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Abstract 

Fog computing is a concept that extends the paradigm of cloud computing to 

the network edge. The goal of fog computing is to situate resources in the vi-

cinity of end users. As with cloud computing, fog computing provides storage 

services. The data owners can store their confidential data in many fog nodes, 

which could cause more challenges for data sharing security. In this paper, we 

present a novel architecture for data sharing in a fog environment. We explore 

the benefits of fog computing in addressing one-to-many data sharing appli-

cations. This architecture sought to outperform the cloud-based architecture 

and to ensure further enhancements to system performance, especially from 

the perspective of security. We will address the security challenges of data 

sharing, such as fine-grained access control, data confidentiality, collusion re-

sistance, scalability, and the issue of user revocation. Keeping these issues in 

mind, we will secure data sharing in fog computing by combining attribute- 

based encryption and proxy re-encryption techniques. Findings of this study 

indicate that our system has the response and processing time faster than clas-

sical cloud systems. Further, experimental results show that our system has an 

efficient user revocation mechanism, and that it provides high scalability and 

sharing of data in real time with low latency. 
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1. Introduction 

Cloud computing is the most popular computing paradigm that offers its re-

sources over the Internet. Cloud computing provides many advantages to end 

users, such as lower cost, high reliability, and greater flexibility. However, it has 

some drawbacks, which include a high latency, necessitating Internet connecti- 
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vity with high bandwidth and security [1]. 

During the last few years, a new trend of Internet deployments emerged called 

the Internet of Things (IoTs) that envisions having every device connected to the 

Internet. Its applications include ehealthcare, a smart grid, etc. Those applica-

tions require low latency, mobility support, geo-distribution, and user location 

awareness. Cloud computing appears to be a satisfying solution to offer services 

to end users, but it cannot meet the IoTs’ requirements. As a result, a promising 

platform called fog computing is needed to provide the IoTs’ requirements; fog 

computing was proposed by Cisco in 2012 [2]. 

Fog computing is a concept that extends the paradigm of cloud computing to 

the network edge, allowing for a new generation of services [3]. Fog computing 

has an intermediate layer located between end devices and the cloud computing. 

This leads to a model with a three-layer hierarchy: Cloud-Fog-End Users [4]. 

The goal of fog computing is to offer resources in a closer vicinity to the end us-

ers. As in Figure 1, each fog is located at a specific building and offers services to 

those inside the building [4]. Fog computing supports low latency, user mobility, 

real-time applications, and a wide geographic distribution. In addition, it en-

hances the quality of services (QoS) for end users. These features make the fog 

an ideal platform for the IoTs [5]. 

Support of location awareness is the key difference between the cloud envi-

ronment and the fog environment. Cloud computing serves as a centralized 

global model, so it lacks location awareness. In contrast to cloud computing, fog 

devices are physically situated in the vicinity of end users [6]. 

Data sharing has great importance for many people, and it is an urgent need 

for organizations that aim to improve their productivity [7]. Currently, there is 

an urgent need to develop data sharing applications, especially for mass com- 

 

 

Figure 1. The fog is situated between the cloud and the edge. 
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munications, where the data owner is responsible for delivering shared resources 

to a large group of users. This one (data owner) to many (users) method needs 

special care, taking into consideration the challenges related to such applications. 

The main problems for such applications are issues related to security and pri-

vacy [8]. 

Like cloud computing, fog computing faces several security threats for data 

storage; to meet them, there are security features that were provided in the cloud 

environment. These security features are the enforcing of fine-grained access 

control, data confidentiality, user revocation and collusion resistance between 

entities [9]. 

We present a novel architecture for data sharing a fog environment. We ex-

plore the benefits brought by fog computing to address one-to-many data shar-

ing application. Such architecture is sought to outperform the cloud-based ar-

chitecture and ensure further enhancements to system performance, especially 

from the perspective of security. Our proposed framework provides high scala-

bility and sharing of data in real time with low latency. 

2. Related Work 

We will provide a detailed overview of prior studies on secure data sharing in 

cloud environments. 

