
RESEARCH ARTICLE

Attribute-Based Proxy Re-Encryption with

Keyword Search

Yanfeng Shi1*, Jiqiang Liu1, Zhen Han1, Qingji Zheng3, Rui Zhang2, Shuo Qiu1

1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China, 2. The State

Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China, 3. Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas,

United States of America

*schwannfeng@bjtu.edu.cn

Abstract

Keyword search on encrypted data allows one to issue the search token and

conduct search operations on encrypted data while still preserving keyword privacy.

In the present paper, we consider the keyword search problem further and

introduce a novel notion called attribute-based proxy re-encryption with keyword

search (ABRKS), which introduces a promising feature: In addition to supporting

keyword search on encrypted data, it enables data owners to delegate the keyword

search capability to some other data users complying with the specific access

control policy. To be specific, ABRKS allows (i) the data owner to outsource his

encrypted data to the cloud and then ask the cloud to conduct keyword search on

outsourced encrypted data with the given search token, and (ii) the data owner to

delegate other data users keyword search capability in the fine-grained access

control manner through allowing the cloud to re-encrypted stored encrypted data

with a re-encrypted data (embedding with some form of access control policy). We

formalize the syntax and security definitions for ABRKS, and propose two concrete

constructions for ABRKS: key-policy ABRKS and ciphertext-policy ABRKS. In the

nutshell, our constructions can be treated as the integration of technologies in the

fields of attribute-based cryptography and proxy re-encryption cryptography.

Introduction

Cloud computing platforms assemble vast computational resources and make

them available to users as a service. The cloud users can outsource their heavy

computation tasks and/or storage to cloud providers while still enjoying

promising properties, e.g., low maintenance cost and pervasive accessing. While it

is promising, cloud computing also confronts many challenges against data

OPEN ACCESS

Citation: Shi Y, Liu J, Han Z, Zheng Q, Zhang R,

et al. (2014) Attribute-Based Proxy Re-Encryption

with Keyword Search. PLoS ONE 9(12): e116325.

doi:10.1371/journal.pone.0116325

Editor: Cheng-Yi Xia, Tianjin University of

Technology, China

Received: July 30, 2014

Accepted: December 4, 2014

Published: December 30, 2014

Copyright: � 2014 Shi et al. This is an open-

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and repro-

duction in any medium, provided the original author

and source are credited.

Data Availability: The authors confirm that all data

underlying the findings are fully available without

restriction. All relevant data are within the paper.

Funding: This work is supported by the 111

project, Program for New Century Excellent Talents

in University (NCET-11-0565), the Fundamental

Research Funds for the Central Universities

(2012JBZ010) and PCSIRT (No.IRT 201206). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 1 / 24

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116325&domain=pdf
http://creativecommons.org/licenses/by/4.0/

privacy/system vulnerabilities [1–3] and service quality [4, 5]. One possible

solution to prevent these problems is to use the private cloud, where the

underlying infrastructure (i.e., servers, network and storage) is owned and

operated by the cloud users themselves. However, this might depress the benefits

bringing from the cloud computing, when comparing with the public cloud that is

more reliable, elastic (i.e., computational resources can be increased and decreased

quickly) and cost-saving. As such, individual and organizations are considering

migrating from their owned infrastructure to the public cloud.

In order to preserve data privacy against any possible attacks in the public

cloud, it is inevitable for data owners to encrypt their data before outsourcing it to

the cloud, which might hinder the data usage. For example, how the data owner

can search on their outsourced encrypted data? How the data owner can delegate

his search capability to other users in a fine-grained manner? In this paper, we

continue the line of keyword search on encrypted data and attempt to solve the

above questions simultaneously.

To explain the motivation for solving the above questions, we consider the

following motivational application: The data owner, say Alice, encrypted her

personal health data that was collected by sensors attached her and outsourced the

encrypted data to the cloud. In order to facilitate the examination on health

condition, Alice may need to share the encrypted data with professionals, e.g.

doctors that work in some specific department, so that the professionals can

retrieve qualified records from the cloud. In order to assure that only certain

professionals satisfying some policy can conduct keyword search and retrieve

corresponding encrypted data of their interests, Alice needs to delegate keyword

search capability by specifying the fine-grained access control policy.

A straightforward solution toward the above questions can work as follows: the

data owner encrypts his data with attribute-based encryption, and issues proper

keys to data users so that only authorized data users can access these encrypted

data. Unfortunately, solutions based on attribute-based encryption in the

literature do not support keyword search. That is, even satisfying the access

control policy, the authorized user has to download entire encrypted data, rather

than portion of encrypted data of his interest, which will bring in huge

communication overhead. In light of this, we propose a novel notion, dubbed

attributed-based proxy re-encryption with keyword search (ABRKS), allowing

data owners to grant keyword search capability to authorized users complying

with access control policies.

Our Contribution

We introduce a novel notion called attribute-based proxy re-encryption with

keyword search (ABRKS), which allows a data owner to delegate keyword search

capability over his encrypted data to authorized users by while complying with

access control policies. We formally define its syntax and rigorously formalize the

security definitions. We present two flavors of ABRKS constructions, key-policy

ABRKS and ciphertext-policy ABRKS, the security of which are based on the

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 2 / 24

standard Multilinear Decisional Diffie-Hellman Assumption in the random oracle

model. Our solutions perfectly solve the motivation example and enjoy three

distinctive properties: (i) The data owner could conduct keyword search on

outsourced encrypted data; (ii) The data owner could delegate keyword search

capability to users by specifying fine-grained access control policies so that only

authorized users satisfying the access control policy can conduct keyword search;

and (iii) There is no interaction happening between data owners and users.

Moreover, the tedious work, e.g., performing keyword search and re-encrypting

encrypted data, can be outsourced to the cloud without compromising data

privacy.

Related Work

Here we briefly survey the works that are relevant to the problem we attempt to

solve in this paper, while cannot solve it. We summarize the features of the most

relevant techniques, proxy re-encryption with keyword search, attribute-based

encryption, attribute-based encryption with keyword search and attribute-based

proxy re-encryption, and compare them with our ABRKS solutions as shown in

Table 1.

Proxy Re-encryption with Keyword Search

Proxy re-encryption with keyword search (PRES) was introduced in [6], which

allows a data owner to delegate keyword search capability to other users. PRES

was further revised by [7] and/or enhanced by various papers, e.g., [8–11].

However, all these PRES solutions only considered coarse-grained access control

enforcement, i.e., delegating the search capability to one specific authorized user.

In contrast, we consider the fine-grained access control enforcement when the

data owner needs to delegate search capability in this paper.

Attribute-based Encryption

Attribute-based encryption (ABE) was first introduced by [12], which is to specify

fine-grained access control on encrypted data, such that only data users with

proper credentials (i.e., satisfying the access control policy) can decrypt the

ciphertexts. There are two flavors of ABE depending on the manner of associating

access control policy: key-policy ABE (KP-ABE) [13–15] associates the decryption

key with the access control policy and ciphertext-policy ABE (CP-ABE) associates

the ciphertext with the access control policy [16–18]. While ABE allows data

owners to achieve fine-grained access control enforcement on encrypted data,

unfortunately it cannot support keyword search.

Attribute-based Encryption with Keyword Search

The concept of attribute-based encryption with keyword search (ABKS) was

introduced by [19] and [20] independently. It allows data owner to grant search

capability to authorized users by specifying fine-grained access control when

encrypting plaintext. However, it does not support the data owner delegating

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 3 / 24

search capability to authorized users when encrypted data were stored in the

cloud.

Attribute-based Proxy Re-encryption

Attribute-based proxy re-encryption (ABPRE) was introduced by [21] and

enriched by [22–26] with various features. However, these solutions do not

support the function of keyword search on encrypted data. Generally speaking,

the solution in this paper can be regarded as an extension to ABPRE with the

feature of keyword search on encrypted data.

Preliminary

Cryptographic Assumptions

Multilinear Maps

The concept of multilinear maps was introduced in [27] and came to reality thanks

to [28, 29]. Given a security parameter ‘ and an ‘-bit prime p, a 4-multilinear map

consists of 4 cyclic groups (G0,G1,G2,G3) of order p, and 3 mappings

ei : G0|Gi?Giz1, i~0,1,2. The 4-multilinear map should satisfy the following

properties with respect to i, i~0,1,2: (i) Given that 0[G0 is a generator of G0, then

iz1~ei(0, i) is a generator of Giz1; (ii) Va,b[Zp, ei(
a
0,

b
i)~ei(0, i)

ab; and (iii) ei
can be efficiently computed.

4-Multilinear Decisional Diffie-Hellman Assumption (4-MDDH)

Given the 4-multilinear map and 0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z, where a,b,c,w,r/

R
Zp that

are unknown, Z/
R
G3, 1~e0(0, 0)[G1, 2~e1(0, 1)[G2 and 3~e2(0, 2)[G3,

there exists no probabilistic polynomial algorithm A that can determine whether
abcwr
3 ~Z or not with a non-negligible advantage with respect to security

parameter ‘, where the advantage is defined as

jPr½A(abcwr
3 , 0,

a
0,

b
0,

c
0,

w
0 ,

r
0)~1�

{Pr½A(Z, 0,
a
0,

b
0,

c
0,

w
0 ,

r
0)~1�j:

Table 1. Property summary for PRES, ABE, ABPRE, ABKS in the literature and the solution in this paper.

