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Abstract

We propose an approach to find and describe objects within
broad domains. We introduce a new dataset that provides
annotation for sharing models of appearance and correla-
tion across categories. We use it to learn part and category
detectors. These serve as the visual basis for an integrated
model of objects. We describe objects by the spatial ar-
rangement of their attributes and the interactions between
them. Using this model, our system can find animals and
vehicles that it has not seen and infer attributes, such as
function and pose. Our experiments demonstrate that we
can more reliably locate and describe both familiar and un-
familiar objects, compared to a baseline that relies purely
on basic category detectors.

1. Introduction

Researchers have made great progress in developing sys-
tems that can recognize an individual object category. But
what if we want to recognize many objects? The current so-
lution is to build a new detector for each category of interest.
While simple, this approach does not acknowledge the com-
monalities among many different types of objects. One con-
sequence is inefficiency: each new detector requires many
training examples, and evaluation time grows linearly. But
the main downside of the approach is that each category
needs to be defined in advance. This is a major problem
for many applications. For example, an automated vehicle
needs to recognize a horse in the road as an animal and pre-
dict its movement, even if it has never seen one (Figure 1).

In this paper, we propose a more flexible and integrative
framework that enables new objects to be understood with
respect to known ones, allowing them to be partially rec-
ognized. Instead of learning each category separately, we
group objects within broad domains, such as “animal” and
“vehicle”. During training, we learn detectors for cate-
gories and parts that are shared across basic-level cate-
gories. For example, “leg” and “four-legged animal” detec-
tors are shared by dogs and horses, while the “dog” detec-
tor applies only to dogs. Using a simple graphical model,
we also encode the correlations among attributes, includ-
ing parts, categories, pose, and function. Through a shared
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Figure 1. In this result, our system has never seen a horse or a
carriage, but it is able to localize them and identify their parts,
among other attributes.

representation, we enable the system to predict that a horse
is a four-legged animal and that is standing and capable of
walking, even if it has not seen any horses during training.
During testing, our system finds new objects by voting for
object locations using our part and category detectors. Us-
ing the learned correlations, the system then infers the at-
tributes of the object and the likelihood that it is within a
known domain.

Our goal is to find and describe any object within known do-
mains. This ability to generalize beyond specifically trained
tasks is crucial for many applications, but existing recogni-
tion datasets are designed only for study of individual cat-
egory recognition. Accordingly, we provide a new CORE
(Cross-category Object REcognition) dataset that allows de-
velopment and study of object models with intermediate
semantics. Our dataset includes 2,800 images of natural
scenes, with segmentations and attribute annotations for ob-
jects in 28 categories of vehicles and animals. We train on
19 categories of familiar objects and test on new images
containing all 28 categories, including 9 categories of un-
familiar objects whose basic-level categories are not seen
during training.

We perform experiments on two tasks: 1) find all animals
and vehicles; and 2) assign attributes to localized objects.
We compare our method that integrates shared detectors and
reasoning about attributes to a baseline that detects basic-
level categories and infers attributes directly from the cate-
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gory. Our model outperforms the baseline by a surprising
margin for both tasks, improving recognition of familiar ob-
jects and doubling the recall of unfamiliar objects at a fixed
false positive rate.

Background. The earliest works in object recognition at-
tempted to model objects in terms of configurations of
shared materials, parts, or geometric primitives [32, 14, 6,
15, 26, 25, 4, 31]. Ultimately, these methods gave way
to simpler, more direct and data-driven methods for recog-
nition that avoid hand-coded models. We now have sev-
eral advantages that make it propitious to revisit recogni-
tion with intermediate semantics. First, researchers have
made great strides in basic pattern matching. We show that
an existing detector from Felzenszwalb et al. [13] can learn
appearance models of parts and objects that perform well
in our difficult dataset. Second, digital images are abun-
dant, enabling data-driven, statistical approaches and rigor-
ous evaluation. Finally, annotation is now also easy to ob-
tain, with services such as Amazon’s Mechanical Turk [34].
With an abundance of data, fast computers, large-scale an-
notation services, advanced machine learning methods, and
improved low-level features, we believe that object repre-
sentation is the key to progress in recognition.

