be

larger than the number of oracle queries for OReEnc,Otoken and OtokenR .

Given an instance of 4-MDDH problem ( 0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z), where

a,b,c,w,r/
R
Zp are unknown, the challenger simulates the game as follows:

Setup

A selects a set of corrupted users denoted by CoList and an attribute set S�, and

sends them to the challenger. The challenger generates the public parameters and

master key as follows:

N Given the attribute set S�, let w(y)~yMax-jS�j:Pat[S� (y{H1(at)), which can be

rewritten as w(y)~
PMax

j~0 wjy
j, where wj is the coefficient of yj and therefore

wj~0 for j~0, . . . ,Max-jS�j.

N Select Q0, . . . ,QMax/
R
Zp, and define Q(y)~

PMax
j~0 Qjy

j.

N Let hj~
awjzQj
0 ,0ƒjƒMax, and define Q(y)~

aw(y)zQ(y)
0 ~P

Max
j~0

(awjzQj)y
j

0 .

N The public parameters is set to

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,H,H1,h0, . . . ,hMax),

by implicitly setting the master private key mk~(a,b).

Moreover, the challenger simulates the oracles H,H1 as follows:
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N OH(kw): Given a keyword kw, it proceeds as follows:

- If kw has not been queried before, then select ai/
R
Zp and toss a random

coin ci[f0,1g with the probability that Pr½ci~0�~1=(qTz1), where qT is

a polynomial large number. We require that qT should be larger than the

number of oracle queries for OReEnc,Otoken and OtokenR . If ci~0, then

compute H(kw)/ w
0

ai
0 ; Otherwise, compute H(kw)/ ai

0 . Add

(kw,ai,H(kw),ci) to LH and return H(kw).

- Otherwise, retrieve H(kw) from LH with respect to kw and return H(kw).

N OH1
(at): If the attribute at has not been queried before, select u/

R
Zp, set

H1(at)~u, and add (at,H1(at)) to the list LH1
. Otherwise, retrieve H1(at) from

LH1
with respect to at. Eventually, it returns H1(at).

Phase 1

A can query the following oracles in polynomially many times:

N Opk,sk(uid): Given a user identity uid, the challenger proceeds as follows:

- If uid has been queried before, retrieve (skuid,pkuid) from LU with respect

to uid and return (skuid,pkuid).

- Otherwise, select xuid /
R
Zp. If uid[CoList, compute skuid/xuid and

pkuid/
xuid
0 ; otherwise set skuid~\ and pkuid/

cxuid
0 . Finally add

(uid,skuid,pkuid) to LU and return (skuid,pkuid).

N OKeyGen(P): Given an access control policy P specified by (M,p), the

challenger proceeds as follows:

- If F(S�,P)~1, then abort.

- Otherwise, because S� does not satisfy the access structure (M,p),

there exists a vector w~(w1, . . . ,wk)[Z
k
p such that w1~1 and

Vp(i)[S�,Mi
:w~0. C h o o s e u’i/

R
Zp f o r i~2, . . . ,k, a n d s e t

v
0
~(0,u’2, . . . ,u’k). By implicitly setting v~abwzv’, it generates Ai and

Bi as follows:

* If p(i)[S�, select ri/
R
Zp compute lp(i)~Mi

:v0~Mi
:v, and set Ai~

lp(i)Q(H1(p(i)))
ri and Bi~

ri .
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* Otherwise, select r’i/
R
Zp and compute

Ai~
l
p(i)Q(H1(p(i)))

ri

~
Mi

:½abwzv
0�: ½aw(H1(p(i)))zQ(H1(p(i)))�ri

~

Mi
:v0zaw(H1(p(i)))r’izQ(H1(p(i)))r’i

bQ(H1(p(i)))Mi
:w=w(H1(p(i)))

Bi~
{bMi

:w=w(H1(p(i)))zr’i

by implicitly setting ri~r’i{bMi
:w=w(H1(p(i))).

N Ork(uid,S): Given a user identity uid and an attribute set S, the challenger

proceeds as follows:

- If S(= S� ^ uid [= CoList, then abort.

- If uid[CoList, choose a random d[Zp and set

rkuid?S~(R1~d=xuid,R2~
d
0,fRatj

gatj[ S),

where d/
R
Zp and Ratj

~Q(H1(atj))
d.

