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Abstract

Face sketches are able to capture the spatial topology

of a face while lacking some facial attributes such as race,

skin, or hair color. Existing sketch-photo recognition ap-

proaches have mostly ignored the importance of facial at-

tributes. In this paper, we propose a new loss function,

called attribute-centered loss, to train a Deep Coupled Con-

volutional Neural Network (DCCNN) for facial attribute

guided sketch to photo matching. Specifically, an attribute-

centered loss is proposed which learns several distinct cen-

ters, in a shared embedding space, for photos and sketches

with different combinations of attributes. The DCCNN si-

multaneously is trained to map photos and pairs of testi-

fied attributes and corresponding forensic sketches around

their associated centers, while preserving the spatial topol-

ogy information. Importantly, the centers learn to keep

a relative distance from each other, related to their num-

ber of contradictory attributes. Extensive experiments are

performed on composite (E-PRIP) and semi-forensic (IIIT-

D Semi-forensic) databases. The proposed method signifi-

cantly outperforms the state-of-the-art.

1. Introduction

Automatic face sketch-to-photo identification has always

been an important topic in computer vision and machine

learning due to its vital applications in law enforcement

[35, 21]. In criminal and intelligence investigations, in

many cases, the facial photograph of a suspect is not avail-

able, and a forensic hand-drawn or computer generated

composite sketch following the description provided by the

testimony of an eyewitness is the only clue to identify pos-

sible suspects. Therefore, an automatic matching algorithm

is needed to quickly and accurately search the law enforce-

ments face databases or surveillance cameras using a foren-

sic sketch. However, the forensic or composite sketches

contain only some basic information of the suspects’ ap-

pearance such as the spatial topology of their faces while

other soft biometric traits, e.g. skin, race, or hair color, are

left out.

Traditional sketch recognition algorithms can be classi-

fied into two categories, namely generative and discrimi-

native approaches. Generative approaches transfer one of

the modalities into the other before matching [28, 36, 10].

On the other hand, discriminative approaches perform fea-

ture extraction, such as the scale-invariant feature transform

(SIFT) [17], Weber’s local descriptor (WLD) [3], and multi-

scale local binary pattern (MLBP) [8]. However, these fea-

tures are not always quite optimal for a cross-modal recog-

nition task [39]. As a consequence, some other methods are

investigated in order to learn or extract modality-invariant

features [19, 13]. More recently, deep learning based ap-

proaches have emerged as potentially viable techniques to

tackle the cross-domain face recognition problem by learn-

ing a common latent embedding between the two modalities

[9, 26, 14]. However, utilizing deep learning techniques for

sketch-to-photo recognition is more challenging than other

single modality domains since they require a large number

of data samples to avoid over-fitting and local minima. Fur-

thermore, current publicly available sketch-photo datasets

comprise only a few number of sketch-photo pairs. More

importantly, there is one sketch per subject in most datasets

and this makes it a difficult, and sometimes impossible task

for the network to learn robust latent features [9]. As a re-

sult, most approaches have utilized a relatively shallow net-

work, or trained the network only on one of the modalities

(typically the face photo) [25].

Existing state-of-the-art approaches focus primarily on

closing the semantic representation of the two domains

whilst ignoring the absence of soft-biometric information in

the sketch modality. Given the impressive results of recent

sketch-photo recognition algorithms, there is still a miss-

ing part in this process which is conditioning the matching

process on the soft biometric traits. Especially in the ap-

plication of sketch-photo recognition, based on the quality

of sketches, there are usually some facial attributes which

are missing in the sketch domain, such as skin, hair, and

eye colors, gender, and ethnicity. Furthermore, conditioning
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the matching process to other adhered facial characteristics,

such as having eyeglasses or a hat, provides extra informa-

tion about the individual of interest and can result in more

accurate and impressive outcomes. Describing and manipu-

lating attributes from face images have been active research

topics for years [40, 15, 34]. The application of soft biomet-

ric traits in person identification has also been studied in the

literature [6, 16].