Scheme Proxy Re-encryption Keyword Search Access Control

PRES [6–11] H H |

ABE [12–18] | | H

ABKS [19, 20] | H H

ABPRE [21–26] H | H

ABRKS(Our solution) H H H

doi:10.1371/journal.pone.0116325.t001

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 4 / 24

Access Control Policy

Linear Secret Sharing Scheme

A linear secret sharing scheme (LSSS) can be used to represent an access control

policy P via (M,p), where M~(Zp)
l|k is an l|k dimensional matrix with entries

belonging to Zp and p : f1, . . . ,lg?UAtt is an injective function that maps a row

into an attribute. Given an attribute set S5UAtt where UAtt is the attribute

universe, we denote F(S,P)~1 if S satisfies the access control policy P. Specifically,

an LSSS consists of two algorithms:

Share((M,p),s): This algorithm is to distribute a secret value s with respect to

the attributes specified by p: It selects u2, . . . ,uk/
R
Zp, sets v~(s,u2, . . . ,uk) and

computes lp(i)~Mi
:v where Mi is the ith row of M. Then it assigns secret share

lp(i) to the attribute p(i).

Combine(S,(lp(i), . . . ,lp(l)),(M,p)): This algorithm is to assemble the secret

value from the secret shares associated with respect to the attributes: It selects a

subset I~fijp(i)[Sg such that the attribute set fp(i)ji[Ig satisfies the access

control policy (M,p), and then computes the coefficients ci,i[I such thatP
i[I ciMi~(1,0, . . . ,0). The recovered secret will be

P
i[I cilp(i)~s.

The correctness of algorithm Combine is guaranteed by the following lemma:

Lemma 1 ([17]) Let (M,p) be an LSSS representing an access control policy P. For

all attributes in S that do not satisfy P, there is a polynomial-time algorithm that

outputs vector w~(w1, . . . ,wk)[Z
k
p such that w1~1 and Mi

:w~0 for all i[½1, . . . ,l�,
where p(i)[S.

Definition

System Model

The system model of attribute-based proxy re-encryption with keyword search is

shown in Fig. 1, consisting of three parties: the trusted authority, the cloud server

and cloud users that can be either data owner or data users wishing to share the

data owner’s data. The trusted authority is responsible for initiating system public

parameters and issuing private keys to cloud users with respect to their attributes.

A data owner (say Alice) encrypts her data and the keyword index and outsource

the encrypted data and the associated encrypted keyword index to the cloud

server. Moreover, the data owner can retrieve encrypted data of her interest by

issuing a search token with respect to some keyword to the cloud. On the other

hand, the data owner is capable of granting search capability to other authorized

users by issuing re-encryption keys (which is associated with access control

policies) to the cloud. The cloud server provides storage and computation service

for cloud users. Especially, the cloud server can transform the stored encrypted

data with re-encryption keys from the data owner, so that the authorized data user

(say Bob) is able to generate search tokens and ask the cloud server to conduct

keyword search on the re-encrypted data for retrieving encrypted data of his

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 5 / 24

interest. In this model, we assume that the data owner and data users require no

direct interaction.

Functional Definition

We now present the formal definition of attribute-based proxy re-encryption with

keyword search, which consists of two variants: key-policy ABRKS (KP - ABRKS)

whose private keys are associated with access control policies, and ciphertext-

policy ABRKS (CP - ABRKS) whose ciphertexts after re-encryption are associated

with access control policies. To unify the presentation, let IEnc denote the input of

the encryption function ReKeyGen and IKeyGen denote the input of the key

generation function KeyGen. Therefore, IEnc and IKeyGen respectively correspond

to an attribute set and an access policy in KP - ABRKS, whereas IEnc and IKeyGen
respectively correspond to an access policy and an attribute set in CP - ABRKS.

We denote F(IKeyGen,IEnc)~1 if and only if IEnc satisfies IKeyGen in KP-ABRKS or

IKeyGen satisfies IEnc in CP-ABRKS.

To be specific, an ABRKS scheme consists of algorithms as follows:

Fig. 1. System model of attribute-based access control for proxy re-encryption with keyword search.

doi:10.1371/journal.pone.0116325.g001

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 6 / 24

(param,mk)/Setup(1‘): Taking as input a security parameter ‘, this algorithm
is run by the trusted authority to initiate the public parameter param and a master

private key mk.

skIKeyGen/KeyGen(mk,param,IKeyGen): Taking as input IKeyGen, the master key

mk and public parameter param, this algorithm is run by the trusted authority to

issue a private key skIKeyGen associated with IKeyGen for a data user.

(skuid,pkuid)/PrivKeyGen(param,uid): Taking as input a user’s identity uid,

the master key mk and public parameter param, this algorithm is run by the

trusted authority to generate a pair of keys (skuid,pkuid).

rkuid?IEnc/ReKeyGen(skuid,IEnc): Taking as input a user’s private key skuid and

IEnc, this algorithm is run by the data owner to generate the re-encryption key

rkuid?IEnc .

cph/Enc(kw, param,pkuid): Given a keyword kw, the public parameter param,

and the data owner’s public key pkuid, this algorithm is run by the data owner to

output an original ciphertext cph.

cphR/ReEnc(cph, param, rkuid?IEnc): Given a ciphertext of uid, the public

parameter param, and a re-encryption key rkuid?IEnc , this algorithm is run by the

cloud server to output a re-encrypted ciphertext cphR.

token/TokenGen(skuid, kw): This algorithm is run by the data owner to

generate a token token, which can be used to conduct the search operation over

original encrypted keywords.

tokenR/TokenGenR(skIKeyGen ,kw): This algorithm is run by a data user to

generate a token tokenR, which can be used to conduct the keyword operation

over re-encrypted keywords.

Search(token,cph): This algorithm, run by the cloud server, returns 1 if the

original encrypted keyword cph and the token token correspond to the same

keyword; otherwise it returns 0.

SearchR(tokenR,cphR): This algorithm, run by the cloud server, returns 1 if (i)

F(IKeyGen,IEnc)~1 and (ii) the re-encrypted keyword cphR and the token tokenR

correspond to the same keyword; otherwise it returns 0.

Correctness We say an ABRKS scheme is secure if, for (param,mk)/Setup(1‘),

(skuid,pkuid)/PrivKeyGen(param,uid), skIKeyGen/ KeyGen(mk, param, IKeyGen),

then the follows should hold:

N Given cph/Enc(kw,param,pkuid) and token/TokenGen(skuid,kw), Search

(token,cph) always returns 1;

N Given cphR/ReEnc(cph,param,rkuid?IEnc) and tokenR/TokenGen(skIKeyGen ,

kw), where rkuid?IEnc/ReKeyGen(skuid,IEnc), Search
R(tokenR,cphR) always

returns 1 if F(IKeyGen,IEnc)~1.

Security Definitions

The security of ABRKS requires that the ciphertexts and tokens leak nothing

about the underlying keywords. Informally, the adversary is allowed to query

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 7 / 24

ciphertext of any plaintext and tokens except those corresponding to two

keywords in the challenge phase. We expect that the adversary cannot distinguish

the challenge ciphertext that is generated from one of keywords kw0 and kw1. To

formalize aforementioned security notion, we define the selective chosen keyword

security game as follows. Note that in our corruption model, the adversary is not

allowed to get the re-encryption key from uncorrupted users to corrupted users.

Note that in our security model we consider the static corrupted model in the

sense that the set of corrupted users has to be selected in the setup phase.

Setup

The adversary A selects a set of corrupted users denoted by CoList and I�Enc, and

sends them to the challenger. The challenger runs Setup to produce param,mk,

sends param to A and keeps mk private.

Phase 1

A can query the following oracles in polynomially many times:

N Opk,sk(uid): It runs (skuid,pkuid)/PrivKeyGen(param,uid). If uid [= CoList,

it returns the public key pkuid to A; otherwise uid[CoList, then it returns

the key pair (pkuid,skuid) to A. We assume that before querying oracles Ork,

OReEnc and Otoken, the user’s private key skuid has been generated.

N OKeyGen(IKeyGen): If F(IKeyGen,I
�
Enc)~1, it aborts. Otherwise, it runs

skIKeyGen/KeyGen(mk, param, IKeyGen) and returns the private key skIKeyGen
to A.

N Ork(uid,IEnc): If IEnc(= I�Enc and uid [= CoList, it aborts because it is not

allowed to query re-encrypted key from an uncorrupted user to IKeyGen
where F(IKeyGen,IEnc)~1. Otherwise, it runs (skuid,pkuid)/PrivKeyGen

(param,uid) and rkuid?IEnc/ReKeyGen(skuid,IEnc), and returns the re-

encryption key rkuid?IEnc .