Our focus is on creating the right level of abstraction for
knowledge transfer. Others [37, 27, 35, 20, 36, 7, 2, 12,
3, 22] have shown that sharing low-level features can im-
prove efficiency or accuracy, when few examples are avail-
able. But on challenging datasets [10] with many training
examples, these methods have not yet been shown to out-
perform the best independently trained detectors (e.g. [13]).
By providing stronger supervision, we enable more effec-
tive knowledge transfer, leading to substantially better per-
formance than standard object detectors at localization and
naming, while additionally inferring pose, composition, and
function.

In our use of supervised parts to aid detection, we relate
to recent works on learning compositional models of ob-
jects [40, 16, 39, 1]. Compositional models are attractive
because they allow different objects to be represented by
shared components, allowing learning with fewer examples.
Though our aim relates, our models are much simpler, and
we are able to achieve state-of-the-art results on a difficult
dataset.

Our aim to improve generalization through supervised in-
termediate semantics is related to several recent works.
Palatucci et al. [28] study the generalization properties of
systems that use intermediate representations to make pre-
dictions for new categories, with application to interpreta-
tion of neural patterns. Kumar et al. [17] show that pre-
dicted facial attributes, such as fullness of lips, are highly
useful in face verification. More generally, their work
demonstrates the role of intermediate semantics for subcat-
egory differentiation, while ours focuses on generalization
across broad domains. Farhadi et al. [11] and Lampert et
al. [18] show that supervised attributes can be transferred

across object categories, allowing description and naming
of objects from categories not seen during training. These
attributes were learned and inferred at the image level, with-
out localization. In contrast, we learn localized detectors of
attributes and encode their spatial correlations. This allows
us to automatically localize objects and to provide much
more accurate and detailed descriptions.

Contributions. Overall, we demonstrate the promise of an
approach that infers an underlying semantic representation
through shared detectors. By learning about one set of ani-
mals or vehicles, we can localize and describe many others.
This ability is essential when a system must reason about
anything it encounters. In the past, limited availability of
data and annotation has hindered attempts to learn more
integrated models. Our dataset should make such studies
much more feasible. In summary, this paper offers the fol-
lowing contributions:

• Framework for more flexible and integrative recogni-
tion that allows objects within broad domains to be lo-
calized and described

• Techniques for knowledge transfer of appearance, spa-
tial and relational models

• CORE dataset that enables development and study of
object models with intermediate semantics

• Validation of our approach and study of how well
appearance-based detectors of parts and superordinate
categories can generalize across object classes

2. Learning Shared Object Models

We have created a new dataset for studying shared repre-
sentations and cross-category generalization. We use it to
learn shared appearance models, co-occurrence, and spatial
correlations.

2.1. Dataset

Figure 2. Example of an annotation in our dataset.



Representation is the key to effective knowledge transfer.
Observations of biological systems suggest that good rep-
resentations can be learned automatically, leading to much
research in unsupervised discovery of latent structure in im-
ages or objects. However, for a passive machine that cannot
explore or manipulate objects, it is not known whether such
structure can be discovered from images without supervi-
sion.

To allow exploration of strongly supervised approaches
and shared representations, we have created a new CORE
(Cross-category Object REcognition) dataset. We currently
have roughly 3,000 annotated objects in 2,800 images,
many gathered from ImageNet [9]. The annotations for
each object include object segmentation, segmentation of
parts, category and part labels, masks for common materi-
als, pose, and viewpoint. In total, 28 different kinds of ob-
jects (animals and vehicles) are annotated, as well as several
dozen types of parts and ten materials. We used labelers in
Mechanical Turk with careful quality checks. Our annota-
tion is motivated, in part, by research in human concepts and
categories [33, 24, 30, 23]. We show an example of an anno-
tation in Figure 2, and typical scenes can be seen throughout
in our result figures. In our work, we use only a subset of the
annotation: bounding boxes, names of objects, parts, poses,
and functional attributes. The dataset and annotations along
with supporting code, documentation and detector models
are currently available at http://vision.cs.uiuc.edu/CORE.

