
Attribute Grammars as

a Functional Programming Paradigm

Thomas Johnsson

Department of Computer Science, Chalmers University of Technology

S-412 96 GSteborg, Sweden

Abstrac~

The purpose of this paper is twofold. Firstly we show how attributes in an attribute grammar

can be simply and efficiently evaluated using a lazy functional language. The class of attribute

grammars we can deal with are the most general ones possible: attributes may depend on each

other in an arbitrary way, as long as there are no truly circular data dependencies.

Secondly, we describe a methodology based on attribute grammars, where, in a fairly

straightforward way, we can develop efficient functional programs where direct, conventional

solutions yield less efficient programs. We review two examples from a paper by R. Bird (Using

circular programs to eliminate multiple traversals of data, Acta Informatica, 21, 1984) where

he transforms simple but inefficient multipass programs into more efficient single pass ones, but

which on their own can be very hard to understand. We show how such efficient but tangled

programs can have natural formulations as attribute grammars.

We also propose a language construct, called case rec (akin to the case expression in

Standard ML and Lazy ML), that defines an attribute grammar over a data structure in the

language. In effect, a ease rec expression defines a recursion operator that can handle multiple

values, both upwards-propagating and downwards-propagating ones.

1 I n t r o d u c t i o n

Occasionally, using a funct ional language can be a bit of a pain: where the impera t ive programming

solution is s imple and obvious, the corresponding functionM program can be bo th awkward and

inefficient.

As a typical example, we want to organize a compiler as follows: The compiler makes multiple

passes over the syntax tree~ each pass computes some information which is assigned to nodes in the

tree. It is s t ra ightforward to program this imperatively. However, in the s traightforward functional

solution, each pass would have to build a a new tree with the addit ional information in the nodes.

Further, one may have to define a set of different tree types~ one for each result tree from a pass!

Another example in the same vein is the task of assigning unique numbers to each node in a

tree. The impera t ive program simply traverses the tree to update the nodes, obtaining a unique

number by increment ing a global counter. The corresponding functional program has to drag along

the unique number in the recursion, and the s t ructure of the program becomes a bit messy.

In this paper we describe how such shortcomings can be overcome, by using a programming

paradigm based on a t t r ibu te grammars. Coupled with a simple and efficient me thod for a t t r ibute

evaluation, based on lazy evaluation, we can also obtain efficient programs.

At t r ibu te grammars [Knu68] were originally conceived as a method for specifying semantics of

programming languages, but are nowadays mostly regarded as a convenient means of specifying

syntax directed translat ions e.g. in compilers - - see e.g. [AUS86]. Not surprisingty~ the desig-a of

155

efficient a t t r ibute evaluators has become a very active area of research, as the great number of

papers in the field indicates (see [DJL85] for an annotated bibliography). Most efficient attribute

evaluation systems determine an evaluation order at evaluation generation time, and impose con-

straints on how attr ibutes may be written and may depend on each other, to be able to use

a particular evaluation scheme; e.g. purely bottom-up, left-to-right-ness, strong non-circularity,

etc. Others determine the evaluation order at runtime, but are then usually less efficient. See

[DJL86b,DJL86a,DJL85] for a survey on main results, existing systems, and a classified bibliogra-

phy.

It turns out that attribute evaluation can be done in a particularly simple way with a lazy

functional language, without imposing any constraints on attribute dependencies. The difficulties

in conventional languages seem to stem from the fact that an imperative program (or a strict

functional one) specifies exactly in which order values ave computed--consequently, the evaluation

order for the attributes will have to be figured out at evaluation-generation time for each attribute

grammar. On the other hand, in a lazy functional language implementation, the actual order in

which expressions are evaluated is determined at runtime by the data dependencies, on demand,

by the lazy evaluation machinery.

This paper is organized as follows. In section 2 we give a brief introduction to attribute

grammars. In section 3 we describe the simple method for attribute evaluation. In section 4

we discuss attribute grammars as a convenient means of expressing algorithms traversing data

structures (multiple passes in general), and describe how to turn these attribute grammars into

functional programs which traverse the data structure only once. We review two examples from

[Bit84] (which describe a different methodology for obtaining the same programs), and we compare

the two approaches. In section 5 we discuss implementation issues, and some characteristic features

of a graph reduction implementation. In section 6 we develop a language construct analogous to

an attribute grammar, called case rec (in analogy with the case expression in LML and SML).

Section 7 discusses circular attribute definitions. Section 8 concludes the paper.

We assume that the reader has some familiarity with lazy functional languages such as SASL

[Tur76], Miranda [Tur85] or Lazy ML. Program examples in this paper will be given in Lazy ML

(LML), a lazy and completely functional variant of ML [GMW79]. Like SML [Mi184], LML has

borrowed the concrete data types and pattern matching from HOPE [BMS80]. LML is the source

language for a compiler that compiles into efficient machine code that performs graph reduction

[Aug84,Joh84].

2 A b r i e f i n t r o d u c t i o n to a t t r i b u t e g r a m m a r s

An at t r ibute grammar is a context-free grammar augmented with semantic rules. To each non-

terminal symbol in the grammar a fixed set of attribute8 is associated. An at tr ibute is either

synthesized or inherited. The semantic rules for each production Xo --~ X1X2"" X i ' " Xn specify

the values of of the synthesized attributes of the left hand nonterminal X0 and the inherited ones

for the nonterminals Xi of the right hand side of the production rules. Evaluation of an at tr ibute

grammar with respect to a parse tree can be thought of as decorating the nodes in the parse tree

with the values of the attributes. Thus, synthesized at t r ibute values propagate upwards in the

parse tree, inherited ones downwards. A synthesized at t r ibute a of a nonterminal X will be written

XTa; similarly, we write X~a for an inherited attribute. Attr ibutes may also depend on possible

lexical values (e.g. the numerical value of the lexical symbol INTCONST), in which case they

act as synthesized attr ibutes assigned by the lexical analyzer. Here they will be written as e.g.

IN C O N S T T lexval.