N OReEnc(uid,IEnc): It runs (skuid,pkuid)/PrivKeyGen(param,uid), rkuid?IEnc

/ReKeyGen(skuid,IEnc) a n d cphR/ReEnc(cph,param,rkuid?IEnc), a n d

returns re-encrypted keyword cphR to A.

N Otoken(uid,kw): It runs token/TokenGen(skuid,kw), and returns the token

token for kw over original encrypted keyword to A.

N OtokenR(IKeyGen,kw): It runs token
R/TokenGen(skIKeyGen ,kw) and returns the

token tokenR for kw over re-encrypted keyword to A.

Challenge

A selects an uncorrupted user uid� [= CoList and two equal-length keywords

(kw0,kw1), where (i) (uid
�,kw0) or (uid

�,kw1) have never been queried on Otoken

and (ii) if (IKeyGen,kw1), then (IKeyGen,kw0) and (IKeyGen,kw1) have not been

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 8 / 24

queried to OtokenR . A sends them to the challenger. The challenger selects

s/
R
f0,1g, runs cph�/Enc(kws,param,pkuid�) and forwards cph� to A.

Phase 2

A queries the oracles the same as Phase 1 except that

N (uid�,kw0) and (uid�,kw1) are not allowed to query on Otoken.

N If F(IKeyGen,I
�
Enc)~1, then (IKeyGen,kw0) and (IKeyGen,kw1) should not been

queried to OtokenR

Guess

A outputs a guess s’. We say that A wins the game if s~s’.

Definition 1

We say that an ABRKS scheme achieves selective security against chosen-keyword

attack if any probabilistic polynomial-time adversary A wins the selective security

game defined above with a negligible advantage with respect to the security parameter

‘, where the advantage is defined as j Pr½s’~s�{1=2j.

Methods

The Basic Idea

In our ABRKS scheme, the critical part is how to support keyword search over re-

encrypted ciphertexts while being able to enforce access control. In order to

achieve this, our intuition (shown in Fig. 2) is to compose the re-encrypted

ciphertext with two components: one is associated with the keyword and is

transformed from original encrypted ciphertext; the other one is associated with

the access control policy and can be derived from the re-encryption key where the

access control policy is determined by the data owner.

KP - ABRKS Construction

Recall that an access control policy is represented by (M,p), where M is an l|k

dimensional matrix and Max is the maximum number of attributes associated

with a ciphertext. Note that let x/
R
X denote selecting element x from the set X

uniformly at random. The KP-ABRKS scheme can be constructed as follows:

Setup(1‘): Given the security parameter ‘, the algorithm generates the public

parameters and the master key as follows:

N Generate a 4 multi-linear map: fei : G0|Gi?Giz1ji~0,1,2g, where

(G0, . . . ,G3) are cyclic groups of order p respectively. Let 0[G0 be a

generator of G0, and iz1~ei(0, i) be the generator of Giz1 for i~0,1,2.

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 9 / 24

N Let H : f0,1g�?G0,H1 : f0,1g
�?Zp be two secure hash functions modeled

as random oracles.

N Let hj/
R
G0,j~0, . . . ,Max and define a function Q(y)~P

Max
j~0 h

(yj)
j where

y[Zp.

N Choose a,b/
R
Z
�
p and set the public parameters and master key as

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,H,H1,h0, . . . ,hmax),

mk~(a,b):

KeyGen(mk, (M,p)): Given an access control policy (M,p), this algorithm

generates the private key as follows:

N Select u2, . . . ,uk/
R
Zp, set v~(ab,u2, . . . ,uk), and compute lp(i)~Mi

:v for

i~1, . . . ,l.

N For each i[½1,l�, select ri/
R
Z
�
p and set

Ai~
lp(i)
0 Q(H1(p(i)))

ri ,Bi~
ri
0 :

N The private key is set to

sk~((M,p),(A1,B1), . . . (Al,Bl)):

PrivKeyGen(mk,param,uid): Given a user’s identity uid, this algorithm selects

xuid /
R
Zp and sets

skuid~xuid,pkuid~
xuid
0 :

Fig. 2. The high level idea of enabling keyword search over re-encrypted ciphertext by re-encryption.

doi:10.1371/journal.pone.0116325.g002

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 10 / 24

Enc(kw,param,pkuid): Given a keyword kw[f0,1g�, this algorithm selects r/
R
Zp,

and sets C1~
r
0 and C2~e2(H(kw)r,e1(

a
0,e0(pkuid,

b
0))). It sets the original

encrypted keyword as

cph~(C1,C2):

ReKeyGen(skuid,S): Taking as input the data owner’s private key skuid~xuid and

an attribute set S, this algorithm generates the re-encryption key as follows:

N Select d/
R
Zp and set R1~d=xuid,R2~

d
0 .

N Set Ratj~Q(H1(atj))
d for each atj[S.

N Set the re-encryption key as rkuid?S~(R1,R2,fRatjgatj[S):

ReEnc(cph,param,rkuid?S): Given the original ciphertext cph~(C1,C2) and the

re-encryption key rkuid?S, it computes C’2~CR1
2 and re-encrypts cph to

cphR~(C1,C’2,R2,fRatjgatj[S).

TokenGen(skuid,kw): Given the private key skuid~xuid of data user uid and a

keyword kw, this algorithm sets the token for the keyword kw over original

encrypted keywords as

token~H(kw)xuid :

TokenGenR(sk,kw): Given the data user’s private key sk, this algorithm

computes A’i~e0(H(kw),Ai) and B’i~e0(H(kw),Bi) for i~1, . . . ,l. It sets the

token for the keyword kw over re-encrypted keywords as

tokenR~((M,p),(A’i,B’i)i[½1,l�):

Search(token,cph): Given the original encrypted keyword cph and a token

token generated by the data owner, this algorithm outputs 1 if e2(token,e1(C1,

e0(g
a
0,g

b
0)))~C2, and 0 otherwise.

SearchR(tokenR,cphR): Given the re-encrypted keyword cphR and a token

tokenR generated by the data users, the search can be done as follows:

N If the attribute set S associated with cphR satisfies the access control policy

specified by (M,p) associated with tokenR, compute ci such thatP
p(i) [S ciMi~(1,0, . . . ,0), and let

K~ P
p(i) [S

(
e1(R2,A’i)

e1(Rp(i),B’i)
)ci :

If e2(K,C1)~C’2, output 1 and 0 otherwise.

N Otherwise, output 0.

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 11 / 24

Correctness

The correctness of the KP - ABRKS scheme can be verified as follows:

If token and the original ciphertext correspond to the same keyword, we have

e2(token,e1(C1,e0(g
a
0,g

b
0)))~e2(H(kw)xid ,e1(

r
0,e0(

a
0,

b
0)))

~e2(H(kw),e1(
xid
0 ,e0(

a
0,

b
0)))

r

~C2:

If the attribute set S satisfies the access control policy specified by (M,p), and

tokenR and the re-encrypted ciphertext correspond to the same keyword,

K~ P
p(i) [S

(
e1(R2,A’i)

e1(Rp(i),B’i)
)ci :

~ P
p(i) [S

(
e1(

d
0,e0(H(kw),

lp(i)
0 Q(H1(p(i)))

ri))

e1(Q(H1(p(i)))
d,e0(H(kw), ri))

)ci

~e1(0,e0(H(kw), 0))
abd:

such that

e2(K,C1)~e2(H(kw),e1(0,e0(0, 0)))
abdr

~C’2:

CP - ABRKS Construction

We also elaborate the construction of the CP-ABRKS scheme as follows.

Setup (N,nmax): This algorithm takes as input N, the number of attributes in the

system and nmax the maximum of columns of M. It generates the public

parameters and the master key as follows:

N Generate a 4 multi-linear map: fei : G0|Gi?Giz1ji~0,1,2g, where

(G0, . . . ,G3) are cyclic groups of order p respectively. Let 0[G0 be a

generator of G0, and iz1~ei(0, i) be a generator of Giz1 for i~0,1,2.

N Select elements h1,1,h1,2, . . . ,hnmax,N from G0 uniformly at random.

N Let H : f0,1g�?G0 be a secure hash function modeled as a random oracle.

N Select a,b,c/
R
Zp and set the public parameters and master key as

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,

h1,1, . . . ,hnmax ,N ,H),

mk~(a,b):

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 12 / 24

KeyGen(mk,S): Given an attribute set S, this algorithm generates the private key as

follows:

N Choose t1, . . . ,tnmax
/
R
Zp, and set D~ ab

0
at1
0 .

N For each j[½1,nmax� set Lj~
tj
0 and for each x[S set Dx~P

nmax

j~1 h
tj
j,x:

N The private key is set to

sk~(D,fLjgj[½1,nmax �
,fDxgx[S):

PrivKeyGen(param,uid): This algorithm is the same as PrivKeyGen algorithm in

KP - ABRKS.

Enc(kw,param,pkuid): This algorithm is the same as Enc algorithm in KP -

ABRKS.