- Otherwise, choose d’/
R
Zp and set

rkuid?S~(R1~cd’=cxuid~d’=xuid,R2~
cd’
0 ,fRatj

gatj[ S),

by implicitly letting d~cd’. Note that Ratj
~Q(H1(atj))

cd’
~P

Max
j~0 (

c
0)

d’Qjy
j
,

since Q(H1(atj))~P
Max
j~0

(awjzQj)y
j

0 ~P
Max
j~0

Qjy
j

0 .

N OReEnc(uid,S,cph): Given a user identity uid, an original encrypted keyword

cph and an attribute set S, the challenger proceeds as follows:

- If uid[CoList _ (S(S� ^ uid [= CoList), it queriesOrk with (uid, S) to get the

re-encryption key rkuid?S and computes cphR/ReEnc(cph,param,rkuid?S).

- Otherwise, if there exists kwi in LH such that ci~1 and e2(e1(e0

( a
0,

b
0),

c
0),

r
0)

aixuid~C2, it selects d/
R
Zp, sets C’2~e2(e1(e0(

a
0,

b
0)

r
0), 0)

aid, R2~
d
0 and Ratj~Q(H1(atj))

d for each atj[S, and returns

cphR~(C1,C’2,R2,fRatjgatj[ S);

- Otherwise, it reports failure and terminates.

N Otoken(uid,kw): Given a user identity uid and a keyword kw, the challenger

proceeds as follows:

- It queries OH with kw to obtain (ai,H(kw),ci).
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- If ci~1, set token~H(kw)skuid~( ai
0 )

skuid
~pkaiuid;

- If ci~0 ^ uid[CoList, set token~H(kw)skuid~ wxuid
0 ;

- Otherwise, report failure and terminate.

N OtokenR(P,kw): Given an access control policy P and a keyword kw, the

challenger proceeds as follows:

- If ci~1, select u2,u3, . . . ,uk/
R
Zp, implicitly set v~(ab,u2, . . . ,uk) and

lp(i)~Miv for i~1, . . . ,l. Compute for i~1, . . . ,l,

A’i~e0(H(kw),Ai)

~e0(
lp(i)
0 Q(H1(p(i)))

ri ,
ai
0 )

~e0(
a
0,

b
0)

Mi1aie0( 0, 0)

Pk
j~2

Mijujai e0(Q(H1(p(i)))
ri ,

ai
0 ),

B’i~e0(H(kw),Bi)~e0( 0, 0)
riai :

- If ci~0 ^ F(S�,P)~0, make a query P on OKeyGen to get sk, and compute

A’i~e0(H(kw),Ai) and B’i~e0(H(kw),Bi) for i~1, . . . ,l.

- Otherwise, report failure and terminate.

Challenge

A selects an uncorrupted user uid�[=CoList and two keywords (kw0,kw1) of equal

length. Given kw0 and kw1, if c0~1 ^ c1~1, the challenger reports failure and

terminates; otherwise, let s be a bit which is selected as follows:

N If c0~1 and c1~0, then set s~1,

N If c0~0 and c1~1, then set s~0,

N Otherwise, let s/
R
f0,1g.

The challenger responses A with cph�~(C1~
r,C2~Zaixuid).

Phase 2

A executes the same as Phase 1.

Guess

A outputs a guess s’. The challenger outputs Z~ abcwr
3 if s’~s; Otherwise, it

outputs Z= abcwr
3 .

This completes the simulation. In what follows let us analyze the probability

that the challenger will not report failure and terminate due to the following two

independent events:

N When A queries Otoken,OtokenR and OReEnc, it happens that ci~0 for some

keyword. Note that for each query with respect to some keyword,
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Pr½ci~0�~1=(qTz1). Therefore, as A makes at most qT oracle queries, the

probability of the challenger not reporting failure and terminating can be

(1{1=(qTz1))qT§1=e.

N When A presents kw0 and kw1, i t happens that c0~1 and

c1~1. S i n c e Pr½ci~0�~1=(qTz1) f o r i~0,1, w e h a v e

Pr½c0~1 ^ c1~1�~(1{1=(qTz1))2ƒ1{1=qT . Hence, the probability that

the challenger has no failure is at least 1=qT .

Therefore the challenger simulates without failure with the probability at least

1=ez1=qT .