Despite the evidence for the usefulness of facial at-

tributes, development of a paradigm to exploit them in the

sketch-photo matching has not been adequately studied. A

direct suspect identification scheme based solely on de-

scriptive facial attributes is proposed in [20] that completely

bypassed the sketch images. Klare et al. [18] utilized race

and gender to narrow down the gallery of mugshots for

more accurate matching. In a more recent work [27], a CCA

subspace is learned to fuse the attributes and low-level fea-

tures. However, they extract the features which are common

in both modalities. Mittal et al. [24] utilized the facial at-

tributes such as gender, ethnicity, and skin color to reorder

the ranked list. They also fused multiple sketches of a sus-

pect to increase the performance of their algorithm.

In this work, we propose a facial attribute-guided sketch-

photo recognition scheme conditioned on relevant facial at-

tributes. We introduce a new loss function, called attribute-

centered loss, to capture the similarity of identities that have

the same combination of facial attributes. The key element

of this loss function is assigning a distinct centroid (center

point), in the embedding space, to different combinations

of facial attributes. To train a deep neural network using

the attribute-centered loss, a pair of sketch-attribute need

to be provided to the network instead of a single sketch.

Our proposed loss function then encourages a deep cou-

pled neural network to map a photo and its corresponding

sketch-attribute pair as close as possible to each other in the

shared latent sub-space. Simultaneously, the distance of all

the photos and sketch-attribute pairs to their corresponding

centers must not be more than a pre-specified margin. This

helps the network to learn and filter out the subjects which

are very similar in facial structure to the suspect but do not

share a considerable number of attributes. Finally, the cen-

ters are trained to keep a distance related to their number of

contradictory attributes. The justification behind the latter is

that it is more likely that a victim misclassifies a few facial

attributes of the suspect than most of them. In summary, the

main contributions of this paper include the following:

• We propose a novel framework for facial attribute

guided sketch-photo recognition.

• We introduce a new loss function, namely attribute-

centered loss, to fuse the facial attributes provided by

eyewitnesses and the geometrical properties of foren-

sic sketches to improve the performance of our sketch-

photo recognition.

• The proposed loss function uses the provided attributes

in a soft manner. In other words, suspects with a

few contradictory attributes compared to the facial at-

tributes described by an eyewitness can still be de-

tected as the person of interest if their geometrical

properties still have a high matching score with the

forensic sketch.

2. Methodology

In this section, we describe our approach. We first intro-

duce the center loss in its general form proposed by Wen et

al. [37]. Inspired by their work, we propose the attribute-

centered loss to exploit facial attributes in sketch-photo

recognition, followed by the training methodology to learn

a common latent feature space between the two modalities.

2.1. Center Loss

The common approach to train a deep neural network

for classification or verification task is using cross-entropy

loss. However, this loss function does not encourage the

network to extract discriminative features and only guaran-

tees their separability [37]. The intuition behind the center

loss is that the cross-entropy loss does not force the net-

work to learn the intra-class variations in a compact form.

To overcome this issue, contrastive loss [11] and triplet loss

[31] have emerged in the literature to capture a more com-

pact form of the intra-class variations. Despite their recent

diverse successes, their convergence rates are quite slow.

Consequently, a new loss function, namely center loss, has

been proposed in [37] to push the neural network to distill a

set of features with more discriminative power. The center

loss, Lc, is formulated as

Lc =
1

2

m∑

i=1

‖ xi − cyi
‖2
2
, (1)

where m denotes the number of samples in a mini-batch,

xi ∈ IRd denotes the ith sample feature embedding, be-

longing to the class yi. The cyi
∈ IRd denotes the yith class

center of the embedded features, and d is the feature dimen-

sion. To train a deep neural network, a joint supervision of

the proposed center loss and cross-entropy loss is adopted:

L = Ls + λLc, (2)

where Ls is the softmax loss (cross-entropy). The center

loss, as defined in Eq. 1, is deficient in that it only penalizes

the compactness of intra-class variations without consider-

ing the inter-class separation. Therefore, to address this is-

sue, a contrastive-center loss has been proposed in [30] as

Lct−c =
1

2

m∑

i=1

‖ xi − cyi
‖2
2

(
∑k

j=1,j 6=yi
‖ xi − cj ‖22) + δ

, (3)
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where δ is a constant preventing a zero denominator, and

k is the number of classes. This loss function not only pe-

nalizes the intra-class variations but also maximizes the dis-

tance between each sample and all the centers belonging to

the other classes.