ReKeyGen(skuid,(M,p)): Taking as input a user’s private key skuid~xuid and an

access control policy (M,p), where M is an l|nmax matrix (If the number of

columns of M is kvnmax, it can simply ‘‘pad out’’ the rightmost nmax{k columns

with zeros.), this algorithm generates the re-encryption key as follows:

N Select d/
R
Zp and set R1~d=xuid,R2~

d
0 .

N Choose nmax{1 random elements u2, . . . ,unmax
/
R
Zp, let the vector~u~(u1~d,

u2, . . . ,unmax
)[Znmax

p , and set Ri,j~
aMi,juj
0 h{d

j,p(i) for each i~1, . . . ,l and j~1, . . . ,

nmax.

N Set the re-encryption key as rkuid?(M,p)~(R1,R2,fRi,jgi[½1,l�,j[½1,nmax�
).

ReEnc(cph,param,rkuid?(M,p)): Given an original encrypted keyword

cph~(C1,C2) and the re-encryption key rkuid?(M,p), the algorithm computes

C’2~CR1
2 and re-encrypts cph to

cphR~((M,p),C1,C’2,R2,fRi,jgi[½1,l�,j[½1,nmax �
):

TokenGen(skuid,kw): This algorithm performs as same as TokenGen algorithm in

KP - ABRKS.

TokenGenR(sk,kw): Given credentials sk, this algorithm computes

D’~e0(H(kw),D), L’j~e0(H(kw),Lj) for j~1, . . . ,nmax and D’x~e0(H(kw),Dx) for

x[S. It sets the token for the keyword kw over re-encrypted keywords as

tokenR~(S,D’,fL’jgj[½1,nmax�
,fD’xgx[S):

Search(token,cph): This algorithm performs the same as Search algorithm in KP -

ABRKS.

SearchR(tokenR,cphR): Given the re-encrypted keyword cphR and a token

tokenR generated by the data users, the search can be done as follows:

N If the attribute set S associated with tokenR satisfies the access control policy

specified by (M,p) associated with cphR, compute ci such that

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 13 / 24

P
p(i) [S ciMi~(1,0, . . . ,0), and let

K~e1(R2,D’)=(P
j~1,...,nmax

e1(P
p(i) [S

R
ci
i,j,L’j)) P

p [S
e1(R2,D’p(i)):

If e2(K,C1)~C’2, output 1 and 0 otherwise.

N Otherwise, output 0.

Correctness

The correctness of the CP-ABRKS scheme can be verified similar to that of KP-

ABRKS scheme.

Discussion

KP - ABRKS Security

Theorem 1

Assume that 4-MDDH assumption holds, our KP-ABRKS scheme achieves selective

security against chosen-keyword attack in the random oracle model.

Proof: The proof strategy is to reduce the security of our construction to the

hardness of 4-MDDH assumption. That is, we show that if there exists a

probabilistic polynomial time adversary A breaking selective security game of KP-

ABRKS against chosen-keyword attack with a non-negligible advantage E, then we

can simulate a challenger solving 4-MDDH problem with a non-negligible

advantage (1=ez1=qT)
E
2, where qT is a polynomial large number, which should be

larger than the number of oracle queries for OReEnc,Otoken and OtokenR .

Given an instance of 4-MDDH problem (0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z), where

a,b,c,w,r/
R
Zp are unknown, the challenger simulates the game as follows:

Setup

A selects a set of corrupted users denoted by CoList and an attribute set S�, and

sends them to the challenger. The challenger generates the public parameters and

master key as follows:

N Given the attribute set S�, let w(y)~yMax-jS�j:Pat[S� (y{H1(at)), which can be

rewritten as w(y)~
PMax

j~0 wjy
j, where wj is the coefficient of yj and therefore

wj~0 for j~0, . . . ,Max-jS�j.

N Select Q0, . . . ,QMax/
R
Zp, and define Q(y)~

PMax
j~0 Qjy

j.

N Let hj~
awjzQj
0 ,0ƒjƒMax, and define Q(y)~

aw(y)zQ(y)
0 ~P

Max
j~0

(awjzQj)y
j

0 .

N The public parameters is set to

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,H,H1,h0, . . . ,hMax),

by implicitly setting the master private key mk~(a,b).

Moreover, the challenger simulates the oracles H,H1 as follows:

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 14 / 24

N OH(kw): Given a keyword kw, it proceeds as follows:

- If kw has not been queried before, then select ai/
R
Zp and toss a random

coin ci[f0,1g with the probability that Pr½ci~0�~1=(qTz1), where qT is

a polynomial large number. We require that qT should be larger than the

number of oracle queries for OReEnc,Otoken and OtokenR . If ci~0, then

compute H(kw)/ w
0

ai
0 ; Otherwise, compute H(kw)/ ai

0 . Add

(kw,ai,H(kw),ci) to LH and return H(kw).

- Otherwise, retrieve H(kw) from LH with respect to kw and return H(kw).

N OH1
(at): If the attribute at has not been queried before, select u/

R
Zp, set

H1(at)~u, and add (at,H1(at)) to the list LH1
. Otherwise, retrieve H1(at) from

LH1
with respect to at. Eventually, it returns H1(at).

Phase 1

A can query the following oracles in polynomially many times:

N Opk,sk(uid): Given a user identity uid, the challenger proceeds as follows:

- If uid has been queried before, retrieve (skuid,pkuid) from LU with respect

to uid and return (skuid,pkuid).

- Otherwise, select xuid /
R
Zp. If uid[CoList, compute skuid/xuid and

pkuid/
xuid
0 ; otherwise set skuid~\ and pkuid/

cxuid
0 . Finally add

(uid,skuid,pkuid) to LU and return (skuid,pkuid).

N OKeyGen(P): Given an access control policy P specified by (M,p), the

challenger proceeds as follows:

- If F(S�,P)~1, then abort.

- Otherwise, because S� does not satisfy the access structure (M,p),

there exists a vector w~(w1, . . . ,wk)[Z
k
p such that w1~1 and

Vp(i)[S�,Mi
:w~0. C h o o s e u’i/

R
Zp f o r i~2, . . . ,k, a n d s e t

v
0
~(0,u’2, . . . ,u’k). By implicitly setting v~abwzv’, it generates Ai and

Bi as follows:

* If p(i)[S�, select ri/
R
Zp compute lp(i)~Mi

:v0~Mi
:v, and set Ai~

lp(i)Q(H1(p(i)))
ri and Bi~

ri .

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 15 / 24

* Otherwise, select r’i/
R
Zp and compute

Ai~
l
p(i)Q(H1(p(i)))

ri

~
Mi

:½abwzv
0�: ½aw(H1(p(i)))zQ(H1(p(i)))�ri

~

Mi
:v0zaw(H1(p(i)))r’izQ(H1(p(i)))r’i

bQ(H1(p(i)))Mi
:w=w(H1(p(i)))

Bi~
{bMi

:w=w(H1(p(i)))zr’i

by implicitly setting ri~r’i{bMi
:w=w(H1(p(i))).

N Ork(uid,S): Given a user identity uid and an attribute set S, the challenger

proceeds as follows:

- If S(= S� ^ uid [= CoList, then abort.

- If uid[CoList, choose a random d[Zp and set

rkuid?S~(R1~d=xuid,R2~
d
0,fRatj

gatj[S),

where d/
R
Zp and Ratj

~Q(H1(atj))
d.

- Otherwise, choose d’/
R
Zp and set

rkuid?S~(R1~cd’=cxuid~d’=xuid,R2~
cd’
0 ,fRatj

gatj[S),

by implicitly letting d~cd’. Note that Ratj
~Q(H1(atj))

cd’
~P

Max
j~0 (

c
0)

d’Qjy
j
,

since Q(H1(atj))~P
Max
j~0

(awjzQj)y
j

0 ~P
Max
j~0

Qjy
j

0 .

N OReEnc(uid,S,cph): Given a user identity uid, an original encrypted keyword

cph and an attribute set S, the challenger proceeds as follows:

- If uid[CoList _ (S(S� ^ uid [= CoList), it queriesOrk with (uid, S) to get the

re-encryption key rkuid?S and computes cphR/ReEnc(cph,param,rkuid?S).

- Otherwise, if there exists kwi in LH such that ci~1 and e2(e1(e0

(a
0,

b
0),

c
0),

r
0)

aixuid~C2, it selects d/
R
Zp, sets C’2~e2(e1(e0(

a
0,

b
0)

r
0), 0)

aid, R2~
d
0 and Ratj~Q(H1(atj))

d for each atj[S, and returns

cphR~(C1,C’2,R2,fRatjgatj[S);

- Otherwise, it reports failure and terminates.

N Otoken(uid,kw): Given a user identity uid and a keyword kw, the challenger

proceeds as follows:

- It queries OH with kw to obtain (ai,H(kw),ci).

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 16 / 24

- If ci~1, set token~H(kw)skuid~(ai
0)

skuid
~pkaiuid;

- If ci~0 ^ uid[CoList, set token~H(kw)skuid~ wxuid
0 ;

- Otherwise, report failure and terminate.