Yu et al. [9] proposed a data-sharing scheme designed to provide fine-grained 

data access control, data confidentiality, and scalability. However, it requires 

updating all users’ secret keys and re-encrypting all the files, thus reducing the 

efficiency of the user revocation operation.  

Wu et al. [10] presented a novel technique for sharing media, especially in 

large distributed systems. Unfortunately, the decryption operation in low-end 

devices is slow, and user revocation is not addressed.  

Liu et al. [11] designed a framework for sharing data based on the time con-

cept. It is a better fit for an environment in which the data owner is offline and 

periodic user revocation occurs. However, the proposed scheme requires effi-

cient shared time periods for all the user-related attributes. 

Tu et al. [12] proposed a secure data-sharing framework that is secure against 

chosen-ciphertext attacks. Unfortunately, the proposed framework places heavy 

computation overhead on the process of user revocation. 

Yang and Zhang [13] designed a generic scheme for sharing data. The scheme 

does not need to require the redistribution of keys. However, it has not ad-

dressed the scenario in which a revoked user rejoins the group with new access 

rights.  

Hur [14] proposed a secure data-sharing scheme featuring rapid user revoca-

tion. Its major drawback is that it suffers from low scalability and high calcula-

tive complexity. 

Samanthula et al. [15] proposed a framework with effective user revocation. 

Unfortunately, the proposed scheme puts a heavy burden on the cloud servers by 

requiring the data owner to create a token in each record for every user, which  
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Table 1. The main features schemes. 

Design Goals 
References 

9 10 11 12 13 14 15 16 

Data confidentiality Y Y Y Y Y Y Y Y 

Enforcing fine grained access control. Y Y Y Y Y Y Y Y 

Scalability Y Y Y Y Y N N Y 

Efficient user revocation N N Y N Y Y Y N 

Collusion resistance Y N N Y N Y Y Y 

Real-time data sharing N N N N N N N N 

 

increases the complexity of the system and reduces scalability. 

From the previous discussion, it is evident that the previous schemes have 

failed to find an overall solution to achieving the previous goals, as shown in 

Table 1. Most of these desired features are realized in [9], so we will apply it in a 

fog environment with some enhancement to achieve all our design goals. Our 

proposed framework rests on a combination of previous approaches that provide 

secure data sharing in cloud computing, such as Attribute-Based Encryption 

(ABE) and Proxy Re-Encryption (PRE) techniques [9] [16] [17]. 

Unlike the previous system [9], the proposed revocation mechanism does not 

necessitate the re-encryption of all system files and updating of all secret keys. 

Our proposed system provides real-time data sharing to group members. Our 

work will focus on providing an ideal environment for secure data sharing in a 

fog environment to overcome the disadvantages of a cloud-based data sharing 

system, which includes a high latency, requiring Internet connectivity with high 

bandwidth and lacking location awareness. 

3. Fog Based Data Sharing Architecture 

3.1. Fog Based Data Sharing Model 

There are four parties in the proposed system: Data Owner, Cloud Servers, many 

Fog Nodes and Data users. 

• Data Owner (DO) has the right to access and alter the data. He encrypts the 

data with the attributes of a specific group and generates the decryption keys 

for users. Then, he uploads the encrypted data to the cloud servers.  

• Cloud Server (CLD) is responsible for data storage and deploys the data to 

the fog nodes. 

• Fog Nodes (FNs) are responsible for data storage and for addressing users’ 

requests. They are considered as a semi-trusted party. They execute opera-

tions of user revocation phase.  

• Data Users (Us) are those who request data access when they have the rights 

to access data. This means, only when the user’s access policy satisfies the 

data attributes. 

The fog environment scenario is shown in Figure 2, where a DO encrypts a 

data file and then outsources it to a CLD for storage. Then, the CLD deploys the  
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Figure 2. Fog-based data sharing model. 