In comparison to PASCAL VOC [10], our dataset appears
to be slightly easier for basic-level object detection (average
AP using [13] is slightly higher), likely because our dataset
has fewer occluded vehicles, but our dataset includes sev-
eral very difficult categories (bat, whale, and boat) with AP
less than 0.05. However, our dataset is intended to study the
much greater challenge of cross-category generalization in
localization and description.

2.2. Shared Appearance Models

Shared appearance models are the foundation of our ap-
proach. If we cannot detect parts or objects, even the most
sophisticated reasoning will be useless. We have some ev-
idence [10] that object detectors can work well, if they are
trained on many examples of whole objects and tested on
instances from the same categories. But can these methods
learn to recognize parts or broad categories in a way that
generalizes across categories?

Our dataset allows us to answer this question. Using the
code from Felzenszwalb et al. [13] and our training set, we
train detectors for parts (e.g., “leg” or “wheel”), superordi-
nate categories (e.g., “four-legged animal” or “four-wheeled
vehicle”), and basic-level categories (e.g., “dog” or “car”).
These detectors model objects as mixtures of deformable
“part” models. These parts are latent and without inter-
mediate semantics. They are modeled by histograms of
gradients (HOG) and allowed limited movement, provid-
ing robustness to small deformations. We use the default

settings, modeling objects as a mixture of two components,
each with a root and five latent parts (see [13] for further
details). We find that both the mixture model and the la-
tent “parts” improve recognition performance, even when
detecting simple semantic parts such as legs or wheels. De-
tection is performed by sliding window, followed by non-
maximum suppression with 0.5 overlap threshold for cat-
egories and 0.25 for parts. The detector SVM outputs are
calibrated using Platt’s probabilistic outputs algorithm [29]
(fitting a sigmoid) on the training set.

In Figure 3, we show the test accuracy of the trained de-
tectors for both familiar and unfamiliar objects. For in-
stance, the “four-legged animal” detector needs to gener-
alize from the familiar objects – camels, dogs, elk, lizards,
and elephants – to the unfamiliar objects, such as cows, cats,
and alligators. The superordinate categories tend to achieve
about 60% of the recall at the same false positive rate, while
part detectors have greater variation in performance. Some
parts are relatively easily detected and generalized. These
parts include leg, wing, head, eye, and ear for animals, and
wheel, license plate, and side window for vehicles. Some
parts (not shown), such as rear-view mirror were too small
or too infrequent to learn well. Overall, these detection re-
sults show a surprising degree of generalization across cat-
egories. This gives us hope for more integrated object mod-
els.

2.3. Shared Correlations and Spatial Relations

Part locations, categories, and other attributes of objects are
strongly correlated. Further, many of these correlations are
shared across categories. While dogs and cows look quite
different, they have roughly the same configuration of parts,
poses, and so on. Some of these attributes can be inherited
from basic categories, but we also want to localize and de-
scribe objects from unfamiliar categories. For localization,
we use part and category detectors based on spatial mod-
els shared across categories. For description, we propose a
simple graphical model that loosely encodes attribute cor-
relations. The model is a form of topic model with “roots”
that serve as soft clusters. These clusters summarize the
visual evidence in a way that allows us to infer other at-
tributes. For example, one cluster could correspond to four-
legged animals lying down and facing left, while another
might correspond to flying birds.