Below, we give a (schematic) example of an at tr ibute grammar: expressions expr with integer

constants INTCONST and the single binary operator PL US. We have two synthesized attributes,

156

called $1 and $2, and one inherited attr ibute, cal led/ . To distinguish between different occurences

of the nonterminal expr in a production, indexing is used; i.e. exprl and expr2.

expr ~ ezprl PL US expr~ ezprTS1 = El[ezprlI, . . . ezpr2TS2]

expr T S2 = E2[ezpr ~I, . . . expr2T S2]

exprl~I = E3[exprJ.I~ . . . expr~TS2]

expr2J.I = E4[ezprJ.I, . . . expr2TS~]

expr --~ inicon~t ezprTS1 = E~[ezprJ.I~ ezprTSl , exprTS2, INTCONSTTlexval]

expr T S$ = E6[expr ~I, exprT S1, ezprT S$, INTCO NSTT lexval]

Here E1 through E6 stand for arbi trary expressions to define the values of the attributes. Since we

allow arbi t rary a t t r ibute dependencies, the expressions E1 through E4 may have occurences of all

the nine at tr ibutes expr~L ezpr~S1, exprTSZ, exprlJ.I, ezprlTS1, ezpriTS~, ezpr2.~I, ezpr2TS1 and

exprzTS~. Similarly, E~ and Es may have occurences of expr.LI~ czprTSI, exprTS$, and the lexical

value INTCONSTTIexvaL

Traditionally, in a t t r ibute grammar systems the language in which the at t r ibute values are

expressed is a conventional imperative one [DJL86a]. However, it should be clear that functional

languages are perfect for expressing at t r ibute definitions, as they provide the natural value-oriented

view implicit in a t t r ibute grammars. Such languages have a very general notion of value. "Values of

expressions can be, among other things~ lists (even infinite ones!), trees, functions etc. Thus such

languages are perfect for expressing a t t r ibute definitions, as the value of an at t r ibute can be a code

sequence, a symbol table etc. In contrast, doing the same thing in a conventional language, like

Pascal for example, requires much side-effecting - - output code sequences, update symbol tables

etc.

3 T h e e v a l u a t i o n m e t h o d

Normally parser generator systems, like Yacc [Joh75] in Unix, provide at least some simple means

of handling values. In Yacc, which constructs a bottom-up LALR(1) parser, a single upwards-

propagating (synthesized) a t t r ibute can be handled. Our method constitutes transforming the

at t r ibute grammar into a new one with a single attribute, a synthesized one. Thus it should

be straightforward to put our scheme on top of an already existing parser generator, provided

that it can produce a parser in a lazy functional language. A parser generator for LML together

with an a t t r ibute grammar system based on the method to be described below, is currently being

implemented by G. Uddeborg [Udd].

The new single a t t r ibute is a function taking the original inherited at tr ibutes as arguments and

returns a tuple of the original synthesized attributes. We now show how this works by transforming

the a t t r ibute grammar in the previous section into this form. Thus, the new synthesized attribute,

called f-a, is a function taking the original inherited at t r ibute e~pr.LI as argument and returning

the pair of the original at tr ibutes (e~prTS1, exprTS~).

Firs t we turn a t t r ibute identifiers exprJ.I etc. into ordinary identifiers. We do that by simply

replacing the a t t r ibute operators ~ and ~ with a character that may occur in an identifier - - we will

use underscore "_" for this purpose. Then these slightly rewritten definitions are simply inserted

into a structure for handling the administrative task of obtaining the inherited at t r ibute values of

the left hand nonterrninal symbol ezpr, and the synthesized ones for the nonterminals in the right

hans side of the grammar rule. Thus the definitions of the first grammar rule are inserted into

expr T fn = A expr_L
le t rec (exprl.S1, exprl_S$) = ezi0r~Tfn ezprl_I a n d

157

(ezpr2.S1, ezpr2_S~) = expr2Tfn ezpr~_I a n d

{ ... agtribute definitions ... }

in (ezpr_S1, ezpr_S~).

with ezpr~_S1 substi tuted for exprlTS1, etc, in the at t r ibute definitions. Thus the rewritten

at t r ibute grammar for our schematic example now is as follows:

ezpr ---* expr 1 P L US expr2

ezpr Tfn = Aezpr_I.

le t rec (ezvrl_S1 , exprl_SS2) = exprlTfr~ exprl_I a n d

(ezpr2.~ql, expr2-S$) = expr2 Tf'n expr2 f f a n d

ezpr_S1 = El[ezpr_I, . . . expr2_S$] a n d

expr_S2 = E2[expr_I, . . . ezpr2..S$] a n d

ezprl_I = Es[ezpr-[, . . . ezpr2_S~] a n d

ezpr~_I = E4[ez.pr-[, . . . ezpr2_gz] a n d

in (expr_S1, expr_S$)

ezpr ~ I N T C O N S T

ezprTfn = AezprJ .

l e t rec ezpr.S1 = E~[ezpr_I, ezpr_S1, expr_S2] a n d

ezpr.S¢g = E~[ezpr_I, ezpr_S1, expr_S~]

in (ezpr_S1, ezpr_S~)

In a shift-reduce parser, e.g. an LR parser [AUS86], during parsing values associated to terminal

and non-terminal symbols are kept on stack. When performing a reduction according to the first

graramar rule above, the new value stack can be computed from the old one as follows.

reduee_rule_l (ezpr~,_fa. _. ezprl_fr t , r e s t o f s t a e k) =

(Aexpr_I,

(l e t ree (ezprl_S1, ezprl. .S~) = ezprl_f'n ezpr l_I a n d

(expr$..S1, ezpr$_S$) = expr~_f'n expr2_I a n d

expr_S1 = El[expr..I, . . . expr$_S~] a n d

ezpr.,.q$ = E2[ezpr-.[, . . . expr2_S~] a n d

exprl_I = E3[expr..I, . . . ezpr$_8$] a n d

ezpr$_[= E4[expr_I~ . . . ezpr~.S$] a n d

in (ezpr_Sl, expr_S$)

). resto#tack

The key to the applicability of the method is the possibility in a lazy functional language to trove

recursive definitions of non-function values. Definitions are lazy, i.e., none of the defined values are

actually computed until they are needed. Definitions where the left hand side is a variable pattern,

like

l e t rec (z , y) = e . . .

are treated as

l e t r e e A = e a n d x = f i t A a n d y = s n d A a n d . - .

where f i t and snd are functions returning the first and the second component of a pair, respectively.