2.2. Proposed loss function

Inspired by the center loss, in this paper we propose a

new loss function for facial attributes guided sketch-photo

recognition. Since in most of the available sketch datasets

there is only a single pair of sketch-photo images per iden-

tity, there is no benefit in assigning a separate center to each

identity as in [37] and [30]. However, in this work, we as-

sign centers to different combinations of facial attributes.

In other words, the number of centers is equal to the num-

ber of possible facial attribute combinations. To define our

attribute-centered loss, it is important to briefly describe the

overall structure of the recognition network.

2.2.1 Network Structure

Due to the cross-modal nature of the sketch-photo recogni-

tion problem, in this work, we employed a coupled DNN

model to learn a deep shared latent subspace between the

two modalities, i.e., sketch and photo. Figure 1 shows the

structure of the coupled deep neural network which is de-

ployed to learn the common latent subspace between the

two modalities. The first network, namely photo-DCNN,

takes a color photo and embeds it into the shared latent

subspace, pi, while the second network, or sketch-attribute-

DCNN, gets a sketch and its assigned class center and finds

their representation, si, in the shared latent subspace. The

two networks are supposed to be trained to find a shared

latent subspace such that the representation of each sketch

with its associated facial attributes to be as close as possible

to its corresponding photo while still keeping the distance

to other photos. To this end, we proposed and employed

the Attribute-Centered Loss for our attribute-guided shared

representation learning.

2.2.2 Attribute-Centered Loss

In the problem of facial-attribute guided sketch-photo

recognition, one can consider different combinations of fa-

cial attributes as distinct classes. With this intuition in mind,

the first task of the network is to learn a set of discrimina-

tive features for inter-class (between different combinations

of facial attributes) separability. However, the second goal

of our network differs from the other two previous works

[37, 30] which were looking for a compact representation

of intra-class variations. On the contrary, in our work, intra-

class variations represent faces with different geometrical

properties, or more specifically, different identities. Conse-

quently, the coupled DCNN should be trained to keep the

separability of the identities as well. To this end, we define

the attribute-centered loss function as

Lac = Lattr + Lid + Lcen, (4)

where Lattr is a loss to minimize the intra-class distances

of photos or sketch-attribute pairs which share similar com-

bination of facial attributes, Lid denotes the identity loss

for intra-class separability, and Lcen forces the centers to

keep distance from each other in the embedding subspace

for better inter-class discrimination. The attribute loss Lattr

is formulated as

Lattr =
1

2

m∑

i=1

max(‖ pi − cyi
‖2
2
−ǫc, 0) (5)

+max(‖ s
g
i − cyi

‖2
2
−ǫc, 0)

+ max(‖ simi − cyi
‖2
2
−ǫc, 0),

where ǫc is a margin promoting convergence, pi is the fea-

ture embedded of the input photo by the photo-DCNN with

attributes combination represented by yi. Also, s
g
i and simi

(see Figure 1) are the feature embeddings of two sketches

with the same combination of attributes as pi but with the

same (genuine pair) or different (impostor pair) identities,

respectively. On the contrary to the center loss (1), the at-

tribute loss does not try to push the samples all the way to

the center, but keeps them around the center by a margin

with a radius of ǫc (see Figure 2). This gives the flexibil-

ity to the network to learn a discriminative feature space

inside the margin for intra-class separability. This intra-

class discriminative representation is learned by the net-

work through the identity loss Lid which is defined as

Lid =
1

2

m∑

i=1

‖ pi − s
g
i ‖2

2
(6)

+max(ǫd− ‖ pi − simi ‖2
2
, 0),

which is a contrastive loss [11] with a margin of ǫd to push

the photos and sketches of a same identity toward each

other, within their center’s margin ǫc, and takes the pho-

tos and sketches of different identities apart. Obviously,

the contrastive margin, ǫd, should be less than twice the at-

tribute margin ǫc, i.e. ǫd < 2× ǫc (see Figure 2). However,

from a theoretical point of view, the minimization of iden-

tity loss, Lid, and attribute loss, Lattr, has a trivial solution

if all the centers converge to a single point in the embedding

space. This solution can be prevented by pushing the cen-

ters to keep a minimum distance. For this reason, we define

another loss term formulated as

Lcen =
1

2

nc∑

j=1

nc∑

k=1,k 6=j

max(ǫjk− ‖ cj − ck ‖2
2
, 0), (7)
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Figure 1: Coupled deep neural network structure. Photo-DCNN (upper network) and sketch-attribute-DCNN (lower network)

map the photos and sketch-attribute pairs into a common latent subspace.