 

data file to the specific fog node via the data distribution protocol, as will be 

shown later. Fog nodes are geographically distributed within a specific domain, 

and they have fixed locations. The user can be moving, and he is requesting the 

data from the fog node closest to him. The fog node receives the user’s request 

and delivers the file to the user. The DO can delegate most of the tasks to the 

home fog nodes, as shown in the following section. In fog-based data sharing 

model, fog nodes and the data owner both can be connected with the cloud via 

the Internet. The fog nodes are connected to each other via a wired network over 

Internet. The users can be connected with the fog node using a wireless connec-

tion technique such as Wi-Fi, as shown in Figure 2. 

This model consists of groups of users, and each group has a set of attributes 

and a basic location. Each group has many users who share the same attributes. 

One of the group attributes refers to its location, and group members connect 

with a fog that has the same location. The data owner assigns many files to each 

group on the basis of the attributes and needs of its members.  

Each fog node serves one group, and is independent in its operation, so it is 

not affected when a user is revoked from another group. Therefore, the proposed 

revocation mechanism requires the re-encryption of the affected files and the 

updating of the secret keys, only for a one group. 

3.2. Data Distribution Protocol 

Two types of fog in the data distribution architecture are defined: 

• Home Fog (HF): the fog has the same location as the user’s original location, 

where users are most likely to be found. It stores the user’s data and manages 

the processes. 

• Foreign Fog (FF): the fog is located away from the user’s original location, 
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where the user is currently residing, as shown in Figure 3. 

• The proposed system is comprised of two kinds of data centers:  

• Cloud data centers (which includes the data centers for each group). 

• Local fog data centers.  

Each fog node is considered the “Home Fog” for the group that has the mem-

ber’s same location, while it is considered the “Foreign Fog” for the other 

groups. 

A local data center is a fog storage that holds copies of secret files. It is pre-

loaded with the data required by fog users. The fog nodes maintain communica-

tion with the cloud. The data sharing between the cloud data center and each fog 

node data center is performed through immediate synchronization based on the 

unicast method. 

When the user requests a file from the fog node, if the fog is the user’s HF, the 

fog node directly sends the file to the user. If the user is away from his/her HF, 

the case is processed, as shown in Figure 4.  

1) Using authentication, a user logs to the fog node closest to him. He requests 

to join to it and identifies the period of the joined fog node through the reg-

istration process. 

 

 

Figure 3. Data distribution architecture. 

 

 

Figure 4. Data distribution protocol. 
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Table 2. Fog1’s users locations. 

User’s ID Current location Time period 

User 1 Fog2 XXXX 

User 2 Fog1 - 

… … … 

 

2) The FF recognizes the user’s home by the system user list (the cloud updates 

this list whenever a user is added or removed, and sends it to all fog nodes via 

broadcasting after each update. This list includes the user’s ID and its own 

HF. (Note: the HF of each user is fixed). 

3) The FF sends the joining message with the specified period to the user’s HF. 

4) The HF sends an acceptance reply to acknowledge the joining. 

5) The FF accepts the user as a visitor, updates its visitor list, and then synchro-

nizes the list with the cloud. 

6) The HF updates the location of its own users in the Table 2 by changing 

the user’s location to the FF’s location and synchronizing it with the cloud. 

This table does not include the visitor’s users; it is only for its group mem-

bers. 

7) The HF sends the user’s secret data to the FF. 

8) The FF stores the data in its data center. 

If the time expires and the user is still at the FF, he must join the FF again. 

When the user returns to his HF, he will send a de-joined request to the HF and 

inform it that he is at his HF. The FF updates the current location table and 

synchronizes the table with the cloud. 

4. The Proposed System 

4.1. Technique Preliminaries 

1) Key Policy Attribute-Based Encryption (KP-ABE) 

In KP-ABE, data have a set of attributes linked to data by encryption with the 

public key. Each user has an access structure that is an access tree associated 

with data attributes. The user’s secret key is a reflection of the user’s access tree; 

therefore, the user can decrypt a ciphertext if the data attributes match his or her 

access tree [13] [18].  