N OtokenR(P,kw): Given an access control policy P and a keyword kw, the

challenger proceeds as follows:

- If ci~1, select u2,u3, . . . ,uk/
R
Zp, implicitly set v~(ab,u2, . . . ,uk) and

lp(i)~Miv for i~1, . . . ,l. Compute for i~1, . . . ,l,

A’i~e0(H(kw),Ai)

~e0(
lp(i)
0 Q(H1(p(i)))

ri ,
ai
0)

~e0(
a
0,

b
0)

Mi1aie0(0, 0)

Pk
j~2

Mijujai e0(Q(H1(p(i)))
ri ,

ai
0),

B’i~e0(H(kw),Bi)~e0(0, 0)
riai :

- If ci~0 ^ F(S�,P)~0, make a query P on OKeyGen to get sk, and compute

A’i~e0(H(kw),Ai) and B’i~e0(H(kw),Bi) for i~1, . . . ,l.

- Otherwise, report failure and terminate.

Challenge

A selects an uncorrupted user uid�[=CoList and two keywords (kw0,kw1) of equal

length. Given kw0 and kw1, if c0~1 ^ c1~1, the challenger reports failure and

terminates; otherwise, let s be a bit which is selected as follows:

N If c0~1 and c1~0, then set s~1,

N If c0~0 and c1~1, then set s~0,

N Otherwise, let s/
R
f0,1g.

The challenger responses A with cph�~(C1~
r,C2~Zaixuid).

Phase 2

A executes the same as Phase 1.

Guess

A outputs a guess s’. The challenger outputs Z~ abcwr
3 if s’~s; Otherwise, it

outputs Z= abcwr
3 .

This completes the simulation. In what follows let us analyze the probability

that the challenger will not report failure and terminate due to the following two

independent events:

N When A queries Otoken,OtokenR and OReEnc, it happens that ci~0 for some

keyword. Note that for each query with respect to some keyword,

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 17 / 24

Pr½ci~0�~1=(qTz1). Therefore, as A makes at most qT oracle queries, the

probability of the challenger not reporting failure and terminating can be

(1{1=(qTz1))qT§1=e.

N When A presents kw0 and kw1, i t happens that c0~1 and

c1~1. S i n c e Pr½ci~0�~1=(qTz1) f o r i~0,1, w e h a v e

Pr½c0~1 ^ c1~1�~(1{1=(qTz1))2ƒ1{1=qT . Hence, the probability that

the challenger has no failure is at least 1=qT .

Therefore the challenger simulates without failure with the probability at least

1=ez1=qT .

Now let us analyze the advantage of the challenger solving 4-MDDH problem

on condition that the simulation completes perfectly. In the challenge phase, if

Z~ abcwr
3 , then cph� is indeed a valid ciphertext of kws. Then the probability of A

outputting s~s’ is
1

2
zE. If Z is an element randomly selected from G3, the

probability of A outputting s~s’ is
1

2
. Therefore, the probability of the

challenger correctly guessing Z~
? abcwr

3 is
1

2
(
1

2
zE)z

1

2

1

2
~

1

2
z

E
2
. That is, the

challenger solves the 4-MDDH problem with advantage (1=ez1=qT)
E
2
if A wins

the selective security game with advantage E. %

CP - ABRKS Security

Security of the CP - ABRKS scheme can be proven as the following theorem.

Theorem 2

Assume that 4-MDDH assumption holds, our CP-ABRKS scheme achieves selective

security against chosen-keyword attack in the random oracle model.

Proof: The main idea is to reduce the security of our CP-ABRKS to the hardness

of 4-MDDH assumption. That’s, we show that if there exists a probabilistic

polynomial time adversary A breaking the selective security game of our CP-

ABRKS scheme against chosen-keyword attack with a non-negligible advantage E,
then we can construct a challenger solving 4-MDDH problem with a non-

negligible advantage (1=ez1=qT)
E
2
, where qT is a polynomial large number, which

should be larger than the number of oracle queries for OReEnc,Otoken and OtokenR .

In this part, P(P� means P is a substructure of P�.

Given an instance of 4-MDDH problem (0,
a
0,

b
0,

c
0,

w
0 ,

r
0,Z) where

a,b,c,w,r/Zp are unknown, the challenger simulates the game as follows:

Setup

A selects a set of corrupted users denoted by CoList and an access control policy

(M�,p�), where M is an l|k� matrix, and sends them to the challenger. The

challenger generates the public parameters and master key as follows:

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 18 / 24

N Given the access control policy (M�,p�), for each (j,x) where 1ƒxƒN and

1ƒjƒnmax, choose zj,x /
R
Zp. If there exists an i such that p�(i)~x and iƒk�,

let hj,x~
zj,xzaM�

i,j

0 ; Otherwise, let hj,x~
zj,x
0 .

N The public parameters is set to

param~(e0,e1,e2,G0,G1,G2,G3, 0, 1, 2,
a
0,

b
0,

h1,1,h1,2, . . . ,hnmax ,N ,H),

by implicitly setting the master private key mk~(a,b).

The random oracle OH is simulated as same as the proof of Theorem 1.

Phase 1

A can query the following oracles in polynomial many times:

N Opk,sk(uid): Same as the proof of Theorem 1.

N OKeyGen(S): Given an attribute set S, the challenger proceeds as follows:

- If F(S,P�)~1, then abort.

- Otherwise, because S does not satisfy the access structure (M�,p�),

there exists a vector w~(w1, . . . ,wnmax
)[Znmax

p such that w1~{1

and Vp�(i)[S,M�
i
:w~0. Note that we simply let wj~0 and M�

i,j~0

for k�vjƒnmax. Compute D~ ab
0

at1
0 ~

ar1
0 and Lj~

rj(b)wj for

j~1, . . . ,nmax, by choosing r1, . . . ,rnmax
/
R
Zp and implicitly defining

tj~rjzwjb, and set Dx for each x[S as follows:

* If there exists i such that p�(i)~x, set

Dx~ P
nmax

j~1
h
tj
j,x

~ P
nmax

j~1
g
(zj,xzaM�

i,j
)(rjzwjb)

0

~ P
nmax

j~1
g
zj,xrjzzj,xwjbzaM�

i,j
rj

0 :

* Otherwise set Dx~P
nmax

j~1 L
zj,x
j .

N Ork(uid,P): Given a user identity uid and an access control policy P~(M,p),

where M is an l|k matrix, the challenger proceeds as follows:

- If P(= P� ^ uid[=CoList, then abort.

- If uid[CoList, choose random elements d,u2, . . . ,unmax
/
R
Zp, let

~u~(u1~d,u2, . . . ,unmax
)[Znmax

p , and set

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 19 / 24

rkuid?P~(R1~d=xuid,R2~
d
0,fRi,jgi~1,...,l,j~1,...,nmax

),

where Ri,j~
Mi,juj
0 .

- Otherwise, we consider P~P� first. Choose random elements

d’,u’2, . . . ,u’nmax
/
R
Zp and set

rkuid?P~(R1~cd’=cxuid~d’=xuid,R2~
cd’
0 ,fRi,jgi~1,...,l,j~1,...,nmax

),

where

Ri,j~

aM�
i,j
uj

0 h{d
j,p�(i)

~

aM�
i,j
(cd’zv’j)

0 (
aM�

i,j
zzp�(i),j

0){cd’

~
u’j
0 (c

0)
{d’zp�(i),j ,

by implicitly defining d~cd’ and~u~(u1~cd’,cd’zu’2, . . . ,cd’zu’nmax)[
Z
nmax
p (We set u’1~0). Note that the form of our re-encryption key is

similar to that of the ciphertext of Water’s CP-ABE[17]. So if

P~(M,p)(P�
~(M�,p�), the re-encryption key can be derived from

(M�,p�) through the technology of ciphertext delegation proposed in [30].

N OReEnc(uid,S,cph): Given a user identity uid, an original encrypted keyword

cph and an access control policy P, the challenger proceeds as follows:

- If uid[CoList _ (P[P� ^ uid[=CoList), it queriesOrk with (uid, P) to get the

re-encryption key rkuid?P and computes cphR/ReEnc(cph,param,rkuid?P).

- Otherwise, if there exists kwi in LH such that ci~1 and e2
(e1(e0(

a
0,

b
0),

c
0),

r
0)

aixuid
~C2, it picks d[Zp, sets C’2~e2(e1(e0(

a
0,

b
0)

r
0),

0)
aid, R2~gd0 and Ri,j~

aMi,juj
0 h{d

j,p(i) f o r e a ch i~1, . . . ,N and

j~1, . . . ,nmax, and returns cphR~(C1,C’2,R2,fRi,jgi[½1,N�,j[½1,nmax�
);

- Otherwise, it reports failure and terminates.

N Otoken(uid,kw): Same as the proof of Theorem 1.