where nc is the total number of centers, cj and ck denote

the jth and kth centers, and ǫjk is the associated distance

margin between cj and ck. In other words, this loss term

enforces a minimum distance ǫjk, between each pair of cen-

ters, which is related to the number of contradictory at-

tributes between two centers cj and ck. Now, two centers

which only differ in few attributes are closer to each other

than those with more number of dissimilar attributes. The

intuition behind the similarity-related margin is that the eye-

witnesses may mis-judge one or two attributes, but it is less

likely to mix up more than that. Therefore, during the test,

it is very probable that the top rank suspects have a few con-

tradictory attributes when compared with the attributes pro-

vided by the victims. Figure 2 visualizes the overall concept

of the attribute-centered loss.

2.2.3 A special case and connection to the data fusion

For better clarification, in this section, we discuss an spe-

cial case in which the network maps the attributes and geo-

metrical information into two different subspaces. Figure 2

represents the visualization of this special case. The learned

common embedding space (Z) comprises of two orthogonal

subspaces. Therefore, the basis for Z can be written as the

Span{Z} = Span{X}+ Span{Y }, (8)

where X ⊥ Y and dim(Z) = dim(X) + dim(Y ). In this

scenario, the network learns to put the centers in the em-

bedding subspace X , and utilizes embedding subspace Y

to model the intra-class variations.

In other words, the learned embedding space is divided

into two subspaces. The first embedding subspace repre-

sents the attribute center which provides the information re-

garding the subjects facial attributes. The second subspace

denotes the geometrical properties of subjects or their iden-

tity information. Although this is a very unlikely scenario

as some of the facial attributes are highly correlated with the

geometrical property of the face, this scenario can be con-

sidered to describe the intuition behind our proposed work.

It is important to note, the proposed attribute-centered

loss guides the network to fuse the geometrical and attribute

information automatically during its shared latent represen-

tation learning. In the proposed framework, the sketch-

attribute-DCNN learns to fuse an input sketch and its cor-

responding attributes. This fusion process is an inevitable

task for the network to learn the mapping from each sketch-

attribute pair to its center vicinity. As shown in Figure 1,

in this scheme the sketch and n binary attributes, ai=1,...,n,

are passed to the network as a (n+ 1)-channel input. Each

attribute-dedicated channel is constructed by repeating the

value that is assigned to that attribute. This fusion algorithm

uses the information provided by the attributes to compen-

sate the information that cannot be extracted from the sketch

(such as hair color) or it is lost while drawing the sketch.

3. Implementation Details

3.1. Network Structure

We deployed a deep coupled CNN to learn the attribute-

guided shared representation between the forensic sketch

and the photo modalities by employing the proposed

attribute-centered loss. The overall structure of the cou-

pled network is illustrated in Figure 1. The structures of

both photo and sketch DCNNs are the same and are adopted

from the VGG16 [32]. However, for the sake of parameter
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Figure 2: Visualization of the shared latent space learn by the utilization of the attribute-centered loss. Centers with less

contradictory attributes are closer to each other in this space.

reduction, we replaced the last three convolutional layers

of VGG16, with two convolutional layers of depth 256 and

one convolutional layer of depth 64. We also replaced the

last max pooling with a global average pooling, which re-

sults in a feature vector of size 64. We also added batch-

normalization to all the layers of VGG16. The photo-

DCNN takes an RGB photo as its input and the sketch-

attribute-DCNN gets a multi-channel input. The first input

channel is a gray-scale sketch and there is a specific channel

for each binary attribute filled with 0 or 1 based on the pres-

ence or absence of that attribute in the person of interest.