2) Proxy Re-Encryption (PRE) 

PRE is a cryptographic primitive that allows a semi-trusted proxy to trans-

form the cipher text of the encrypted data under the data owner’s public key into 

a different ciphertext under the group member’s public key. The semi-trusted 

proxy server needs a re-encryption key sent by the data owner for a successful 

conversion process, and it is unable to discover the underlying plaintext of the 

encrypted data. Only an authorized user can decrypt the ciphertext [19]. 

4.2. Design Goals 

The design goals are as follows: 
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• Data confidentiality: Unauthorized users (including the fog and cloud servers) 

are not allowed to access the data [9].  

• Fine-grained access control: The data owner can determine the access struc-

ture for each user [11]. 

• User revocation: Revoked users cannot access the data again. 

• Scalability and efficiency: The system must maintain both efficiency and sca-

lability, even when the number of users increases [9]. 

• Collusion resistance: which prohibits unauthorized parties from cooperating 

in order to find out the contents of sensitive data [20]. 

• Real-time data sharing. 

4.3. Assumptions and Security Models 

In the proposed framework, the data sharing system is one to many. The fog 

nodes have fixed locations. It may be assumed that the target user is a laptop or 

other mobile device. Also, that the data owner and users have already the public/ 

private key pairs, where the public keys can be easy to get by other entities. Us-

ing the security protocols, the communication channels are secured between the 

data owner/cloud server and fog nodes, such as SSL. Also, the communication 

channel is assumed to be secured between fog nodes and users. In order to con-

nect between the user and the fog nodes, the existing protocols such as CoAP, 

are used which are considered to be the promising protocol for IoTs [21], in ad-

dition to authentication the users at the fog node. 

4.4. Definition and Notation 

In order access control, the data owner must assign meaningful attributes to 

each file. The file’s attributes are the same as the one group’s attributes. To up-

date the attributes, each attribute has a version number, which will be shown 

later. Fog servers have a copy of a group attribute history list (GAtH), as we will 

see later 

The GAtH contains the attributes’ evolution history and the PRE keys used. A 

PRE-key allows the data owner to assign re-encryption operations to the fog 

node without revealing the data contents. Additionally, one virtual attribute, 

denoted by AttV, must be determined for the key’s management. AttV is the ba-

sic attribute in every data file’s attributes and user’s access structure, and is will 

not be updated. The user has a completely secret key, while the fog and cloud 

have a partially user’s secret key because they lack a secret key component cor-

responding to a virtual attribute, where that AttV is unknown for the fog and 

cloud. The goal of AttV is to enable the fog to update the secret key without re-

vealing it. 

Each user has an access structure represented as an access tree [22]. The access 

tree has interior nodes, which are the threshold gates, and leaf nodes associated 

with the file’s attributes. The root node must be an AND gate, with one of the 

child nodes associated with the virtual attribute, while the other child nodes are 

the threshold gates, as shown in Figure 5. 
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Figure 5. The simple explain of the access system. 

 

Each group file has the same group attributes, where the members of group 

have the right to access the group files. Each member has a subset of the group 

attributes. Each member has a different secret key that reflects his or her access 

structure. Moreover, CLD has the system users list (UL), which includes the IDs, 

HF of all the authorized users. Table 3 shows the notation of the proposed sys-

tem with a simple description. 

4.5. System Description 

The proposed framework consists of six main phases, the following subsections 

show details of these phases.  

1) Group Creation  

The DO creates groups of the system and generates its parameters.  

1) The DO assigns a unique ID , name, AttG , and specific location for the 

new group. 

2) A security parameter k  is chosen by the DO, and then ( ),GSetup AttGκ  

is run, which produces GPK  and GMK .  

3) The DO signs GPK  components. 

4) DO sends the group information and the GPK  to the CLD. 

5) CLD stores them in data center.  

6) The CLD sends GPK  to group’s HF. 

7) The group’s HF store GPK , each FN serves one group as the HF.  

2) Add and Encrypt File 

In this phase, the data owner processes the file before uploading as follows.  