Although at t r ibute grammar evaluation according to our method can become reasonably ef-

ficient when coupled with an efficient implementation of a lazy functional language such as the

158

Lazy-ML compiler [Joh84,Aug84] it is probably less efficient, than eg. the one in [Kat84] which

accepts a restricted set of at t r ibute grammars. Our method, in constrast has the advantage of full

generality.

A similar idea has been mentioned in [KL$1], where a tree with the attr ibutes built into the

nodes is returned as a result of parsing. A related idea is to let each function be a function from (all)

inherited at tr ibutes to that particular synthesized attribute. This idea has been used in papers on

semantics [MayS1] [CM79], but for implementation purposes this idea is useless except in special

cases, since it can lem:l to large amount of recomputation of at t r ibute values. This recomputation

can be avoided if the functions are memoized [Hug85]. The evaluator in [Jou84] can be thought of

as a limited form of lazy evaluator, an imperative program constructed by the evalu~tor-generator.

4 A functional programming paradigm

Since parse trees are nothing more than objects of a type generated by the grammar, the at tr ibute

grammar paradigm for defining values associated to nodes in a tree should be available to us not

only when doming with context free grammars and parse trees, but also for defining functions over

any da ta structure.

In this context it is apt to refer to a paper by R. Bird [Bir84]. He describes a technique for

transforming functional programs that repeatedly traverse a da ta structure, into more efficient

ones that traverse the da ta structure only once. An essential requirement for this to be possible

is that the functional language is lazy, and that local recursion (such as provided by le t rec

or w h e r e rec) is present in the language, to be able to define circular da ta dependencies. He

makes use of fold-unfold transformations [BD77] to transform the straightforward but inefficient

program into a program which is more efffcient, but which can be very hard to understand on its

own. Bird's program derivations are elegant applications of the fold-unfold transformation method

coupled with circular programming, but they have the definite disadvantage of being accessible

only to fairly sophisticated programmers, the hardest bit probably being to find the right 'eureka'

definitions.

Below we will review two examples from [Bir84]. We will show how exactly the same efficient

programs can be obtained by simpler and more straightforward means, by first expressing the pro-

grams as a t t r ibute grammars over da ta structures, and then by translating the a t t r ibute grammars

into functional programs according to the idea described in 3. The otherwise tangled programs

will thus reveal themselves as at t r ibute grammar formulations of the algorithms. Although the

a t t r ibute grammar may be specifying an inherently multipass algorithm over the da ta structure,

the resulting evaluator program will make only one pass over the data structure.

The ide~ of specifying at t r ibute grammars over data structures rather than over context free

grammars is not entirely new. A similar idea is the basis of attribute coupled grammars [GG84],

where an algebraic approach is taken: a t t r ibute grammars are viewed as specifying translations

from source language terms to target language terms. Similar ideas appear in [Pau82].

4 . 1 A n i n t r o d u c t o r y e x a m p l e

Our task is to replace all the tips of a binary tree with the minimum tip value, with the shape of

the new tree the same as the old one. The tree has two constructors, tip and fork:

t y p e Tree = tip [at + fork Tree Tree

159

The straightforward solution, given in [Bir84], is as follows)

transform t = replace t (train t)

where ree

replace (tip ~) ra = tip ra tl

replace (fork L R) ra = fork (replace L ra) (replace R ra) ~nd

trai~ (tip =) = = II
trai~ ffork L R) = rai~ (trai~ L) (trai~ R)

The above program makes two passes over the tree, one performed by tmin to find the minimun

value and one performed by replace to make the replacements.

The single pass version of the above program, derived in [Bir84], is as follows.

transform t = t l where rec (t l , ra l) = reprain t ral

where rec

repmi~ (tip ,~) ra = (tip ra, ,~) II

reprai~ (fork L R) ra = (fork t l t~, rai~ ral ra~)

where (t l , ra l) = reprain L ra

a n d (t2,ra2) = reprain R ra

The two functions replace and train have been replaced by a single function repmin doing the same

work as the two. The above program has been obtained firstly by defining

repmin t m = (replace t m, train t)

(the 'eureka' step) from which the repmin function is synthesized by a standard application of the

fold-unfold transformation method [BD77], and secondly by coupling the two components of the

result value of repmin to each other using local recursion in transform.

We now recast the above tangled version of the program into a form analogous to an attribute

grammar. But instead of assigning attributes to nodes in a parse tree for a context free grammar,

we will look at the constructors of the tree type. In our example the patterns T = tip n and

T = fork L R correspond to production rules in a context free grammar. (Compare this to the

as pattern construct in SML and LML, e.g. T as fork L R, which binds a value, matched by a

pattern, to a variable.) The variables T, L and R correspond to nonterminal symbols with attribute

values being assigned to them by the semantic rules. The constructor symbols correspond to the

terminal symbols. We also need to distinguish a 'start production', here written as T = t, with

the understanding that this pattern match only at the root of the tree.

We first define a synthesized attribute min, being the the minimum tip value for each subtree:

T=t:

T = fork L R:

T = tip i:

TTmin = rain LTmiu RTmin

TTmin = i

Since we do not want the rain value as a final result from the attribute evaluation, we do not need

to define TTmin in the 'start production'. Next, we define the inherited attribute rep, being the

obtained minimum value to replace the previous tip values--they are simply to be passed down

the tree to the tips.

aIn LML the keyword and separates definitions in a definition list, and I] separates different cases of the same
function.

160

T = t: tSrep = tTmin

T = fork L R: L~rep = TJ~rep

R$rep = T.[rep

T= tip i:

Finally, we define another synthesized attribute tree, being the new transformed tree.

T=t:

T = fork L R:

T = tip i:

TTtree --_ tTtree

TTtree = fork LTtree RTtree

TT t ree - - tip T~rep

Merging these three attribute definitions into the same attribute grammar, we get the following.

T = t: tj.rep = tTmin

TTtree = tTtree

T = fork L R: T T m i n = rain LTmin RTmin

LJ.rep = T~rep

R~rep = TJ.rep

TTtree = fork L~tree RTtree

T = tip i: T T m i n = i

T~tree = tip TJ.rep

The above attribute grammar can be evaluated in a single pass over the tree, using the technique

shown in section 3. For this purpose we now define a function F, which takes as arguments the tree

to be traversed and the inherited attribute rep, and returns a pair with the synthesized attributes

tree and rain:

F : Tree --* (Int ~ Tree x Int)

We further need a function which operates on the top level, taking the tree to be traversed and

returning the attribute tree being the final answer to the programming problem:

Ftop : Tree -~ Tree

The two functions are defined as follows.

