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Abstrac~ 

The purpose of this paper is twofold. Firstly we show how attributes in an attribute grammar 

can be simply and efficiently evaluated using a lazy functional language. The class of attribute 

grammars we can deal with are the most general ones possible: attributes may depend on each 

other in an arbitrary way, as long as there are no truly circular data dependencies. 

Secondly, we describe a methodology based on attribute grammars, where, in a fairly 

straightforward way, we can develop efficient functional programs where direct, conventional 

solutions yield less efficient programs. We review two examples from a paper by R. Bird (Using 

circular programs to eliminate multiple traversals of data, Acta Informatica, 21, 1984) where 

he transforms simple but inefficient multipass programs into more efficient single pass ones, but 

which on their own can be very hard to understand. We show how such efficient but tangled 

programs can have natural formulations as attribute grammars. 

We also propose a language construct, called case rec (akin to the case expression in 

Standard ML and Lazy ML), that defines an attribute grammar over a data structure in the 

language. In effect, a ease rec expression defines a recursion operator that can handle multiple 

values, both upwards-propagating and downwards-propagating ones. 

1 I n t r o d u c t i o n  

Occasionally, using a funct ional  language can be  a bit  of a pain: where the  impera t ive  programming 

solution is s imple and obvious, the corresponding functionM program can be bo th  awkward and 

inefficient. 

As a typical example,  we want  to organize a compiler as follows: The  compiler makes multiple 

passes over the syntax  tree~ each pass computes  some information which is assigned to nodes in the 

tree. It  is s t ra ightforward to program this imperatively. However, in the s traightforward functional 

solution, each pass would have to build a a new tree with the addit ional  information in the nodes. 

Further,  one may  have to define a set of different tree types~ one for each result tree from a pass! 

Another  example in the same vein is the task of assigning unique numbers to each node in a 

tree. The  impera t ive  program simply traverses the tree to update  the nodes, obtaining a unique 

number  by increment ing a global counter. The  corresponding functional program has to drag along 

the unique number  in the recursion, and the s t ructure  of the program becomes a bit messy. 

In this paper  we describe how such shortcomings can be overcome, by using a programming 

paradigm based on a t t r ibu te  grammars.  Coupled with a simple and efficient me thod  for a t t r ibute  

evaluation, based on lazy evaluation, we can also obtain efficient programs. 

At t r ibu te  grammars  [Knu68] were originally conceived as a method  for specifying semantics of 

programming languages, but  are nowadays mostly regarded as a convenient means of specifying 

syntax directed translat ions e.g. in compilers - -  see e.g. [AUS86]. Not surprisingty~ the  desig-a of 
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efficient a t t r ibute  evaluators has become a very active area of research, as the great number of 

papers in the field indicates (see [DJL85] for an annotated bibliography). Most efficient attribute 

evaluation systems determine an evaluation order at evaluation generation time, and impose con- 

straints on how attr ibutes may be written and may depend on each other, to be able to use 

a particular evaluation scheme; e.g. purely bottom-up, left-to-right-ness, strong non-circularity, 

etc. Others determine the evaluation order at runtime, but are then usually less efficient. See 

[DJL86b,DJL86a,DJL85] for a survey on main results, existing systems, and a classified bibliogra- 

phy. 

It turns out that attribute evaluation can be done in a particularly simple way with a lazy 

functional language, without imposing any constraints on attribute dependencies. The difficulties 

in conventional languages seem to stem from the fact that an imperative program (or a strict 

functional one) specifies exactly in which order values ave computed--consequently, the evaluation 

order for the attributes will have to be figured out at evaluation-generation time for each attribute 

grammar. On the other hand, in a lazy functional language implementation, the actual order in 

which expressions are evaluated is determined at runtime by the data dependencies, on demand, 

by the lazy evaluation machinery. 

This paper is organized as follows. In section 2 we give a brief introduction to attribute 

grammars. In section 3 we describe the simple method for attribute evaluation. In section 4 

we discuss attribute grammars as a convenient means of expressing algorithms traversing data 

structures (multiple passes in general), and describe how to turn these attribute grammars into 

functional programs which traverse the data structure only once. We review two examples from 

[Bit84] (which describe a different methodology for obtaining the same programs), and we compare 

the two approaches. In section 5 we discuss implementation issues, and some characteristic features 

of a graph reduction implementation. In section 6 we develop a language construct analogous to 

an attribute grammar, called case rec (in analogy with the case expression in LML and SML). 