1) The DO assigns a unique ID for the new file. 
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Table 3. Notation of the scheme. 

Notation Description 

ID
G  Group’s ID 

,
g g

GPK GMK  Group public key and master key 

a
Q  Group public key component for attribute a 

a
q  Group master key component for attribute a 

pol  The access structure of user 

pol
L  Attributes associated with leaf nodes of pol 

USK  Secret key of the user 

a
usk  User secret key component for attribute a 

AttG  Group attributes set 

AttF  File attributes set 

a
GAtH  Group attribute history list for attribute a 

ID
F  File’s ID 

AttV  The virtual attribute 

,
a

C C  Ciphertext and the ciphertext component for attribute a 

SEK  Symmetric data encryption key of a data file 

g
UL  Group user list 

,DO m
δ  Signature of data owner on message m 

a a
rek ′↔  

Proxy re-encryption key the current attribute a to the updated 

version a’ 

UL  The system users list 

 

 

Figure 6. The data format. 

 

2) The DO chooses a random data symmetric encryption key R
SEK K← ,where 

k  refers to the key space.  

3) The DO encrypts the file using SEK . 

4) DO specifies the group that needs this file. 

5) The DO specifies the attributes for this file. 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡is same as the ( AttG ). 

6) The DO encrypts SEK , by calling ( ), ,GEncrypt AttF SEK GPK , which 

outputs the ciphertext C . 

7) The DO uploads the encrypted file with the group’s ID  to the CLD. 

8) CLD stores them in its data center. 

9) The CLD sends the encrypted file to the group’s fog node. 

10) The group’s fog node stores the encrypted file in format, as shown in Figure 

6. 

3) Enroll New User 

The data owner performs the following processes to grant the access right to 
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the system. 

1) The DO defines a user unique identity w, an access structure pol  and the 

group, where he belongs. 

2) The DO runs the ( ),GKeyGen pol GMK , which produces USK  referring to 

the secret key of w .  

3) The tuple ( )( ), , ,
, , ,

DO pol USK GPK
pol USK GPK δ  is encrypted with the user’s pub-

lic key by the DO (preloaded); where the ciphertext is denoted as CT .  

4) The DO sends the tuple ( )( ), .
, ,

DO T CT
T CT δ  to the CLD, where CT  (from 

the third step) and T  is { }( )\
, , j j Lpol AttV

w j usk
∈

. 

5) The CLD verifies the signature, then stores T  in the UL . 

6) The CLD sends the CT  and T  to the user’s HF. 

7) The FN stores T  in its UL .  

8) Then FN sends the CT  to U. 

9) The U decrypts the CT  with his or her private key, verifies the signature, 

and accepts ( ), ,pol USK GPK .  

4) Delete File 

This operation is performed at the DO’s request  

1) The DO sends the 
IDF  with his signature to the CLD.  

2) The CLD verifies the signature, then removes the file. 

3) The CLD sends the 
IDF  to all FNs. 

4) FNs remove the file in case it was found in their data centers. 

5) Revoke user 

Based on the revocation method in [9], the proposed system’s revocation op-

eration works as follows. 

1) To revoke user v ,the DO defines the attributes’ minimal set of:  

( ) ;D GMinimalSet pol←  

where pol is v’s access structure. 

2) The GPK  and GMK  components of all these involved attributes are up-

dated accordingly. 

3) The DO generates the corresponding PRE keys, for each attribute a in D ,  

( ) ( ), , , .a a a aq Q rek GUpdateAtt a GMK′↔′ ′ ←  

4) The DO sends the user ID , the updated attributes, the PRE keys, group ID , 

andthe updated GPK  components to the CLD. 

5) The CLD removes the revoked user from the UL  and records the updated 

GPK  in the group’s table. 

6) The CLD records the last version of the PRE key in 
aGAtH  only to the up-

dated attribute (at group’s data center in cloud). 

7) The CLD sends the user’s ID, the updated attributes, the PRE keys, andthe 

updated GPK  to the user’s HF. 

8) HF store them and remove the revoked user. 