Ftop t = le t rec (t_tree, t_min) = F t t_rep

and t_rep = t_min

and T_tree = t_tree

in T_tree

F (fork L R) T_rep = let ~ec (Z_tree, L_.~i~) = F L L_rep

and (R_tree, R_min) = F R R_rep

and T_min = rain L_min R_min

and L_rep = T_rep

and R_rep = T_rep

a n d T_tree = fork L_tree R_tree

in (T_tree, T_min)

161

F (tip i) T_rep = let rec T_min = i

and T_tree = tip T_rep

in (T_tree, T_min)

In this part icular example, the definitions are recursive only in the function Ii2op. After suitable

simplification and renaming, the above program is exactly identical to the program derived in

[Bir84], with Ftop as transform and F as repmin.

4 . 2 A f u r t h e r e x a m p l e

In the previous example the number of traversals of the tree was reduced by a small constant factor

(from 2 to 1) by going from the straightforward solution to the transformed version or the at tr ibute

grammar version - - a marginal improvement at best. However, this technique sometimes has the

power of improving on the complexity of the algorithm, as the next example, also from [Bir84],

will show. Again we are to transform a binary tree to another with the same shape, but this time

we require that the tip values of the new tree are the tip values of the old tree sorted in ascending

order. The direct solution to this problem can be formulated as follows.

trams/or., t = replace t (sort (tips t))

where rec

~eplace (tip n) [m] = tip m II
repZ,~e (.fork Z R) ~ = fork (replace Z (~aks (size Z) :~))

(repla:e .~ (drop (size L) ~)) ~ . d
tips (tip n) = [n] II
tips (fork L R) = tips L ~ tips R and

s i z e (tip n) = 1 II
size (fork L R) = size L + size R

The tree is traversed a first time with the function tips to obtain a list of the t ip values of the tree.

The list is then sorted, and the tree is traversed a second time using the function replace to obtain

the new tree. At each interior node we take appropiate chunks of the sorted list (the functions take

and drop takes the k first and all but the k first, respectively, elements of a list) and pass them

further down the tree.

The program has a worst t ime behaviour of O(n2), n being the number of tips in the tree. There

are three separate reasons for this, which each cause the program to have O(n 2) t ime complexity:

(1) repeated calculation of sizes at each internal node, (2) because of the use of the functions take

and drop, and (3) because concatenation is used to collect the list of tip values.

Bird now transforms away each of these inefficiencies. The inefficiency in the use of concatena-

tion in tips is dealt with by defining

ntips t z = tips t ~ z

which does away with the need for concatenation entirely, since we then have

,,tips (fork L R) = = ntips L (ntips a z).

Then, with a ' l i t t le foresight', the rest is taken care of with the following definition.

repnd t z y = [replace t (take (size t) z) , drop (size t) z, ntips t y]

Using this definition, and three laws for the functions take and drop the following program is finally

arrived at (we here omit the rather lengthy derivation, for further details see [Bir84]).

162

transform 4 = 41 w h e r e r e c (41, x, y) = repnd t (sort y) []

w h e r e r e c

tepid (tip ~) ~ y = (tip (hd ~), a ~, ~.y) tl

tepid (fork L R) • ~ = (fork U t~, ~e, y l)

w h e r e r ee (t l , xi , y l) = repnd L x y2

a n d (t2, x2~ y2) = repnd R xl y

We now derive the same program using an a t t r ibu te grammar formulation. T h e efficiency im-

provement embodied in the definition of ntip8 can be formulated in terms of a t t r ibutes as follows.

Collect the list of tips by having a t t r ibutes visiting the tips in reverse order, at each tip the current

tip value is prepended to the h i ther to obtained list of tips. Start at the root of the tree with the

empty list []. This requires two at tr ibutes, one synthesized and one inherited, appropriately called

stips and itips, whose definition for the three cases is given below.

T = 4: 4j.itips = [] The top case.

T = tip n: TTstips = n. TJAtip8

T = fork L It: R$itips = T $itips

L$itips = RTstips

TTs4@~ = LTs4ips

prepend the ones on the left ...

... and then the ones on the right

To dis t r ibute the list of sorted tips, we again traverse the tree in the same manner as above, but

this t ime in the order from left to right. At each tip the head of the sorted list is taken, and rest

passed along. For this we require two more at tr ibutes, which we then call ssorted and isorted.

Below we also show the construct ion of the new tree, carried by the a t t r ibute tree.

T = t: t$i~orted = sort tTstips

TTtree = tTtree

Top case: sort tips and pass down

T = tip n: TTs,orted = ti T$isorted Consume one element in the sorted list

T~ tree = tip(hd T J, isorted)

T = fork L R: Lj, isorted = T$isorted

R $ isorted = L T ssorted

T T ssorted = R T ssorted

TTtree = fork LTtree RTtree

first dis tr ibute to the left ...

... and then to the right ...

... and pass up what ' s left over.

The above a t t r ibu te grammar (the two sets of definitions merged into one) is t ranslated into two

evaluat ion functions Ftop and F, in the same manner as in the previous example. Thus, the

function Ftop takes the t ree to be traversed and the synthesized a t t r ibu te value tree. The function

F similarly takes the tree to be traversed and the inherited a t t r ibutes itips and isorted, and returns

a tr iple wi th the synthesized at t r ibutes st@a, ssorted and tree.