3. Finding and Describing Objects

Given an input image, we want to find all of the objects
within known domains (here, animals and vehicles) and in-
fer their attributes. The first step is to apply our trained
detectors for parts and categories. We then obtain object
candidates by accumulating votes from confident detectors.
The accumulation of voting confidence provides an initial
score. Finally, we perform inference over our graphical
model to infer likelihood of the object attributes.
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Figure 3. Current object detectors can learn parts and superordinate categories that generalize across basic-level categories. On the top row,
we show the area under the ROC (AUC) for all detectors that are required to generalize to unfamiliar objects, with the bottom showing full
curves for some examples. The categories of familiar objects are seen during training, while unfamiliar objects are not. AUC is computed
on the curve truncated at 2FP (see Section 4.1), so that chance performance is approximately 0 and perfect is 1.
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Figure 4. Illustration of voting method. Confident detections vote
for object position and size. Left: high confidence detections (box
and name colors correspond). Center: sample of votes from three
detections (thick lines are detected box, thin lines are voted boxes).
Right: object candidate in red and detections that cast votes for it.

3.1. Finding Objects by Voting

We train one localizer for animals and one for vehicles that
predicts the object bounding box based on the positions and
confidences of category and part detections. Our voting
method (illustrated in Figure 4) is strongly related to ex-
isting works that vote based on learned codewords [19, 21],
distinctive keypoints [8, 38], or human parts [5]. Of these,
our method is most similar to Bourdev and Malik [5], who
select distinctive parts that correspond to a particular posi-
tion in a supervised body pose. Our method differs in that
the parts used for voting are semantic, fully supervised, and,
more importantly, shared across categories.

In training, we find all correct detections above a given
confidence threshold (0.01 for the calibrated detectors in
our experiments). Then, we compute and store the off-
set in scale and position (relative to scale) for each ground
truth object bounding box. For instance, both a detected
“head” and a detected “dog” will vote for the bounding
box of the entire animal. This allows us to vote from
both parts and whole-object detectors. Denoting the de-
tection box by center {xd, yd} and scale {sxd, syd} and
the ground truth object box {xo, yo, sxo, syo}, the offset is

{xo−xd

sxd
, yo−yd

syd
, sxo

sxd
,

syo

syd
}. During prediction, each offset

gets an equal vote with the sum equal to the detection confi-
dence; the voted box is determined by the offset and the de-
tection bounding box. Some detectors may have hundreds
of correct detections, many with nearly identical offsets. To
improve efficiency, we merge nearly overlapping offsets (in-
tersection over union threshold of 0.85) as a pre-process,
accumulating votes appropriately.

During testing, we threshold detections by confidence
(again at 0.01) and cast weighted votes for each offset.
These need to be combined into final votes for objects.
The typical procedure is accumulation through Hough vot-
ing [19, 21] or mode-finding using mean shift [38]. We
found these methods difficult to work with, due to speed
and the need to set various parameters. Instead, we use a
simple two-step clustering procedure. The first step is to
perform non-maximum suppression of voted boxes. The
most confident vote is set as a cluster center. Remaining
boxes in decreasing order of confidence are assigned to the
existing center with highest overlap or made into a center
if the maximum overlap is less than threshold (0.5). The
second step is a form of k-means, iterating between com-
puting the weighted mean of the boxes within a cluster and
reassigning each box to the nearest center (using overlap,
not Euclidean distance). Because these centers may drift
towards each other, we repeat these two steps several times
until the number of centers is left unchanged. The initial
score for a candidate is given by the sum of confidences of
voted boxes with at least 50% overlap.

The entire voting process takes about fifteen minutes to find
all animals or vehicles in the set of 1400 test images, and
it achieves high recall with few object candidates per im-
age. With roughly 10-20 candidates per image, the system
achieves 85% recall for familiar objects, and roughly 70%
recall for unfamiliar objects. The parts improve recall, es-
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Figure 5. Graphical model representation of the root model. “R”
is the root node through which the attribute nodes “Sp”, “Blc”,
“Sc”, “P”, “F”, and “Asp” communicate. Shaded nodes are ob-
served detector responses for spatial parts, basic level categories
and superordinate categories.

pecially for unfamiliar animals: without them, recall drops
by about 15%.