N OtokenR(S,kw): Given an attribute set S and a keyword kw, the challenger

proceeds as follows:

- If ci~1, select t1,t2, . . . ,tnmax
/
R
Zp. Compute

D’~e0(
ab
0

at1
0 , ai)

~e0(
a
0,

b
0)

aie0(
a
0, 0)

t1ai ,

for j~1, . . . ,nmax,

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 20 / 24

L’j~e0(H(kw),Lj)

~e0(0, 0)
tjai ,

and for each x[S,

D̂x~e0(Dx,H(kw))

~e0(P
nmax

j~1
h
tj
j,x,

ai
0):

- If ci~0 ^ F(S�,P)~0, make a query S on OKeyGen to get sk, and compute

D’~e0(H(kw),D), L’j~e0(H(kw),Lj) f o r j~1, . . . ,nmax a n d

D’x~e0(H(kw),Dx) for x[S.
- Otherwise, report failure and terminate.

Challenge

A selects an uncorrupted user uid�=[CoList and two equal-length keywords

(kw0,kw1). If c0~1 ^ c1~1, the challenger reports failure and terminates;

otherwise, let s be a bit which is selected as follows:

N If c0~1 and c1~0, then set s~1,

N If c0~0 and c1~1, then set s~0,

N Otherwise, let s/
R
f0,1g.

The challenger responses A with cph�~(C1~
r,C2~Zaixuid).

Phase 2

A executes the same as Phase 1.

Guess

A outputs a guess s’. The challenger outputs Z~ abcwr
3 if s’~s. Otherwise, it

outputs Z= abcwr
3 .

This completes the simulation. We can show that the challenger solves the 4-

MDDH problem with advantage (1=ez1=qT)
E
2
if A wins the selective security

game of CP-ABRKS with advantage E similar to the analysis of Theorem 1. %

Application

Our ABRKS schemes fit very well for many applications in the cloud computing

environment. One of the prominent applications is about Personal Health

Records (PHR) for patients: The data owner encrypted his own health records and

outsourced these encrypted records to the cloud which hosts the PHR service. The

data owner always needs to fetch the related health records upon some keywords

since it is too costly to download all encrypted records and decrypt them to get

desired records. In addition, the data owner might need to share these encrypted

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 21 / 24

health records with some professionals, for example, heart doctors in Emergency

Room. In order to attain this goal, the data owner has to delegate the search

capability. Fig. 3 shows the sequence diagram that how the entities in the PHR

application make use of the proposed ABRKS schemes to achieve these goals.

Conclusions

In this paper, we propose a novel notion called attribute-based proxy re-

encryption with keyword search (ABRKS). Our solutions can be used in the cloud

setting, such that (1) a data owner can delegate the search capability to a group of

users by specifying fine-grained access control policies; (2) the data owner and

data users can delegate the tedious re-encryption and search process to the cloud

without compromising data confidentiality.

Fig. 3. Sequence diagram for using ABRKS in the application where the data owner shares his medical records with some professionals such that

only authorized professionals can retrieve medical records of their interests.

doi:10.1371/journal.pone.0116325.g003

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 22 / 24

Author Contributions

Conceived and designed the experiments: YFS. Performed the experiments: SQ.

Analyzed the data: YFS SQ. Contributed reagents/materials/analysis tools: JQL

ZH. Wrote the paper: YFS RZ QJZ.

References

1. Zhang S, Zhang XW, Ou XM (2014) After we knew it: empirical study and modeling of cost-effectiveness

of exploiting prevalent known vulnerabilities across iaas cloud. In: 9th ACM Symposium on Information,

Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014. pp. 317–

328.

2. Zhang S, Caragea D, Ou XM (2011) An empirical study on using the national vulnerability database to

predict software vulnerabilities. In: Database and Expert Systems Applications - 22nd International

Conference, DEXA 2011, Toulouse, France, August 29 - September 2, 2011. Proceedings, Part I. pp.

217–231.

3. Huang HQ, Zhang S, Ou XM, Prakash A, Sakallah KA (2011) Distilling critical attack graph surface

iteratively through minimum-cost SAT solving. In: Twenty-Seventh Annual Computer Security

Applications Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011. pp. 31–40.

4. Ding S, Yang SL, Zhang YT, Liang CY, Xia CY (2014) Combining qos prediction and customer

satisfaction estimation to solve cloud service trustworthiness evaluation problems. Knowl-Based Syst

56: 216–225.

5. Ding S, Xia CY, Zhou KL, Yang SL, Shang JS (2014) Decision support for personalized cloud service

selection through multi-attribute trustworthiness evaluation. PloS one 9(6): e97762.

6. Shao J, Cao ZF, Liang XH, Lin H (2010) Proxy re-encryption with keyword search. Information Sciences

180: 2576–2587.

7. Yau WC, Phan RCW, Heng SH, Goi BM (2010) Proxy re-encryption with keyword search: new

definitions and algorithms. In: Security Technology, Disaster Recovery and Business Continuity,

Springer. pp. 149–160.

8. Fang LM, Susilo W, Ge CP, Wang JD (2012) Chosen-ciphertext secure anonymous conditional proxy

re-encryption with keyword search. Theoretical Computer Science 462: 39–58.

9. Wang XA, Huang XY, Yang XY, Liu LF, Wu XG (2012) Further observation on proxy re-encryption with

keyword search. Journal of Systems and Software 85: 643–654.

10. Zhong WD, Wang XA, Wang ZQ, Ding Y (2011) Proxy re-encryption with keyword search from

anonymous conditional proxy re-encryption. In: Computational Intelligence and Security (CIS), 2011

Seventh International Conference on. IEEE, pp. 969–973.

11. Chen X, Li Y (2011) Efficient proxy re-encryption with private keyword searching in untrusted storage.

International Journal of Computer Network and Information Security (IJCNIS) 3: 50–56.

12. Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: Advances in Cryptology–EUROCRYPT

2005, Springer. pp. 457–473.

13. Attrapadung N, Libert B, De Panafieu E (2011) Expressive key-policy attribute-based encryption with

constant-size ciphertexts. In: Public Key Cryptography–PKC 2011, Springer. pp. 90–108.

14. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access

control of encrypted data. In: Proceedings of the 13th ACM conference on Computer and

communications security. ACM, pp. 89–98.

15. Rao YS, Dutta R (2013) Computationally efficient expressive key-policy attribute based encryption

schemes with constant-size ciphertext. In: Information and Communications Security, Springer. pp. 346–

362.

16. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. In: Security and

Privacy, 2007. SP907. IEEE Symposium on. IEEE, pp. 321–334.

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 23 / 24

17. Waters B (2011) Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably

secure realization. In: Public Key Cryptography–PKC 2011, Springer. pp. 53–70.

18. Ibraimi L, Tang Q, Hartel P, Jonker W (2009) Efficient and provable secure ciphertext-policy attribute-

based encryption schemes. In: Information Security Practice and Experience, Springer. pp. 1–12.

19. Zheng QJ, Xu SH, Ateniese G (2014) VABKS: verifiable attribute-based keyword search over

outsourced encrypted data. In: 2014 IEEE Conference on Computer Communikations, INFOCOM 2014,

Toronto, Canada, April 27 - May 2, 2014. pp. 522–530.

20. Sun WH, Yu SC, Lou WJ, Hou YT, Li H (2014) Protecting your right: Attribute-based keyword search

with fine-grained owner-enforced search authorization in the cloud. In: 2014 IEEE Conference on

Computer Communikations, INFOCOM 2014, Toronto, Canada, April 27 - May 2, 2014. pp. 226–234.

21. Guo SQ, Zeng YP, Wei J, Xu QL (2008) Attribute-based re-encryption scheme in the standard model.

Wuhan University Journal of Natural Sciences 13: 621–625.

22. Li KY, Wang JF, Zhang YH, Ma H (2014) Key policy attribute-based proxy re-encryption and rcca secure

scheme. Journal of Internet Services and Information Security (JISIS) 4: 70–82.

23. Liang XH, Cao ZF, Lin H, Shao J (2009) Attribute based proxy re-encryption with delegating

capabilities. In: Proceedings of the 4th International Symposium on Information, Computer, and

Communications Security. ACM, pp. 276–286.

24. Luo S, Hu JB, Chen Z (2010) Ciphertext policy attribute-based proxy re-encryption. In: Information and

Communications Security, Springer. pp. 401–415.

25. Mizuno T, Doi H (2011) Hybrid proxy re-encryption scheme for attribute-based encryption. In:

Information Security and Cryptology. Springer, pp. 288–302.

26. Liang KT, Fang LM, Susilo W, Wong DS (2013) A ciphertext-policy attribute-based proxy re-encryption

with chosen-ciphertext security. In: Intelligent Networking and Collaborative Systems (INCoS), 2013 5th

International Conference on. IEEE, pp. 552–559.

27. Boneh D, Silverberg A (2003) Applications of multilinear forms to cryptography. Contemporary

Mathematics 324: 71–90.

28. Garg S, Gentry C, Halevi S (2013) Candidate multilinear maps from ideal lattices. In: Advances in

Cryptology–EUROCRYPT 2013, Springer. pp. 1–17.

29. Coron JS, Lepoint T, Tibouchi M (2013) Practical multilinear maps over the integers. In: Advances in

Cryptology–CRYPTO 2013, Springer. pp. 476–493.