Ftop t --

l e t r ec (t_stips~ t_~sorted, t_tree) = F t t_itip~ t_isorted

a n d t_itips = []

a n d t_i~orted = sort t_stips

a n d T_tree = t_tree

163

in T_tree

a n d

F (tip n) T_it@s T_isorted =

l e t r ec T_stips = n. T_itips

a n d T.~orted = tl T.isorted
a n d T_tree = tip(hd T_isorted)

in (T_stips, T_ssorted~ T_tree)

II
F (fork L R)

le t rec

a n d

a n d

a n d

a n d

a n d

a n d

a n d

T_itips T_isorted =
(L_stips, L_ssorted, L_tree) = F L L_itips L_isorted

(R_stips, R_ssorted, R_tree) = F R R_it@s R_isorted

R_itip8 = T_itips

L_itips = R_st@s

T_stips = L_stips

L_isorted = T_isorted

R_isorted = L_ssorted

T_ssorted = R_ssorted

a n d]'_tree = fork L_tree R_tree
in (T_stips, T_ssorted, T_tree)

simplifying the definitions as much as possible (which might be done by the compiler), we get:

Ftop t =
l e t r ec (t_stips, t_ssorted, t_tree) = F t [] (sort t_ziips)
in t_tree

a n d

F (tip n) T_itips T_i~orted =

(n. T_itips, tl T_isorted, tip(hd T_isorted))
II
F (fork L R) T.itips T, isorted =

le t rec (L_stips, L_ssorted, L_tree) = F L R_stips T_isorted
a n d (R_stips, R_~sorted, R_tree) = F R T_itips L_ssorted

in (L_stips, R_ssorted, fork L_tree R_tree)

The above program is essentially the same as derived by Bird, except for variable and function

names. The function F corresponds to the function repnd, and Ftop to transform.

As we have seen, a definite disadvantage of the Darlington-BurstaU method is that it requires

great sophistication and cunning to find the right eureka definition, on the part of the user - - this

second example is a good example of that. Our method is more straightforward in that respect.

On the other hand, once one has found the right eureka definition(s), the transformations provide

more or less their own correctness proof. Thus, our at tr ibute paradigm can also be thought of as

a systematic method for obtaining the heureka definitions.

5 Implementat ion through graph reduction

We now show how a graph reduction implementation of a lazy functional language behaves

when executing programs like the ones in the previous section.

Figure 1 illust rates graph reduction £ la G -machine [Joh84] of the expression Ftop (fo rk (tip 2) (tip

5)), with Ftop defined as in section 4.1. Figure l (a) shows the graph for the initial expression.

164

tip tip tip fst sn~[fst ~nd~]
l 1

5 2 5 F F F F
1 1 / #

t ' " t " "

(a) (b) (c) (d)

. t \ . t ' J

(e)

]o~k s ~ k fo~k '~z ~'x
\\\

/,,,, .,,,u;/b,, '7())/

Figure 1: Graph reduction of Ftop(fork(tip 2)(tip 5)) from the introductory example.

When reducing a function application where the body of the function contains recursive data

definitions, as in e.g. the function Ftop, the compiled G-machine code for the function builds cyclic

graphs corresponding to the circular data depedencies. Thus, in our example the G-code for Ftop
rewrites the graph to that of (b). The reduction then continues with an application of fsL fst
calls eva1 for its argument thus causing the reduction of the application of F, which reduces the

application of F to pair-form, (c). fst then calls eval for the first component of the pair, but in this

case it is allready on constructor form (i.e. fork), so eval immediately returns. Finally, fst copies

the fork constructor node onto the]st application, (d). Having reduced the entire expression to

fork form, the original call to eval is now completed.

Let us further assume that the value of the left component of fork is requested: then fst calls eval

to reduce its argument (the application F(tip 2) . . .) to pair-form, calls eval for the first component

of the resulting pair and finally copies the tip node onto the fst application (figures (e) and (f)).

Let us finally assume that the integer value of the tip is requested. Now the evaluation of the

minimum tip value takes place, resulting in the graph shown in figure (g).

Thus the lazy evaluator has taken over the job normally done by the special purpose attribute

evaluation machinery. Normally in other attribute grammar systems the order in which the at-

tributes are evaluated are determined at evaluator-generation time. In our scheme this order

is implicitly determined by the lazy evaluator at runtime. The order is entirely determined by

the data dependencies, and may vary depending on the order in which the values of the various

attributes are demanded.

165

Similar behaviour will be exhibited when the at t r ibute evaluation machinery is incorporated

into the parser, shown in section 3. No explicit parse tree is built. What will happen instead is

that a tree-structured graph will be built, representing a function from the inherited attr ibutes to

the synthesized ones. This 'function tree' will have the same structure as the parse tree. When

this function is applied to the initial inherited attributes, and evaluation demanded to obtain the

values of the synthesed attr ibutes of the root, graph reduction will proceed in a manner similar to

figure 1. As graph reduction proceeds, the function tree gradually disappears.

6 A l a n g u a g e c o n s t r u c t

In section 4 we demonstrated that the at tr ibute grammar paradigm is useful for constructing

functional programs. So far, we have appealed to the readers intuition on some issues-- for

instance, one at t r ibute grammar rule was simply dubbed the 's tar t production' or the ' top case',

and the a t t r ibute grammar was translated into functions with this in mind. It is t ime to formalize

our hitherto informal notation. In this section we define an LML language construct, called case

rec, (in analogy with the case expression in SML and LML).

But why would we want a language construct for something which is so simple to translate

into ordinary LML anyway? Firstly, providing a specific notation for a programming paradigm

makes it easier to learn and use (c.f. abstract da ta types for modular programming, the if-then-else

and while for structured programming, etc). Secondly, the mere existence of a certain language

feature at t racts the programmers at tention to a solution method that would perhaps not otherwise

occur to h i m - - a particularly important consideration in our case, since the programs involved are

by themselves counter-intuitive. Also, for a programmer trying to understand someone else's

program, a program like the ones we have derived may appear completely incomprehensible unless

he knows how the program has been derived.

We want to design an LML language construct which could we regarded as syntactic sugar for

the translation of it into evaluation functions, in the man_~er we described in the previous sections.

Thus, we also want to be faithful to the polymorphic typing scheme of LML (and SML).

The first a t tempt looks as follows:

transform t =

case rec t in

T = t :

I1
T = fork L R:

II
T = ~@ i:

end

TTtree = tTtree a n d

tJ.rep = tTmin

TTmin = rain LTmin RTmin and

TTtree = fork LTtree RTtree and

L.trep = T~rep and

R~rep = Tj.rep

TTmin = i and

TTgrce =$ip T~rep

The intended value of the above case rec expression is the value of the TTtree of the root.

The above simple-minded construction have some obvious problems.

• What exactly should be the value of the case rec expression in general? We could just

stipulate that at the root there must be only a single synthesized at t r ibute and no inherited

166

one, in which case the value of the case rec expression obviously is the value of that attribute.