Now let us analyze the advantage of the challenger solving 4-MDDH problem

on condition that the simulation completes perfectly. In the challenge phase, if

Z~ abcwr
3 , then cph� is indeed a valid ciphertext of kws. Then the probability of A

outputting s~s’ is
1

2
zE. If Z is an element randomly selected from G3, the

probability of A outputting s~s’ is
1

2
. Therefore, the probability of the

challenger correctly guessing Z~
? abcwr

3 is
1

2
(
1

2
zE)z

1

2

1

2
~

1

2
z

E
2
. That is, the

challenger solves the 4-MDDH problem with advantage (1=ez1=qT)
E
2
if A wins

the selective security game with advantage E. %

CP - ABRKS Security

Security of the CP - ABRKS scheme can be proven as the following theorem.

Theorem 2

Assume that 4-MDDH assumption holds, our CP-ABRKS scheme achieves selective

security against chosen-keyword attack in the random oracle model.

Proof: The main idea is to reduce the security of our CP-ABRKS to the hardness

of 4-MDDH assumption. That’s, we show that if there exists a probabilistic

polynomial time adversary A breaking the selective security game of our CP-

ABRKS scheme against chosen-keyword attack with a non-negligible advantage E,
then we can construct a challenger solving 4-MDDH problem with a non-

negligible advantage (1=ez1=qT)
E
2
, where qT is a polynomial large number, which

should be larger than the number of oracle queries for OReEnc,Otoken and OtokenR .

In this part, P(P� means P is a substructure of P�.

Given an instance of 4-MDDH problem ( 0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z) where

a,b,c,w,r/Zp are unknown, the challenger simulates the game as follows:

Setup

A selects a set of corrupted users denoted by CoList and an access control policy

(M�,p�), where M is an l|k� matrix, and sends them to the challenger. The

challenger generates the public parameters and master key as follows:
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N Given the access control policy (M�,p�), for each (j,x) where 1ƒxƒN and

1ƒjƒnmax, choose zj,x /
R
Zp. If there exists an i such that p�(i)~x and iƒk�,

let hj,x~
zj,xzaM�

i,j

0 ; Otherwise, let hj,x~
zj,x
0 .

N The public parameters is set to

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,

h1,1,h1,2, . . . ,hnmax ,N ,H),

by implicitly setting the master private key mk~(a,b).

The random oracle OH is simulated as same as the proof of Theorem 1.

Phase 1

A can query the following oracles in polynomial many times:

N Opk,sk(uid): Same as the proof of Theorem 1.

N OKeyGen(S): Given an attribute set S, the challenger proceeds as follows:

- If F(S,P�)~1, then abort.

- Otherwise, because S does not satisfy the access structure (M�,p�),

there exists a vector w~(w1, . . . ,wnmax
)[Znmax

p such that w1~{1

and Vp�(i)[S,M�
i
:w~0. Note that we simply let wj~0 and M�

i,j~0

for k�vjƒnmax. Compute D~ ab
0

at1
0 ~

ar1
0 and Lj~

rj( b)wj for

j~1, . . . ,nmax, by choosing r1, . . . ,rnmax
/
R
Zp and implicitly defining

tj~rjzwjb, and set Dx for each x[S as follows:

* If there exists i such that p�(i)~x, set

Dx~ P
nmax

j~1
h
tj
j,x

~ P
nmax

j~1
g
(zj,xzaM�

i,j
)(rjzwjb)

0

~ P
nmax

j~1
g
zj,xrjzzj,xwjbzaM�

i,j
rj

0 :

* Otherwise set Dx~P
nmax

j~1 L
zj,x
j .

N Ork(uid,P): Given a user identity uid and an access control policy P~(M,p),

where M is an l|k matrix, the challenger proceeds as follows:

- If P(= P� ^ uid[=CoList, then abort.

- If uid[CoList, choose random elements d,u2, . . . ,unmax
/
R
Zp, let

~u~(u1~d,u2, . . . ,unmax
)[Znmax

p , and set
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rkuid?P~(R1~d=xuid,R2~
d
0,fRi,jgi~1,...,l,j~1,...,nmax

),

where Ri,j~
Mi,juj
0 .

- Otherwise, we consider P~P� first. Choose random elements

d’,u’2, . . . ,u’nmax
/
R
Zp and set

rkuid?P~(R1~cd’=cxuid~d’=xuid,R2~
cd’
0 ,fRi,jgi~1,...,l,j~1,...,nmax

),

where

Ri,j~

aM�
i,j
uj

0 h{d
j,p�(i)

~

aM�
i,j
(cd’zv’j)

0 (
aM�

i,j
zzp�(i),j

0 ){cd’

~
u’j
0 ( c

0)
{d’zp�(i),j ,

by implicitly defining d~cd’ and~u~(u1~cd’,cd’zu’2, . . . ,cd’zu’nmax )[
Z
nmax
p (We set u’1~0). Note that the form of our re-encryption key is

similar to that of the ciphertext of Water’s CP-ABE[17]. So if

P~(M,p)(P�
~(M�,p�), the re-encryption key can be derived from

(M�,p�) through the technology of ciphertext delegation proposed in [30].