Though they improve recall, the part detections add little
weight to the voting score because they are not indepen-
dently confident. To make better use of them, we rescore
the detections by training logistic regression on the voting
score and the localized part and category detections that are
described next.

3.2. Describing Localized Objects

The description task aims to predict binary attributes of a
given localized object. We do so by performing inference on
the graphical model presented in Figure 5. In our model, the
“root” node generates each of the attributes, some of which
generate detector observations. The spatial part (Sp) nodes
encode the visibility of the parts in one of the six spatial bins
(whole, top, bottom, left, center, right). The dsp encodes the
strongest detector response in each of the spatial bins. BLC
stands for the basic level categories. The dblc is the maxi-
mum detector response with sufficient overlap with the re-
gion of interest. Superordinate categories are handled by
the Sc node. Similar to the dblc, the dsc is the maximum de-
tector response for superordinate categories. The remaining
nodes encode attributes which do not directly rely on any
detector. These attributes may not be visually obvious, such
as functional attributes (F), hard to predict directly, such as
aspect (Asp), or not have enough training examples to train
appearance models. The node “P” indicates if an object has
an attribute or not. This is different from the visibility of
an attribute. For instance, “dog” has “leg” regardless of the
“leg” being visible or not. For this purpose, we consider
including a set of nodes “Sp” for spatial visible parts and
another set of nodes “P” to consider the potentials of hav-
ing a part. We also have nodes for the functional attributes
of objects such as “Can this object bite?”

The model is learned using Expectation Maximization
(EM). As the nodes are multinomial, the derivation is
straightforward. We show that this model improves the at-
tribute prediction for familiar objects and that of unfamiliar

objects by considerable margins (Table 2).

Inference can be done in closed form shown in Equations 1
and 2 by marginalizing over attributes with and without
learned detectors. Equation 1 computes the marginals given
the observations for attributes Ai for which we have learned
detectors (Ai ∈ {Sp,Blc, Sc}). Aj �= Ai corresponds to
all other nodes for which we have detectors.

P (Ai = ai|d̄) ∝
∑

R

P (R)P (ai|R)
P (ai|di)

P (ai)

∗
∏

Aj �=i

∑

Aj �=i

P (Aj |R)
P (Aj |dj)

P (Aj)
(1)

The inference on attributes Bi ∈ {P, F, Asp} without any
learned detector is obtained by Equation 2:

P (Bi = bi|d̄) ∝
∑

R

P (R)P (bi|R)
∏

Aj

∑

Aj

P (Aj |R)
P (Aj |dj)

P (Aj)

(2)
where Aj corresponds to all the nodes with detectors.

This framework allows us to learn separate root models for
each domain and perform inference over them jointly. To
do so, we can simply change the priors for each root to sum
to one over all domains.

4. Experiments

We perform experiments on two tasks: (1) find all animals
or vehicles; and (2) describe localized objects by their at-
tributes. In each case, we measure how well we perform
for familiar objects and for the unfamiliar objects. In all,
our experiments show that part and superordinate detectors
can generalize across basic categories (Figure 3) and that
modeling objects in terms of shared properties allows much
better localization (Figures 6, 7) and description (Table 2,
Figure 8) for both familiar and unfamiliar objects.

4.1. Experimental Setup

Baseline. Our baseline uses top-notch detectors [13] to
learn basic-level categories. For localization, we calibrate
the detectors and perform non-maximum suppression. For
description, we model the attributes as probabilistically in-
herited from the categories, and infer them by marginaliza-
tion. Essentially, the baseline makes the basic categories
the roots of our model and does not use additional detec-
tors. This is similar to the experiments in [18]. Our method
substantially outperforms the baseline in both tasks, espe-
cially localization and prediction of pose.