3.2. Data Description

We make use of hand-drawn sketch and digital image

pairs from CUHK Face Sketch Dataset (CUFS) [33] (con-

taining 311 pairs), IIIT-D Sketch dataset [2] (containing

238 viewed pairs, 140 semi-forensic pairs, and 190 foren-

sic pairs), unviewed Memory Gap Database (MGDB) [28]

(containing 100 pairs), as well as composite sketch and

digital image pairs from PRIP Viewed Software-Generated

Composite database (PRIP-VSGC) [12] and extended-PRIP

Database (e-PRIP) [24] for our experiments. We also

utilized the CelebFaces Attributes Dataset (CelebA) [22],

which is a large-scale face attributes dataset with more than

200K celebrity images with 40 attribute annotations, to pre-

train the network. To this end, we generated a synthetic

sketch by applying xDOG [38] filter to every image in the

celebA dataset. We selected 12 facial attributes, namely

black hair, brown hair, blond hair, gray hair, bald, male,

Asian, Indian, White, Black, eyeglasses, sunglasses, out of

the available 40 attribute annotations in this dataset. We

categorized the selected attributes into four attribute cate-

gories of hair (5 states), race (4 states), glasses (2 states),

and gender (2 states). For each category, except the gen-

der category, we also considered an extra state for any case

in which the provided attribute does not exist for that cat-

egory. Employing this attribute setup, we ended up with

180 centers (different combinations of the attributes). Since

none of the aforementioned sketch datasets includes facial

attributes, we manually labeled all of the datasets.

3.3. Network Training

We pre-trained our deep coupled neural network using

synthetic sketch-photo pairs from the CelebA dataset. We

followed the same approach as [37] to update the cen-

ters based on mini-batches. The network pre-training pro-

cess terminated when the attribute-centered loss stopped de-

creasing. The final weights are employed to initialize the

network in all the training scenarios.

Since deep neural networks with a huge number of train-

able parameters are prone to overfitting on a relatively small

training dataset, we employed multiple augmentation tech-

niques (see Figure 3):

• Deformation: Since sketches are not geometrically

matched with their photos, we employed Thin Plate

Spline Transformation (TPS) [4] to help the network

learning more robust features and prevent overfitting

on small training sets, simultaneously. To this end, we
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Figure 3: A sample of different augmentation techniques

deformed images, i.e. sketches and photos, by ran-

domly translating 25 preselected points. Each point is

translated with random magnitude and direction. The

same approach has been successfully applied for fin-

gerprint distortion rectification [5].

• Scale and crop: Sketches and photos are upscaled to

a random size, while do not keep the original width-

height ratio. Then, a 250×200 crop is sampled from

the center of each image. This results in a ratio

deformation which is a common mismatch between

sketches and their ground truth photos.

• Flipping: Images are randomly flipped horizontally.

4. Evaluation

The proposed algorithm works with a probe image, pre-

ferred attributes and a gallery of mugshots to perform iden-

tification. In this section, we compare our algorithm with

multiple attribute-guided techniques as well as those that

do not utilize any extra information.

4.1. Experiment Setup

We conducted three different experiments to evaluate the

effectiveness of the proposed framework. For the sake of

comparison, the first two experiment setups are adopted

from [24]. In the first setup, called P1, the e-PRIP dataset,

with the total of 123 identities, is partitioned into training,

48 identities, and testing, 75 identities, sets. The original

e-PRIP dataset, which is used in [24], contains 4 different

composite sketch sets of the same 123 identities. However,

at the time of writing of this article, there are only two of

them available to the public. The accessible part of the

dataset includes the composite sketches created by an Asian

artist using the Identi-Kit tool, and an Indian user adopting

the FACES tool. The second experiment, or P2 setup, is

performed employing an extended gallery of 1500 subjects.

The gallery size enlarged utilizing WVU Muti-Modal [1],

IIIT-D Sketch, Multiple Encounter Dataset (MEDS) [7],

and CUFS datasets. This experiment is conducted to eval-

uate the performance of the proposed framework in con-

fronting real-word large gallery. Finally, we assessed the

robustness of the network to a new unseen dataset. This

setup, P3, reveals to what extent the network is biased to

the sketch styles in the training datasets. To this end, we

trained the network on CUFS, IIIT-D Viewed, and e-PRIP

datasets and then tested it on IIIT-D Semi-forensic pairs,

and MGDB Unviewed.

The performance is validated using ten fold random

cross validation. The results of the proposed method are

compared with the state-of-the-art techniques.

4.2. Experimental results

For the set of sketches generated by the Indian (Faces)

and Asian (IdentiKit) users [24] has the rank 10 accuracy

of %58.4 and %53.1, respectively. They utilized an algo-

rithm called attribute feedback to consider facial attributes

on their identification process. However, SGR-DA [29] re-

ported a better performance of %70 on the IdentiKit dataset

without utilization of any facial attributes. In compari-

son, our proposed attribute-centered loss resulted in %73.2

and %72.6 accuracies, on Faces and IdentiKit, respectively.