30. Sahai A, Seyalioglu H, Waters B (2012) Dynamic credentials and ciphertext delegation for attribute-

based encryption. In: Advances in Cryptology–CRYPTO 2012, Springer. pp. 199–217.

ABRKS

PLOS ONE | DOI:10.1371/journal.pone.0116325 December 30, 2014 24 / 24

	Equation equ1
	Equation equ2
	Equation equ3
	Equation equ4
	Equation equ5
	Equation equ6
	Section_1
	Equation equ7
	Section_2
	Equation equ8
	Equation equ9
	Equation equ10
	Equation equ11
	Section_3
	Equation equ12
	Section_4
	Section_5
	Section_6
	Section_7
	Section_8
	Section_9
	Section_10
	Equation equ28
	Equation equ29
	Equation equ30
	Equation equ31
	Equation equ32
	Equation equ33
	Equation equ34
	Equation equ35
	Equation equ36
	Equation equ37
	Equation equ38
	Equation equ39
	Equation equ40
	Equation equ41
	Equation equ42
	Equation equ43
	Equation equ44
	Equation equ45
	Equation equ46
	Equation equ47
	Section_11
	Equation equ48
	Equation equ49
	Equation equ50
	Equation equ51
	Equation equ52
	Equation equ53
	Equation equ54
	Equation equ55
	Equation equ56
	Equation equ57
	Equation equ58
	Section_12
	TABLE_1
	Equation equ13
	Equation equ14
	Equation equ15
	Equation equ16
	Equation equ17
	Equation equ18
	Equation equ19
	Equation equ20
	Equation equ21
	Equation equ22
	Equation equ23
	Equation equ24
	Equation equ25
	Equation equ26
	Equation equ27
	Section_13
	Equation equ59
	Equation equ60
	Equation equ61
	Equation equ62
	Equation equ63
	Equation equ64
	Equation equ65
	Equation equ66
	Equation equ67
	Equation equ68
	Equation equ69
	Equation equ70
	Equation equ71
	Equation equ72
	Equation equ73
	Equation equ74
	Equation equ75
	Equation equ76
	Equation equ77
	Equation equ790
	Equation equ79
	Equation equ80
	Equation equ81
	Equation equ82
	Equation equ83
	Equation equ84
	Equation equ85
	Equation equ86
	Equation equ87
	Equation equ88
	Equation equ89
	Equation equ90
	Equation equ91
	Equation equ92
	Equation equ93
	Equation equ94
	Equation equ95
	Equation equ96
	Equation equ97
	Equation equ98
	Equation equ99
	Equation equ100
	Section_14
	Section_15
	Section_16
	Equation equ101
	Equation equ102
	Equation equ103
	Equation equ104
	Equation equ105
	Equation equ106
	Equation equ107
	Equation equ108
	Equation equ109
	Equation equ110
	Equation equ111
	Equation equ112
	Equation equ113
	Equation equ114
	Equation equ115
	Equation equ116
	Equation equ117
	Equation equ118
	Equation equ119
	Equation equ120
	Equation equ121
	Equation equ122
	Equation equ123
	Equation equ124
	Equation equ125
	Equation equ126
	Equation equ127
	Equation equ128
	Figure 1
	Equation equ129
	Equation equ130
	Equation equ131
	Equation equ132
	Equation equ133
	Equation equ134
	Equation equ135
	Equation equ136
	Equation equ137
	Equation equ138
	Equation equ139
	Equation equ140
	Equation equ141
	Equation equ142
	Equation equ143
	Equation equ144
	Equation equ145
	Equation equ146
	Equation equ147
	Equation equ148
	Equation equ149
	Equation equ150
	Equation equ151
	Equation equ152
	Equation equ153
	Equation equ154
	Equation equ155
	Equation equ156
	Equation equ157
	Equation equ158
	Equation equ159
	Equation equ160
	Equation equ161
	Equation equ162
	Equation equ163
	Equation equ164
	Equation equ165
	Equation equ166
	Equation equ167
	Equation equ168
	Equation equ169
	Equation equ170
	Equation equ171
	Equation equ172
	Equation equ173
	Equation equ174
	Equation equ175
	Equation equ176
	Equation equ177
	Equation equ178
	Equation equ179
	Equation equ180
	Equation equ181
	Equation equ182
	Equation equ183
	Equation equ184
	Section_17
	Equation equ185
	Equation equ186
	Equation equ187
	Section_18
	Equation equ188
	Equation equ189
	Equation equ190
	Equation equ191
	Equation equ192
	Equation equ193
	Equation equ194
	Equation equ195
	Section_19
	Equation equ196
	Equation equ197
	Equation equ198
	Equation equ199
	Equation equ200
	Equation equ201
	Equation equ202
	Equation equ203
	Equation equ204
	Equation equ205
	Equation equ206
	Equation equ207
	Equation equ208
	Equation equ209
	Equation equ210
	Equation equ211
	Equation equ212
	Equation equ213
	Equation equ214
	Equation equ215
	Equation equ216
	Equation equ217
	Equation equ218
	Equation equ219
	Equation equ220
	Equation equ221
	Equation equ222
	Equation equ223
	Equation equ224
	Equation equ225
	Equation equ226
	Equation equ227
	Equation equ228
	Equation equ229
	Equation equ230
	Equation equ231
	Equation equ232
	Equation equ233
	Equation equ234
	Equation equ235
	Equation equ236
	Equation equ237
	Equation equ238
	Equation equ239
	Section_20
	Equation equ240
	Equation equ241
	Equation equ242
	Equation equ243
	Equation equ244
	Equation equ245
	Equation equ246
	Equation equ247
	Equation equ248
	Equation equ249
	Equation equ250
	Equation equ251
	Equation equ252
	Equation equ253
	Equation equ254
	Section_21
	Equation equ255
	Equation equ256
	Equation equ257
	Equation equ258
	Equation equ259
	Equation equ260
	Equation equ261
	Equation equ262
	Section_22
	Equation equ263
	Equation equ264
	Equation equ265
	Equation equ266
	Section_23
	Equation equ267
	Equation equ268
	Equation equ269
	Equation equ270
	Section_24
	Section_25
	Equation equ271
	Section_26
	Equation equ272
	Equation equ273
	Equation equ274
	Equation equ275
	Equation equ276
	Equation equ277
	Equation equ278
	Equation equ279
	Equation equ280
	Equation equ281
	Equation equ282
	Equation equ283
	Equation equ284
	Equation equ285
	Equation equ286
	Equation equ287
	Equation equ288
	Equation equ289
	Equation equ290
	Equation equ291
	Equation equ292
	Equation equ293
	Equation equ294
	Equation equ295
	Equation equ296
	Equation equ297
	Equation equ298
	Equation equ299
	Equation equ300
	Equation equ301
	Equation equ302
	Equation equ303
	Equation equ304
	Equation equ305
	Equation equ306
	Equation equ307
	Equation equ308
	Equation equ309
	Equation equ310
	Equation equ311
	Equation equ312
	Equation equ313
	Equation equ314
	Figure 2
	Equation equ315
	Equation equ316
	Equation equ317
	Equation equ318
	Equation equ319
	Equation equ320
	Equation equ321
	Equation equ322
	Equation equ323
	Equation equ324
	Equation equ325
	Equation equ326
	Equation equ327
	Equation equ328
	Equation equ329
	Equation equ330
	Equation equ331
	Equation equ332
	Equation equ333
	Equation equ334
	Equation equ335
	Equation equ336
	Equation equ337
	Equation equ338
	Equation equ339
	Equation equ340
	Equation equ341
	Equation equ342
	Equation equ343
	Equation equ344
	Equation equ345
	Equation equ346
	Equation equ347
	Equation equ348
	Equation equ349
	Equation equ350
	Equation equ351
	Equation equ352
	Equation equ353
	Equation equ354
	Equation equ355
	Equation equ356
	Equation equ357
	Equation equ358
	Equation equ359
	Equation equ360
	Equation equ361
	Equation equ362
	Section_27
	Equation equ363
	Equation equ364
	Equation equ365
	Equation equ366
	Equation equ367
	Equation equ368
	Equation equ369
	Equation equ370
	Equation equ371
	Section_28
	Equation equ372
	Equation equ373
	Equation equ374
	Equation equ375
	Equation equ376
	Equation equ377
	Equation equ378
	Equation equ379
	Equation equ380
	Equation equ381
	Equation equ382
	Equation equ383
	Equation equ384
	Equation equ385
	Equation equ386
	Equation equ387
	Equation equ388
	Equation equ389
	Equation equ390
	Equation equ391
	Equation equ392
	Equation equ393
	Equation equ394
	Equation equ395
	Equation equ396
	Equation equ397
	Equation equ398
	Equation equ399
	Equation equ400
	Equation equ401
	Equation equ402
	Equation equ403
	Equation equ404
	Equation equ405
	Equation equ406
	Equation equ407
	Equation equ408
	Equation equ409
	Equation equ410
	Equation equ411
	Equation equ412
	Equation equ413
	Equation equ414
	Equation equ415
	Equation equ416
	Equation equ417
	Equation equ418
	Equation equ419
	Equation equ420