Section 7 discusses circular attribute definitions. Section 8 concludes the paper. 

We assume that the reader has some familiarity with lazy functional languages such as SASL 

[Tur76], Miranda [Tur85] or Lazy ML. Program examples in this paper will be given in Lazy ML 

(LML), a lazy and completely functional variant of ML [GMW79]. Like SML [Mi184], LML has 

borrowed the concrete data types and pattern matching from HOPE [BMS80]. LML is the source 

language for a compiler that compiles into efficient machine code that performs graph reduction 

[Aug84,Joh84]. 

2 A b r i e f  i n t r o d u c t i o n  to  a t t r i b u t e  g r a m m a r s  

An at t r ibute  grammar is a context-free grammar augmented with semantic rules. To each non- 

terminal symbol in the grammar a fixed set of attribute8 is associated. An at tr ibute is either 

synthesized or inherited. The semantic rules for each production Xo --~ X1X2"" X i ' "  Xn specify 

the values of of the synthesized attributes of the left hand nonterminal X0 and the inherited ones 

for the nonterminals Xi of the right hand side of the production rules. Evaluation of an at tr ibute 

grammar with respect to a parse tree can be thought of as decorating the nodes in the parse tree 

with the values of the attributes. Thus, synthesized at t r ibute  values propagate upwards in the 

parse tree, inherited ones downwards. A synthesized at t r ibute a of a nonterminal X will be written 

XTa; similarly, we write X~a for an inherited attribute. Attr ibutes may also depend on possible 

lexical values (e.g. the numerical value of the lexical symbol INTCONST), in which case they 

act as synthesized attr ibutes assigned by the lexical analyzer. Here they will be written as e.g. 

IN C O N S T T lexval. 

Below, we give a (schematic) example of an at tr ibute grammar: expressions expr with integer 

constants INTCONST and the single binary operator PL US. We have two synthesized attributes, 



156 

called $1 and $2, and one inherited attr ibute,  cal led/ .  To distinguish between different occurences 

of the nonterminal expr in a production, indexing is used; i.e. exprl and expr2. 

expr ~ ezprl PL US expr~ ezprTS1 = El[ezprlI,  . . .  ezpr2TS2] 

expr T S2 = E2[ezpr ~I, . . .  expr2T S2] 

exprl~I = E3[exprJ.I~ . . .  expr~TS2] 

expr2J.I = E4[ezprJ.I, . . .  expr2TS~] 

expr --~ inicon~t ezprTS1 = E~[ezprJ.I~ ezprTSl , exprTS2, INTCONSTTlexval] 

expr T S$ = E6[expr ~I, exprT S1, ezprT S$, INTCO NSTT lexval] 

Here E1 through E6 stand for arbi trary expressions to define the values of the attributes.  Since we 

allow arbi t rary  a t t r ibute  dependencies, the expressions E1 through E4 may have occurences of all 

the nine at tr ibutes expr~L ezpr~S1, exprTSZ, exprlJ.I, ezprlTS1, ezpriTS~, ezpr2.~I, ezpr2TS1 and 

exprzTS~. Similarly, E~ and Es may have occurences of expr.LI~ czprTSI, exprTS$, and the lexical 

value INTCONSTTIexvaL 

Traditionally, in a t t r ibute  grammar systems the language in which the at t r ibute  values are 

expressed is a conventional imperative one [DJL86a]. However, it should be clear that  functional 

languages are perfect for expressing at t r ibute  definitions, as they provide the natural  value-oriented 

view implicit in a t t r ibute  grammars. Such languages have a very general notion of value. "Values of 

expressions can be, among other things~ lists (even infinite ones!), trees, functions etc. Thus such 

languages are perfect for expressing a t t r ibute  definitions, as the value of an at t r ibute  can be a code 

sequence, a symbol table etc. In contrast, doing the same thing in a conventional language, like 

Pascal for example, requires much side-effecting - -  output code sequences, update symbol tables 

etc. 