For the sake of evaluation, we also trained the same cou-

pled deep neural network with the sole supervision of con-

trastive loss. This attribute-unaware network has %65.3

and %64.2 accuracies, on Faces and IdentiKit, respectively,

which demonstrates the effectiveness of attributes contribu-

tion as part of our proposed algorithm.

Figure 4 visualize the effect of attribute-centered loss on

top five ranks on P1 experiment’s test results. The first

row is the results of our attribute-unaware network, while

the second row shows the top ranks for the same sketch

probe using our proposed network trained by the attribute-

centered loss. Considering the attributes removes many of

the false matches from the ranked list and the correct subject

moves to a higher rank.

To evaluate the robustness of our algorithm in the pres-

ence of a relatively large gallery of mugshots, the same ex-

periments are repeated but on an extended gallery of 1500

subjects. Figure 5a shows the performance of our algo-

rithm as well as the state of the art algorithm on Indian user

(Faces) dataset. The proposed algorithm outperforms [24]

by almost %11 rank 50 when exploiting facial attributes.

Since the results for IdentiKit was not reported on [24], we

compared our algorithm with SGR-DA [29] (see Figure 5b).

Even tough SGR-DA outperformed our attribute-unaware

network in the P1 experiment but its result was not as ro-

bust as our proposed attribute-aware deep coupled neural

network.

Finally, Figure 6 demonstrate the results of the proposed

algorithm on P3 experiment. The network is trained on

1968 sketch-photo pairs and then tested on two completely

unseen datasets, i.e. IIIT-D Semi-forensic and MGDB Un-

viewed. The gallery of this experiment was also extended

to 1500 mugshots.
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Table 1: Experiment Setup

Setup Name Testing Dataset Training Dataset Train Size Gallery Size Prob Size

P1 e-PRIP e-PRIP 48 75 75

P2 e-PRIP e-PRIP 48 1500 75

P3
IIIT-D Semi-forensic

CUFS, IIIT-D Viewed, CUFSF, e-PRIP 1968 1500
135

MGDB Unviewed 100

Table 2: Rank-10 identification accuracy (%) on the e-PRIP

composite sketch database.

Algorithm Faces (In) IdentiKit (As)

Mittal et al. [23] 53.3 ± 1.4 45.3 ± 1.5

Mittal et al. [25] 60.2 ± 2.9 52.0 ± 2.4

Mittal et al. [24] 58.4 ± 1.1 53.1 ± 1.0

SGR-DA [29] - 70

Ours without attributes 68.6 ± 1.6 67.4 ± 1.9

Ours with attributes 73.2 ± 1.1 72.6 ± 0.9

Figure 4: The effect of considering facial attributes in

sketch-photo matching. The first line shows the results for a

network trained with attribute-centered loss, and the second

line depicts the result of a network trained using contrastive

loss.

5. Conclusion

In this work, we have proposed a novel framework to ad-

dress the difficult task of cross-modal face recognition for

photo and forensic sketches. By introducing an attribute-

centered loss, a coupled deep neural network is trained to

learn a shared embedding space between the two modalities

in which both geometrical and facial attribute information

cooperate on similarity score calculation. To this end, a dis-

tinct center point is constructed for every combination of

the facial attributes, which are used in the sketch-attribute-

DCNN, by leveraging the facial attributes of the suspect

provided by the victims, and the photo-DCNN learned to

map their inputs close to their corresponding attribute cen-

ters. This attribute-guided representation learning scheme

helped the network to filter out the photos in the gallery that

have many contradictory attributes to the attributes provided

by the victim. The effectiveness of the proposed framework

(a)

(b)

Figure 5: CMC curves of the proposed and existing algo-

rithms for the extended gallery experiment: (a) results on

the Indian data subset compared to Mittal et al. [24] and (b)

results on the Identi-Kit data subset compared to SGR-DA

[29].
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Figure 6: CMC curves of the proposed algorithm for exper-

iment P3. The results confirm the robustness of the network

to different sketch styles.

has been validated by extensive experiments.
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