This however seems to be an unnecessary restriction. More generally, we could let the

value of the case rec expression be a function from the inherited attributes to a tuple

with the synthesized ones~ just as the resulting evaluation function. But in that case, the

programmer needs to know in what order to apply the initial inherited attributes to the case

t ee expression, and in what order the synthesized attributes comes in the tuple being the

value of the ease rec expression.

® Somehow it must be made clear that the pattern T = t above is intended to match only at

the root of the scrutinized data structure.

• In the same case rec expression we may want to traverse data of different types; for instance,

t y p e Ezpr = ID id + APL (Lis t (Expr))

case rec e in

T = I D i : . .°

T = A P L el : .."

T= e.el: . . .
T=N: .,.

end

We have patterns and expressions both of types Ezpr and list(Expr). To get a well-typed

program the above case rec expression has to be translated into (at least) two functions,

one traversing objects of type Expr, one travering data of type Iist(Expr). An example of

this will be given in section 6.3.

, Different sets of attributes may be of interest at different places. This is exemplified in our

transform program above, where we have different sets of attributes associated to the left

hand variables T in the 'productions'. Again this will cause a typing problem if we attempt

to translate the case rec expression to a single evahmtion function.

• We may also want different sets of attributes, or no attributes at all, to be associated to

the variables in the right hand side patterns--so far we have no means of expressing our

intentions in that respect. For instance, in our example we want to associate all the three

attributes rep, rain and tree to the variables L and R in the pattern fork L R, whereas we

are not interested in any attributes for n in tip n.

To deal with these shortcomings, we propose that the programmers intentions should be made

explicit by annotating the case rec expression with attribute sorts. By an attribute sort we mean

an enumeration of the inherited and synthesized attributes that we associate to a variable. In our

example, in the case T = fork L R we thus have the attribute sort rep --+ min tree associated to

the variables T, L and R, and We would like to so annotate them. Similarly, for the case T = tip

n we have the same attribute sort associated to T, but no attributes associated to n. In the case

T = t we would annotate t with the same sort as above, whereas T would receive the annotation

--* tree, since T here has the single synthesized attribute tree. But in order for the notation not

to be too cumbersome, we give names to the attribute sorts, and annotate with the names of the

attribute sorts instead. In general an attribute sort declaration will thus look like

where A stands for the name of the attribute sort, i i ' - ' i~ for the names of the inherited attributes,

and s l - " s~ for the names of the synthesized attributes. For our example, we thus need two

attribute sort declarations, one for the general case,

167

a = rep --+ tree rain

and one for the top case,

atop = -~ tree.

To indicate what attributes we are interested in for the top case, we put the corresponding attribute

sort name (atop in this case) in conjunction with the expression to be scrutinized (t in this case).

Doing this roughly corresponds to indicating the starting nonterminal in a context free grammar.

We have now arrived at the final form of the proposed case rec construct. Below we give the

t rans form program anew, with attribute sort declarations and annotations added.

t rans form t =

case rec t::atop

sor t atop = --* tree

a n d a = rep ~ tree min

in

T::atop = (t::a):

II
T::a = fork (L::a) (R::a):

tl
T::a = tip i:

end

T$tree = t~tree a n d

t~rep = tTmin

T T m i n = rain LTmin R T m i n a n d

TTtree = fork LTtree RTtree a n d

L~rep = T~rep a n d

R~rep = T~rep

T T m i n = i a n d

TTtree = tip T+rep

6 .1 S e m a n t i c s o f t h e c a s e r e c e x p r e s s i o n

So far, the semantics of the case rec expression has been described on terms of what it is translated

into. In this section we give a semantics which is independent on the translation (albeit very similar

in spirit).

The ease ree expression has the following general form.

case rec e::A s o r t S i n D end

where

e is the scrutinized expression,

A is the name of one of the attribute sorts declared in S,

S is the list of attribute sort declarations, with the syntax

S ::= s a n d s a n d ---

s : : = i d * ~ id +

i.e., there must be at least one synthesized attribute, and

D is the list of cases, with the syntax

168

D ::= d Hd II .~.

d ::= id :: id = pattern: decl

where pa t t e rn is as ordinarily found in a case expression, except that variable may be anno-

tated with the name of an attribute sort, id::sor tname, and decl is a declaration as ordinarily

found in a le t or le t rec expression in LML.

In the case expression and in functions defined by cases in LML the patterns are to be tested for

a match against the value of the scrutinized expression in sequential order from the first pattern

to the last one. We want this to hold also for the case rec expression, but here we also consider

the left hand variable and its annotation to be a part of the pattern. Thus to match we must have

both that the scrutinized expression matches the pattern in the ordinary sense, and that the sort

name annotating the left hand variable in the pattern is the same as the variable A annotating the

scrutinized expression (which is checked before we try to match the pattern).

We define the value of the case rec expression as follows. First, find a pattern matching the

scrutinized expression, as explained above. Assume that V : : A = pattern: decI is the first such

match. Assume further that pa t t e rn has N annotated va:4ables Vi::a j . A and a i are defined in S

a s

aj =i j: • • • ij,~, --r s j l •. • s j ~

A = i l . • • i , , --~ sl • • • s~

Then the value of the case rec expression is the same as the value of

,~v$i:.. . . ,~V$i,,.
le t r ec (P~Ts:I, . . . , V:Ts:~) = case rec Vl::a: so r t S in D e n d

Vl~in . .- V:~il,~: and

(VNTSN:, . . , V N T s N ~) ---- case rec Vg::alv sor t S in D end

V N $ i m . . . VNIi~v,~N and

decl

in (YTs:, " " , VTs,~).

Here attr ibute identifiers V T a and V S a have the same status as ordinary identifiers, but V T a etc

should only be allowed to occur if V is an annotated variable for which we want attribute values,

and that a is a valid attribute for V.

6.2 T ran s la t i on of the case rec e x p r e s s i o n

Each case rec expression is translated into a set of mutually recursive evaluation functions, one

for each attribute sort declaration.