Evaluation. To evaluate localization, we use area under the
ROC curve, truncated at 2FP per image to emphasize the
high precision portion. In contrast with average precision,
a recently popular performance measure [10], our measure



Localization Animal Vehicle
AUC F U C F U C

BLC Baseline .364 .126 .203 .644 .313 .425
Voting .456 .230 .303 .679 .441 .521
Full Model .471 .247 .320 .678 .468 .539

Table 1. We compare AUC for localizing familiar and unfamiliar
objects (F=familiar, U=unfamiliar, C=combined) to a baseline that
uses a detector trained only on basic categories.

does not depend strongly on the density of positive exam-
ples. This is important because it allows us to meaningfully
compare curves computed for different populations of ob-
jects.

To evaluate the description task, we compute an ROC curve
and its area (AUC) for each attribute. We then average the
AUCs within each of these attribute types: basic-level cat-
egory, superordinate category, existence of parts, pose, and
function (section 3.2).

4.2. Results for Finding Objects

In Table 1 and Figure 6, we compare our ability to find an-
imals or vehicles to a baseline. We can draw two conclu-
sions. First, we are better able to recover familiar objects
than unfamiliar objects, as expected, we also do well on
unfamiliar objects (Figure 7). Second, our method outper-
forms the baseline by a large margin, especially for unfa-
miliar objects. The improvement is amazing considering
that we use the same detection method as the baseline and
see the same training examples. The difference is due to our
appropriate use of our shared part and superordinate detec-
tors.

The baseline is computed by performing non-maximum
suppression over the calibrated basic-level category (BLC)
detectors. Our method votes for object candidates using part
and category detection, weighted by confidence, and sums
the votes as a score (Section 3.1). We also tried our voting
method using only BLC detectors and achieved similar re-
sults to the baseline, ensuring that the improvement is due
to our shared parts and superordinate categories. Although
part detectors improve our recall, they do not have large im-
pact on the voting score because they are rarely confident.
To make better use of them, we re-rank top candidates using
logistic regression on the voting score and all detector re-
sponses in our root model (dsp, dblc, dsc in Figure 5) . This
provides a small but significant improvement.

4.3. Results for Describing Objects

Table 2 compares the ability of the root model for predicting
attributes of objects with that of using the baseline. Table
2 shows the area under ROC curve for familiar and unfa-
miliar objects. Our method improves attribute predictions
for familiar and unfamiliar objects by large margins. These
results show the ability of this model to generalize across
categories. Figure 8 depicts qualitative object description
results.

5. Discussion

We have shown how to learn more accurate and detailed
object models through shared representations. Our mod-
els are simple, and we rely on no hand-tuned parameters.
Carefully designed representations and a small amount of
additional annotation is sufficient to achieve quantitatively
and qualitatively better results than existing detectors that
are given only the names of objects. Our study is only re-
cently made possible by advances in detection, prolific data,
and large-scale annotation services. We believe that our
dataset will open new avenues for familiar problems. For
example, active learning methods can use intermediate se-
mantics to form more detailed queries. Contextual methods
may prove especially helpful for superordinate categories.
There is also much room to better model the correlations
of attributes, encoding prior knowledge as soft constraints.
Computer vision has long progressed by subdividing prob-
lems; now we can further progress by rebuilding.
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Figure 6. We compare our ability to detect familiar and unfamiliar animals and vehicles. Our model integrates shared parts and superordi-
nate detectors. The baseline uses only the standard basic-level detectors.

Figure 7. Our system can find animals and vehicles and localize their parts, even if it has never seen them before. The first two rows show
examples of detections for animals and vehicles like cows, cats, bicycles, buses, carriages, or horses, that our system never observed. Often
times, detected parts help the final detection of unfamiliar objects. For example the the legs of the cows in the first row, or the wheels of
the carriage in the second row. Each solid-line bounding box is an object detection above a given threshold (red=vehicle, green=animal),
and dashed boxes show part detections that helped to find the object (first three letters of part name shown). Black boxes indicate detected
categories. The third row depicts examples of detecting familiar objects. The bottom row shows examples of mistakes our system makes.
For example predicting vehicle wings for the motorcycle. This is mainly because of the fact that we do not enforce any consistency during
localization.
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