	Equation equ421
	Equation equ422
	Equation equ423
	Equation equ424
	Equation equ425
	Equation equ426
	Equation equ427
	Equation equ428
	Equation equ429
	Equation equ430
	Equation equ431
	Equation equ432
	Equation equ433
	Equation equ434
	Equation equ435
	Equation equ436
	Equation equ437
	Equation equ438
	Equation equ439
	Equation equ440
	Equation equ441
	Equation equ442
	Equation equ443
	Equation equ444
	Equation equ445
	Equation equ446
	Equation equ447
	Equation equ448
	Equation equ449
	Equation equ450
	Equation equ451
	Equation equ452
	Equation equ453
	Equation equ454
	Equation equ455
	Equation equ456
	Equation equ457
	Equation equ458
	Equation equ459
	Equation equ460
	Equation equ461
	Equation equ462
	Section_29
	Equation equ463
	Equation equ464
	Equation equ465
	Equation equ466
	Section_30
	Section_31
	Equation equ467
	Equation equ468
	Section_32
	Equation equ469
	Equation equ470
	Equation equ471
	Equation equ472
	Equation equ473
	Equation equ474
	Equation equ475
	Equation equ476
	Equation equ477
	Equation equ478
	Equation equ479
	Equation equ480
	Equation equ481
	Equation equ482
	Equation equ483
	Equation equ484
	Section_33
	Equation equ485
	Equation equ486
	Equation equ487
	Equation equ488
	Equation equ489
	Equation equ490
	Equation equ491
	Equation equ492
	Equation equ493
	Equation equ494
	Equation equ495
	Equation equ496
	Equation equ497
	Equation equ498
	Equation equ499
	Equation equ500
	Equation equ501
	Equation equ502
	Equation equ503
	Equation equ504
	Equation equ505
	Equation equ506
	Equation equ507
	Equation equ508
	Equation equ509
	Equation equ510
	Equation equ511
	Equation equ512
	Equation equ513
	Equation equ514
	Equation equ515
	Equation equ516
	Equation equ517
	Equation equ518
	Equation equ519
	Equation equ520
	Equation equ521
	Equation equ522
	Equation equ523
	Equation equ524
	Equation equ525
	Equation equ526
	Equation equ527
	Equation equ528
	Equation equ529
	Equation equ530
	Equation equ531
	Section_34
	Equation equ532
	Equation equ533
	Equation equ534
	Equation equ535
	Equation equ536
	Equation equ537
	Equation equ538
	Equation equ539
	Equation equ540
	Equation equ541
	Equation equ542
	Equation equ543
	Equation equ544
	Equation equ545
	Equation equ546
	Equation equ547
	Equation equ548
	Equation equ549
	Equation equ550
	Equation equ551
	Equation equ552
	Equation equ553
	Equation equ554
	Equation equ555
	Equation equ556
	Equation equ557
	Equation equ558
	Equation equ559
	Equation equ560
	Equation equ561
	Equation equ562
	Equation equ563
	Equation equ564
	Equation equ565
	Equation equ566
	Equation equ567
	Equation equ568
	Equation equ569
	Equation equ570
	Equation equ571
	Equation equ572
	Equation equ573
	Equation equ574
	Equation equ575
	Equation equ576
	Equation equ577
	Equation equ578
	Equation equ579
	Equation equ580
	Equation equ581
	Equation equ582
	Equation equ583
	Equation equ584
	Equation equ585
	Equation equ586
	Equation equ587
	Equation equ588
	Equation equ589
	Equation equ590
	Equation equ591
	Equation equ592
	Equation equ593
	Equation equ594
	Equation equ595
	Equation equ596
	Equation equ597
	Equation equ598
	Equation equ599
	Equation equ600
	Equation equ601
	Equation equ602
	Equation equ603
	Equation equ604
	Equation equ605
	Equation equ606
	Equation equ607
	Equation equ608
	Equation equ609
	Equation equ610
	Equation equ611
	Equation equ612
	Equation equ613
	Equation equ614
	Equation equ615
	Equation equ616
	Equation equ617
	Equation equ618
	Equation equ619
	Equation equ620
	Equation equ621
	Equation equ622
	Equation equ623
	Equation equ624
	Equation equ625
	Equation equ626
	Equation equ627
	Equation equ628
	Equation equ629
	Equation equ630
	Equation equ631
	Equation equ632
	Equation equ633
	Equation equ634
	Section_35
	Equation equ635
	Equation equ636
	Equation equ637
	Equation equ638
	Equation equ639
	Equation equ640
	Equation equ641
	Equation equ642
	Equation equ643
	Equation equ644
	Equation equ645
	Equation equ646
	Equation equ647
	Equation equ648
	Equation equ649
	Equation equ650
	Section_36
	Equation equ651
	Section_37
	Equation equ652
	Equation equ653
	Equation equ654
	Equation equ655
	Equation equ656
	Equation equ657
	Equation equ658
	Equation equ659
	Equation equ660
	Equation equ661
	Equation equ662
	Equation equ663
	Equation equ664
	Equation equ665
	Equation equ666
	Equation equ667
	Equation equ668
	Equation equ669
	Equation equ670
	Equation equ671
	Equation equ672
	Equation equ673
	Equation equ674
	Equation equ675
	Equation equ676
	Equation equ677
	Equation equ678
	Equation equ679
	Equation equ680
	Equation equ681
	Equation equ682
	Equation equ683
	Equation equ684
	Equation equ685
	Equation equ686
	Equation equ687
	Equation equ688
	Equation equ689
	Equation equ690
	Equation equ691
	Equation equ692
	Equation equ693
	Section_38
	Equation equ694
	Equation equ695
	Equation equ696
	Equation equ697
	Section_39
	Equation equ698
	Equation equ699
	Equation equ700
	Equation equ701
	Equation equ702
	Equation equ703
	Equation equ704
	Equation equ705
	Equation equ706
	Equation equ707
	Equation equ708
	Equation equ709
	Equation equ710
	Equation equ711
	Equation equ712
	Equation equ713
	Equation equ714
	Equation equ715
	Equation equ716
	Equation equ717
	Equation equ718
	Section_40
	Equation equ719
	Equation equ720
	Equation equ721
	Equation equ722
	Equation equ723
	Equation equ724
	Equation equ725
	Equation equ726
	Equation equ727
	Equation equ728
	Equation equ729
	Equation equ730
	Equation equ731
	Equation equ732
	Equation equ733
	Equation equ734
	Equation equ735
	Equation equ736
	Section_41
	Equation equ737
	Equation equ738
	Equation equ739
	Equation equ740
	Equation equ741
	Equation equ742
	Equation equ743
	Equation equ744
	Equation equ745
	Equation equ746
	Equation equ747
	Equation equ748
	Equation equ749
	Equation equ750
	Equation equ751
	Equation equ752
	Equation equ753
	Equation equ754
	Equation equ755
	Equation equ756
	Equation equ757
	Equation equ758
	Equation equ759
	Equation equ760
	Equation equ761
	Equation equ762
	Equation equ763
	Equation equ764
	Equation equ765
	Equation equ766
	Equation equ767
	Equation equ768
	Equation equ769
	Equation equ770
	Equation equ771
	Equation equ772
	Equation equ773
	Equation equ774
	Equation equ775
	Equation equ776
	Equation equ777
	Equation equ778
	Equation equ779
	Equation equ780
	Equation equ781
	Equation equ782
	Equation equ783
	Equation equ784
	Equation equ785
	Equation equ786
	Equation equ787
	Equation equ788
	Equation equ789
	Equation equ790
	Equation equ791
	Equation equ792
	Equation equ793
	Equation equ794
	Equation equ795
	Equation equ796
	Equation equ797
	Equation equ798
	Equation equ799
	Equation equ800
	Equation equ801
	Equation equ802
	Equation equ803
	Equation equ804
	Equation equ805
	Equation equ806
	Equation equ807
	Equation equ808
	Equation equ809
	Equation equ810
	Equation equ811
	Equation equ812
	Equation equ813
	Equation equ814
	Equation equ815
	Equation equ816
	Equation equ817
	Equation equ818
	Equation equ819
	Equation equ820
	Equation equ821
	Equation equ822
	Section_42
	Equation equ823
	Equation equ824
	Equation equ825
	Equation equ826
	Equation equ827
	Equation equ828
	Equation equ829
	Equation equ830
	Equation equ831
	Equation equ832
	Equation equ833
	Equation equ834
	Equation equ835
	Equation equ836
	Section_43
	Equation equ837
	Section_44
	Equation equ838
	Equation equ839
	Equation equ840
	Equation equ841
	Equation equ842
	Equation equ843
	Equation equ844
	Equation equ845
	Equation equ846
	Equation equ847
	Equation equ848
	Equation equ849
	Section_45
	Equation equ850
	Equation equ851
	Section_46
	Equation equ853
	Section_47
	Figure 3
	Equation equ852
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30