9) With 
aGAtH , the FN will find one PRE key that can update the attribute to 

the latest version. 

10) For each member of the group, the FN updates this user’s USK  compo-
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nents to the latest version; for each attribute, 
\pol AttDj L∈ ; 

( ), , .j j jusk GUpdateSK j usk GAtH′ ←  

11) The FN re-encrypts each file’s SEK  using the latest GPK  version, then 

stores it; for each attribute k AttF∈ ; 

( )4 , ,k k kC GUpdateAtt File k C GAtH′ ← . 

12) The FN sends the USKs to users.  

13) If it has an away user, HF sends the data and USK  to the user’s FF. Then FF 

stores the data. 

14) The FF sends the USK  to the user. 

6) Download and Decrypt File 

1) In this operation, fog node receives the user’s access request to the data file. 

2) Then FN verifies if the user is a valid user. If the user is not of its members, 

verifies if the user in its visitor list. 

3) The FN sends the C of the requested file to the U.  

4) The U checks if each attribute is the latest version of the current version he 

knows.  

5) The U verifies if each USK  components is correct. If the verification is suc-

cessful, (U) replaces each 
jusk  of his secret key with 

jusk ′  and updates 

jQ  with 
jQ′ . 

6) The U runs ( ), ,GDecrypt pol USK C  to decrypt the SEK’s.  

7) The U decrypts the file using the SEK’s. 

5. Implementation and Evaluation 

5.1. Test Environment 

The proposed system was implemented on a machine running 64-bit Windows 

10 with a 2.4 GHz Intel CoreTM CPU and 6 GB of memory. The system’s im-

plementation is based on a pairing-based cryptography (PBC) library, a standard 

symmetric key algorithm (AES), key-policy attribute-based encryption, and 

proxy re-encryption techniques. Our system calls the ABE- and PRE-required 

functions from libraries developed using the Java language, as we will show the 

results later. First, we built the main functions of the system: Group creation, 

Encryption, Key Generation, and Decryption. Then, we designed the user revo-

cation functions: Update the master key and public key, Re-encrypt the files, and 

Regenerate the secret keys. 

5.2. Performance Evaluation 

Our performance evaluation is based time analysis in order to appreciate both 

the suggested protocols dealing with specific security issue “revocation” and the 

benefits the fog computing brings to the problem. Therefore, we have built our 

own simulation methods and used available packages. 

Figure 7 gives an overview of the system’s time factors. The data presented in 

the Figure above show that the length of time between 
0 1t t⋅ , is represents the  
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Figure 7. Time factors of the revocation phase. 

 

first propagation delay (
1PD ). This delay depends on the length of the link and 

the speed of propagation. The time difference (
2 1t t− ) corresponds to the 

processing time ( PT ), which is the time required for the fog node to execute 

user revocation operations. The second propagation delay (
2PD ). is determined 

by another time difference (
3 2t t− ). 

1) System Response Time 

Fast response time is important for improving the quality of service and users’ 

experience, it is directly related to the distance between the server and user. Fog 

nodes are located on the network edge, in close proximity to the users, and 

therefore the system has a fast response time. We can calculate the response time 

using the following equation: 

Response Time Propagation Delay Time Processing Time.= +  

The term “Propagation Time” refers to the amount of time a packet needs to 

arrive at its destination. It depends on the distance between the server and user 

and on propagation speed. Processing time can be broadly defined as the total 

time that a fog node requires to address a user revocation request after it is re-

ceived. 

In order to appreciate the impact of fog computing on response time, we build 

a simulation scenario that assumes the fog and cloud computing scenarios have 

the same resources. Naturally, in the fog computing scenario, we assume that fog 

resources are placed nearer to users than in the cloud. Those scenarios were im-

plemented using the Cloud Analyst toolkit. The simulation results show that our 

system responds more quickly to user requests than classical cloud systems, as 

shown in Figure 8. 