For an annotated expression to match a pattern our semantics required that the sort annotating

the left hand variable in the pattern is the same as the sort requested, i.e., as annotated to the

scrutinized expression, and in attempting to match we thus need only try those patterns that has

the correct annotation. We thus translate case rec e::A . . . end into the function application

F/~.A e, where the function F E _ A tries to match eTA against the patterns Vk::ak = pat ternk. In

the test for match the function FE_A need only include those cases where the identifier ak is the

same as A, and this goes for all the e ~ u a t i o n functions. The function F E _ A thus becomes

F E _ A pat tern~l = trans la t ion o f declkl]]

F E _ A pattern~2 -= translat ion o f declk2 tl

169

where kl, k2 etc are the places where the attribute sort name ak, are the same as A, pattern'

is the same as pattern but with annotations removed. The translation of declk is a function,

and can be a)~-expression analogous to the one in 6.1. For each case V::A = pattern: decI,

assuming the the pattern has N annotated variables Vj::aj and where the ajs have been declared

as a j = i j l . . , i j ,~ --* sil . . . s in i and A is declared as A = i ~ . . . im --~ sl . " sn, the corresponding case

for the evaluation can be written as

FE_A pattern' V_il . . . V_iN =

let rec (Vl-s11, . . ' , V1-slnl) = FE.al V1 Vl-ill "" Vl-iz,~l a nd

(Vg .~m, "" , VN.ZN~) = FE_aN VN VN-im "" VN-iN,~N a n d

decl I

in (V-s1, . . . , V.z,)

where decl' is the same as decl but with attribute operators VTa translated into identifiers V_a

(the variables for the inherited attributes have been moved to the left hand side of the equal-sign,

instead of being ~-bound in the right hand side, but the meaning is the same). The entire case

rec expression is translated into

FE_A e

where rec declarations of evaluation functions.

Our transform example from section 4.1 will according to the above scheme be translated into

the program given below.

transform t =

FE_atop t

where rec

FE_atop t =

let rec (t_tree, t_min) = FE_a t t_rep a nd

T_tree = t_tree and

t_rep = t_min

in T_tree

and

FE_a (fork L R) T_rep =

let rec (L_tree, L_min) = FE_a L L_rep a nd

(R_tree, R_min) = FE_a R R_rep a nd

T_min = rain L_min R_min a nd

T_tree = fork L_tree R_tree a nd

L_rep = T_rep a n d

R_rep = T_rep

in (T_tree, T ra in)

FE_a (tip i) T_rep =

le t rec T_min = i a n d

T_tree = tip T_rep

in (T_tree, T_min)

6 .3 F u r t h e r e x a m p l e s

As a further example of the use of the case rec expression, we offer the following compiler-

oriented one: assigning unique names to identifiers, so that identifiers bound in a let rec allways

170

have different names. The tree to be traversed has the following type:

Expr = ID Id + A P Expr Expr + L E T R E C (Li~t(Id × Expr)) Expr

The a t t r ibu te sort e is for traversal of Expr, and d for traversal of List(Id x Expr). Note that even

if we had wanted wanted the same at t r ibutes to be defined over the two types, it had still been

necessary to have two sort declarations. Note Mso that sorts may have the same name as variables

wi thout causing any confusion be tween the two (except perhaps in the mind of the programmer).

c a s e r e e e::e~op

s o r t e t o p = --~ ten

a n d e = map iu ~ ten 8u

a n d d = map iu --+ ten su newmap

in

E::etop = e::e :

B::e = A P eI::e e2::e :

E::e = ID id :

E::e = L E T R E C d::d e::e :

D::d = (id, e::e) . d::d :

D : : d = !] :

e n d

ETren = eTren a n d

eSmap = [] a n d e$,u = 0 11

E~ren = A P eITren e2Tren a n d

el Smap = E$map and e21map = ESmap a n d

e l~ iu = EJ, iu a n d ee i iu = e I T , u a n d ETsu = e2Tsu 1]

E~ren = 11) newid a n d

newid = lookup id E,[map a n d

ETsu = E$iu II

Eyren = L E T R E C dTren eTren a n d

extendedmap = E~map Q dTnewmap a n d

eJ, m a p = extendedmap a n d dJ, m a p = extendedmap a n d

d+iu = E+iu a n d e l iu = dTsu and ETsu -- eTsu [1

DTren = (newid, e~ren).dTren a n d

newid = i toname D+iu a n d

e~map = Ej .map a n d dJ, m a p = E+map a n d

DT newmap = (id, newid) .dTnewmap a n d

e$iu = D$iu + 1 and d$iu = eTsu a n d DTsu = dTsu ![

DTren = [] a n d

DTsu = D£iu a n d

DTnewma p = []

T h e not ion of a t t r ibu te sorts is quite a generM and powerful device. It can be used to specify that

different computa t ions are to be done in different contexts. As an example of this, the following

case r e c expression has the value true if the scrutinized list I has an even number of number of

elements, .false otherwise.

c a s e r e c l:even s o r t even = ~ r a n d odd = -~ r in

Z::even = [] : ZTr = ~rue

II L::odd = [] : L T r = false
{t L::even = _. l::odd : LTr = lT r

[[L::odd = _. t::even : Lyr = l~r

e n d

171

7 On circular a t tr ibute definit ions

A classical problem with at t r ibute grammars is to determine whether a part icular at t r ibute gram-

mar is well-formed or non-circular, i.e., that for every possible parse tree, there are no circular

data dependencies. This test has been proved to be intrinsically exponential [JOR75]. The usual

assumption then is that for an at tr ibute definition XTa -- expression, the values of the at tr ibute

occurences in expression must be computed before the value of XTa can be computed. This is not

true with is lazy functional language: for instance,

XTa = 1 . X T a

is a circular a t t r ibute definition in the traditional sense, but is perfectly well-defined in lazy func-

tional language, the value of XTa being the infinite list of ones. Furthermore, not only can an

at t r ibute value be totally defined or totally undefined, now we can also have part ial ly defined val-

ues, like 1.2_ (i.e., computation of this value terminates with a cons and the first element defined,

but the tail of the list is undefined). So, with a lazy functional language, the problem of wellde-

finedness of an at t r ibute grammar is a much more diversified one. It is a subject for further research

to determine to what extent existing algorithms for circularity-check can be usefully adapted to

at tr ibute grammar systems with lazy functional languages.

So the only practical road open to us seems to be to detect circularities at run-time; fortunately,

though, this can be done at very little extra cost. In the G-machlne [Joh84] this can be done by

changing the tag of the apply node which is later going to be updated anyway with the value of

the function application.