N OReEnc(uid,S,cph): Given a user identity uid, an original encrypted keyword

cph and an access control policy P, the challenger proceeds as follows:

- If uid[CoList _ (P[P� ^ uid[=CoList), it queriesOrk with (uid, P) to get the

re-encryption key rkuid?P and computes cphR/ReEnc(cph,param,rkuid?P).

- Otherwise, if there exists kwi in LH such that ci~1 and e2
(e1(e0(

a
0,

b
0),

c
0),

r
0)

aixuid
~C2, it picks d[Zp, sets C’2~e2(e1(e0(

a
0,

b
0)

r
0),

0)
aid, R2~gd0 and Ri,j~

aMi,juj
0 h{d

j,p(i) f o r e a ch i~1, . . . ,N and

j~1, . . . ,nmax, and returns cphR~(C1,C’2,R2,fRi,jgi[ ½1,N�,j[ ½1,nmax�
);

- Otherwise, it reports failure and terminates.

N Otoken(uid,kw): Same as the proof of Theorem 1.

N OtokenR(S,kw): Given an attribute set S and a keyword kw, the challenger

proceeds as follows:

- If ci~1, select t1,t2, . . . ,tnmax
/
R
Zp. Compute

D’~e0(
ab
0

at1
0 , ai)

~e0(
a
0,

b
0)

aie0(
a
0, 0)

t1ai ,

for j~1, . . . ,nmax,
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L’j~e0(H(kw),Lj)

~e0( 0, 0)
tjai ,

and for each x[S,

D̂x~e0(Dx,H(kw))

~e0( P
nmax

j~1
h
tj
j,x,

ai
0 ):

- If ci~0 ^ F(S�,P)~0, make a query S on OKeyGen to get sk, and compute

D’~e0(H(kw),D), L’j~e0(H(kw),Lj) f o r j~1, . . . ,nmax a n d

D’x~e0(H(kw),Dx) for x[S.
- Otherwise, report failure and terminate.

Challenge

A selects an uncorrupted user uid�=[CoList and two equal-length keywords

(kw0,kw1). If c0~1 ^ c1~1, the challenger reports failure and terminates;

otherwise, let s be a bit which is selected as follows:

N If c0~1 and c1~0, then set s~1,

N If c0~0 and c1~1, then set s~0,

N Otherwise, let s/
R
f0,1g.

The challenger responses A with cph�~(C1~
r,C2~Zaixuid).

Phase 2

A executes the same as Phase 1.

Guess

A outputs a guess s’. The challenger outputs Z~ abcwr
3 if s’~s. Otherwise, it

outputs Z= abcwr
3 .

This completes the simulation. We can show that the challenger solves the 4-

MDDH problem with advantage (1=ez1=qT)
E
2
if A wins the selective security

game of CP-ABRKS with advantage E similar to the analysis of Theorem 1. %

Application

Our ABRKS schemes fit very well for many applications in the cloud computing

environment. One of the prominent applications is about Personal Health

Records (PHR) for patients: The data owner encrypted his own health records and

outsourced these encrypted records to the cloud which hosts the PHR service. The

data owner always needs to fetch the related health records upon some keywords

since it is too costly to download all encrypted records and decrypt them to get

desired records. In addition, the data owner might need to share these encrypted
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health records with some professionals, for example, heart doctors in Emergency

Room. In order to attain this goal, the data owner has to delegate the search

capability. Fig. 3 shows the sequence diagram that how the entities in the PHR

application make use of the proposed ABRKS schemes to achieve these goals.

Conclusions

In this paper, we propose a novel notion called attribute-based proxy re-

encryption with keyword search (ABRKS). Our solutions can be used in the cloud

setting, such that (1) a data owner can delegate the search capability to a group of

users by specifying fine-grained access control policies; (2) the data owner and

data users can delegate the tedious re-encryption and search process to the cloud

without compromising data confidentiality.

Fig. 3. Sequence diagram for using ABRKS in the application where the data owner shares his medical records with some professionals such that

only authorized professionals can retrieve medical records of their interests.

doi:10.1371/journal.pone.0116325.g003
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