In the simulation environment, the data center responds to user requests in 

order according to their location. The simulation identifies response time as 

minimum, average, or maximum. In the figure below, we can see that the fog 

system’s response time is 84% less than that of the cloud system; the average re-

sponse time was 300 ms in cloud-based systems and 50 ms in fog-based systems.  

Regarding processing time, the results in Figure 9 show that the time required 

to perform an encryption operation (whether in the cloud or a fog) depends di-

rectly on the number of attributes that are used, as explained in previous section.  
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Figure 8. The simulationresults. 

 

 

Figure 9. KP-ABE encryption. 

 

The figure above shows that processing time for KP-ABE operations increases 

as the number of attributes increases. Our system groups users according to 

their attributes; thus, each group has a set of attributes that other groups do not 

have. There are not many attributes associated with each group. There is a direct 

relationship between a group’s attributes and processing time. Thus, the number 

of attributes can be optimized to achieve optimal execution time. In addition, the 

propagation delay is significant compared to processing time, and therefore the 

impact of fog computing can be easily appreciated. 

2) User Revocation Processing Time 

The user revocation process was explained in Section IV. In this section, we 

will show the impact of group size per fog node on the execution time for the 

parameters concerned with the revocation process. We can calculate the time 

required for the user revocation phase as follows: 

( ) ( )Revocation Time Re-generation Time SKs Re-encryption Time files= +  

The process requires that the fog node regenerate secret keys and re-encrypt 

files during each revocation process. Therefore, we will vary the number of users 

assigned to each fog node as a percentage of the overall number of users in the 

system.  
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First, we assume that there are 50,000 system users and 5000 system files. We 

also executed these operations on more than size of the fog node (e.g., 5%, 10%, 

15%, and 20% of users) as shown in Figure 10 and Figure 11. 

It has been shown that as the number of assigned users per fog node decreases, 

the processing time for key regeneration and file re-encryption decreases signif-

icantly in an order of about 25% as we move from one fog size to the next lesser 

one. 

Although the reduction is significant but this could be translated in real life as 

adding more fog nodes at user’s vicinity which could be considered as a trade off 

problem. In addition, our comparison of key regeneration time and file re-en- 

cryption time clearly shows that regeneration requires more processing time 

than re-encryption, which emphasizes that key regeneration is the dominant 

factor in the revocation process. 

To compare our system to a cloud -based data-sharing system, we set up an 

experiment. The data in Table 4 shows that our system reduced the processing 

time required for key regeneration compared to the cloud system by about 80% 

(based on our setup) thanks to the fog computing architecture.  

 

 

Figure 10. Secret keys updating on fog node. 

 

 

Figure 11. The re-encryption of files on fog node. 
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Table 4. Secret key updating. 

Systems Cloud Systems Our System Fog size (20%) 

Affected Users All Group users 

Number of Users 50,000 10,000 

Updating Time 25 minutes 5 minutes 

 

Table 5. The files re-encryption. 

Systems Cloud Systems Our System Fog Size (20%) 

Affected Files All Group files 

Number of Files 5000 1000 

Updating Time 755 seconds 146 seconds 

 

Table 6. Revocation time. 

Systems Cloud Systems Our System Fog Size (20%) 

Revocation Time 37.5 min 7.3 min 

Improvement Rate 80% 

 

To further demonstrate the benefit of our system, we compare the perfor-

mance of cloud and fog setups with respect to the maximum number of reen-

cryption operations per group. It is obvious that we get a better re-encryption 

time, as the number of the group files reduced in the fog architecture comparing 

to the entire cloud system files, as shown in Table 5. This is a direct result of the 

file distribution strategy suggested in Section 3.  

3) Overall Delay Estimation Due to Revocation 

Revocation time refers to the time required to regenerate secret keys and 

re-encrypt files during each revocation process. Based on the tables and equation 

above, we can calculate and compare the total time required for the revocation 

operation in fog and cloud systems. Table 6 shows that we achieved better revo-

cation time compared to the cloud system; the results indicate that our system 

was 80% better.  