8 Conc lud ing remarks

In this paper we have described a particular way of taking advantage of the normal-order semantics,

to obtain non-obvious solutions to programming problems. As yet, we have not implemented the

case rec expression in LML, but the style of circular programming implied has been used in

programming the LML compiler itself (which is almost entirely written in LML). We first used

this circular style when programming the lambda-lifting pa r t - - t he functional program in [Joh85]

is of this kind. It was only afterwards the we discovered that at t r ibute grammars provided a clear

explanation of what was going on! This technique was subsequently used also in the G-machine

code to target code generator, for propagating information backwards and forwards in the G-

code stream. In our opinion we are barely beginning to learn how to use the full power of lazy

evaluation in functional programming, and how to construct functional programs which might be

just as efficient as conventional imperative solutions.

Conventional wisdom has it that for conventional languages "semantic evaluation methods

based on at t r ibute grammars are currently not efficient enough compared with ad-hoc algorithms

used in the usual hand-written compilers" (quote from [Kat84]), For functional languages the re-

verse may well be t rue--where a conventional functional program would make multiple passes over

the abstract syntax tree and perhaps in the process build intermediate structures to store inter-

mediate information between passes, a functional at t r ibute evaluator makes only one pass over the

parse tree - - intermediate values are "stored" in closures representing the da ta dependencies. An

efficient implementation of a lazy functional language such as the Lazy ML-compiler [Joh84,Aug84]

is optimized to handle closures, the central mechanism of lazy evaluation. Thus I would not find

it surprising if an at t r ibute evaluator implemented in this manner could still compete successfully

with a more conventional at t r ibute evaluator implemented in a conventional language.

A c k n o w l e d g e m e n t s : Lennart Augnstsson, John Hughes, Bengt NordstrSm, GSran Uddeborg,

172

and Phil Wadler provided comments and suggestions for improvements on earlier versions of this

paper.

R e f e r e n c e s

[Aug84]

[AUS86]

[BD77]

[Bir84]

[BMS8O]

[CM79]

[DJL85]

~JLS6a]

[DJLS6b]

[GG84]

[GMW79]

[HugS5]

[Joh75]

[Joh84]

[3oh85]

L. Augustsson. A compiler for lazy ML. In Proceedings of the 1984 ACM Symposium

on Lisp and Functional Programming, pages 218-227, Austin, 1984.

A. V. Aho, J. D. Ullman, and R. Sethi. Compilers: Principles, Techniques, Tools.

Addison-Wesley Publishing Company, Reading, Mass., 1986.

R. M. BurstaI1 and J. Darlington. A transformation system for developing recursive

programs. Journal of the A CM, 24:44-67, 1977.

R. S. Bird. Using circular programs to eliminate multiple traverals of data. Acta

Informatica, 21:239-250, 1984.

R. M. Burstall, D. B. McQueen, and D. T. SanneUa. Hope: an experimental applica-
tive language. In Proceedings of the 1980 ACM Symposium on Lisp and Functional

Programming, pages 136-143, Staifford, CA, August 1980.

L, M. Chirica and D, F. Martin, An order-algebraic definition of knuthian semantics.

Math. Systems Theory, 13:1-27, 1979.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. A Survey on Attribute Gram-

mars, Part III: Classified Bibliography. Rapport de Recherche 417, INttIA, Rocquen-

court, France, June 1985.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. A Survey on Attribute Gram-

mars, Part H: Review of Ezisting Systems. Rapport de Recherche 510, INIKIA, Rocquen-

couP, France, March 1986.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. A Survey on Attribute Gram-

mars, Part [: Main Results on Attribute Grammars. Rapport de Recherche 485, INRIA,

Rocqueneourt, France, January 1986.

H. Ganzinger and R. Giegerich. Attribute coupled grammars. In Proceedings of the

SIGPLAN '8~ Symposium on Compiler Construction, pages 157-170, Montreal~ 1984.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Volume 78 of Lecture Notes

in Computer Science, Springer-Verlag, 1979.

R. J. M. Hughes. Lazy memo-functions. In Proceedings 1985 Conference on Functional

Programming Languages and Computer Architecture, Nancy, France, 1985.

S. C. 5ohnson. Yace-- Yet Another Compiler Compiler. Technical Report 32, Bell labs,

1975. Also in UNIX Programmer's Manual, Volume 2B.

T. Johnsson. Efficient compilation of lazy evaluation. In Proceedings of the SIGPLAN

'8~ Symposium on Compiler Construction, pages 58-69, Montreal, 1984.

T. Johnsson. Lambda lifting: transforming programs to recursive equations. In Pro-

ceedings 1985 Conference on Functional Programming Language8 and Computer Archi-

tecture, Nancy, France, 1985.

173

[JOR75]

[Jou84]

[Kat84]

[KLSl]

[Knu68]

[May81]

[MilS4]

[Pau82]

[Tur76]

[Tur85]

Mehdi Jazayeri, William F. Ogden, and William C. Rounds. The intrinsically exponen-

tial complexity of the circularity problem for attribute grammars. Communications of

the A CM, 18:697-706, 1975.

M. Jourdan. An optimal-time recursive evaluator for attribute grammars. In Proceed-
ings of 6th Int. Syrup. on Programming, LNCS 167, pages 167-178, Springer-Verlag,
April 1984.

Takuya Katayama. Translation of attribute grammars into procedures. A CM Trans.
on Programming Languages and Systems, 6(3):345-369, July 1984.

R. M. Keller and G. Lindstrom. Application8 of feedback in functional programming.

TechnicM Report, University of Utah, Salt Lake City, April 1981.

Donald E. Knuth. Semantics of context-free languages. Math. Systems Theory, 2:127-

145, 1968.

B. Mayoh. Attribute grammars and mathematical semantics. SIAM J. of Computing,

10(3):503-518, August 1981.

R. Milner. Standard ML proposal. Polymorphism: The ML/LCF/Hopc Newsletter,
1(3), January 1984.

L. Paulson. A semantics-directed compiler generator. In Proe. 9th POPL, 1982.

D. A. Turner. SASL Language Manual. Technical report, University of St. Andrews,
1976.

D. A. Turner. Miranda: A non-strict language with polymorphic types. In Proceedings
1985 Conference on Functional Programming Languages and Computer Architecture,
pages 1-16, Nancy, France, 1985.

[Udd] G. Uddeborg. A Functional Parser Generator. In preparation.