5.3. Discussion 

Our system responds to user requests more quickly than do classical cloud sys-

tems. As we have proven previously, the response time of a fog system is 84% 

less than that of a cloud system because the fog is located close to the users. The 

findings demonstrated the feasibility of our system, as the computation-related 

complexity of the system’s operations does not depend on the number of users 

in the system, but on the number of system attributes, and is thus scalable. 

The experimental results show that our revocation mechanism outperforms 

cloud-based systems as this phase is at the fog level in our system and thus does 

not affect the entire system. Also, our system requires 80% less processing time 

for key regeneration compared to the cloud system due to the fog computing 

architecture.  
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When comparing the performance between cloud and fog setups with respect 

to the maximum number of re-encryption operations, it is obvious that we get a 

better re-encryption time, as the number of the group files reduced in the fog 

architecture comparing to the entire cloud system files. Further, our system has 

80% better revocation time compared to the cloud-based system. 

Based on the previous discussion, our revocation mechanism outperforms 

cloud-based systems, and the proposed framework is a promising solution for 

data sharing in the emerging fog computing environment. 

6. Security Analysis 

We first analyze security of our framework in terms of the security features as 

formulated below.  

6.1. Data Confidentiality 

The data owner assigns the management of the data to the fog nodes and CLDs, 

which are considered the main adversaries against data confidentiality. They are 

a bigger threat than unauthorized users because of their adversarial capabilities. 

The fog nodes have the encrypted data and the responses to the authorized users 

from addressing their requests. 

To achieve data confidentiality, the data owner encrypted the file using SEK  

by AES algorithm, and SEK  is encrypted using KP-ABE, before uploading it. 

Thus, fog nodes cannot have access to plaintext. In addition, they have only a 

partial copy of the user’s secret keys and lack the SEK key. To achieve data con-

fidentiality in transmission, the communication channels are secured between 

the data owner/cloud server and the fog nodes using SSL/TLS protocol to over-

come network attacks [23]. 

6.2. Fine-Grained Access Control 

The data owner must have access control over his or her secret data, meaning 

that a valid user cannot obtain unauthorized data. The enforcement of 

fine-grained access control is achieved using (KP-ABE), which provides a flexi-

ble access structure for each user based on data attributes [9].  

6.3. User Revocation 

When an authorized user is revoked, his access right is dropped, and he is con-

sidered an outsider. The revocation operation requires the re-encryption of the 

files and a re-distribution of the new keys at one fog [24].  

The proposed user revocation process is achieved by using the PRE technique. 

This reduces the data owner’s burden and assigns most of the tasks to the fog 

node, which permits the fog node to re-encrypt the data automatically without 

discovering the file’s contents. 

6.4. Collusion Resistance 

To protect against collusion, parties must not be permitted to access the data 
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without authorization from the data owner. To prevent collusion between serv-

ers and any party, the system must protect the users’ access privilege informa-

tion against the cloud and fog nodes by encrypting the user’s access structure 

before sending it.  

To prevent collusion between users, the system is a set of groups, and each 

group has a different public key ( GPK ); thus, users of different groups cannot 

combine their secret keys and decrypt files they should not be allowed to access 

[25]. 

7. Conclusions and Future Work 

The aim of the present study was to design a secure data sharing framework for a 

fog environment. This framework achieved fine-grained access control, data 

confidentiality, user revocation, and collusion resistance. Our proposed frame-

work rests on a combination of KP-ABE and PRE-techniques. The contribution 

of the study was the confirmation that our system outperformed the cloud-based 

data sharing architecture. Our framework provides high scalability and data 

sharing in real time and with low latency.  

The findings of this study indicate that our system outperforms cloud-based 

data sharing systems with its faster processing time. The simulation results also 

show that our system responds faster to user requests than classical cloud sys-

tems. Further, the experimental results show that our system also outperforms 

cloud-based systems in the user revocation phase. In this paper, we proved that 

our proposed framework provides a promising solution to securing data sharing 

in the emerging fog computing environment. A future study addressing a 

many-to-many data sharing application in a fog environment would thus be in-

teresting. 
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