3 T h e  e v a l u a t i o n  m e t h o d  

Normally parser generator systems, like Yacc [Joh75] in Unix, provide at least some simple means 

of handling values. In Yacc, which constructs a bottom-up LALR(1) parser, a single upwards- 

propagating (synthesized) a t t r ibute  can be handled. Our method constitutes transforming the 

at t r ibute  grammar into a new one with a single attribute,  a synthesized one. Thus it should 

be straightforward to put  our scheme on top of an already existing parser generator, provided 

that  it can produce a parser in a lazy functional language. A parser generator for LML together 

with an a t t r ibute  grammar system based on the method to be described below, is currently being 

implemented by G. Uddeborg [Udd]. 

The  new single a t t r ibute  is a function taking the original inherited at tr ibutes as arguments and 

returns a tuple of the original synthesized attributes.  We now show how this works by transforming 

the a t t r ibute  grammar in the previous section into this form. Thus, the new synthesized attribute,  

called f-a, is a function taking the original inherited at t r ibute  e~pr.LI as argument and returning 

the pair  of the original at tr ibutes ( e~prTS1, exprTS~ ). 

Firs t  we turn a t t r ibute  identifiers exprJ.I etc. into ordinary identifiers. We do that  by simply 

replacing the a t t r ibute  operators ~ and ~ with a character that  may occur in an identifier - -  we will 

use underscore "_" for this purpose. Then these slightly rewritten definitions are simply inserted 

into a structure for handling the administrative task of obtaining the inherited at t r ibute  values of 

the left hand nonterrninal symbol ezpr, and the synthesized ones for the nonterminals in the right 

hans side of the grammar rule. Thus the definitions of the first grammar rule are inserted into 

expr T fn = A expr_L 
le t  rec  (exprl.S1, exprl_S$) = ezi0r~Tfn ezprl_I a n d  
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(ezpr2.S1,  ezpr2_S~) = expr2Tfn ezpr~_I a n d  

{ ... agtribute definitions ... } 

in ( ezpr_S1, ezpr_S~ ). 

with ezpr~_S1 substi tuted for exprlTS1,  etc, in the at t r ibute definitions. Thus the rewritten 

at t r ibute grammar for our schematic example now is as follows: 

ezpr ---* expr 1 P L  US expr2 

ezpr Tfn = Aezpr_I. 

le t  rec  (ezvrl_S1 , exprl_SS2) = exprlTfr~ exprl_I a n d  

(ezpr2.~ql, expr2-S$ ) = expr2 Tf'n expr2 f f  a n d  

ezpr_S1 = El[ezpr_I,  . . .  expr2_S$] a n d  

expr_S2 = E2[expr_I, . . .  ezpr2..S$] a n d  

ezprl_I  = Es[ezpr-[,  . . .  ezpr2_S~] a n d  

ezpr~_I = E4[ez.pr-[, . . .  ezpr2_gz] a n d  

in (expr_S1, expr_S$) 

ezpr ~ I N T C O N S T  

ezprTfn  = AezprJ .  

l e t  rec  ezpr.S1 = E~[ezpr_I, ezpr_S1, expr_S2] a n d  

ezpr.S¢g = E~[ezpr_I, ezpr_S1, expr_S~] 

in ( ezpr_S1, ezpr_S~ ) 

In a shift-reduce parser, e.g. an LR parser [AUS86], during parsing values associated to terminal 

and non-terminal symbols are kept on stack. When performing a reduction according to the first 

graramar rule above, the new value stack can be computed from the old one as follows. 

reduee_rule_l (ezpr~,_fa. _.  ezprl_fr t ,  r e s t o f s t a e k ) =  

(Aexpr_I, 

( l e t  ree  ( ezprl_S1, ezprl. .S~ ) = ezprl_f'n ezpr l_I  a n d  

( expr$..S1, ezpr$_S$ ) = expr~_f'n expr2_I a n d  

expr_S1 = El[expr..I, . . .  expr$_S~] a n d  

ezpr.,.q$ = E2[ezpr-.[, . . .  expr2_S~] a n d  

exprl_I  = E3[expr..I, . . .  ezpr$_8$] a n d  

ezpr$_[ = E4[expr_I~ . . .  ezpr~.S$] a n d  

in (ezpr_Sl, expr_S$) 

).  resto#tack 

The key to the applicability of the method is the possibility in a lazy functional language to trove 

recursive definitions of non-function values. Definitions are lazy, i.e., none of the defined values are 

actually computed until they are needed. Definitions where the left hand side is a variable pattern, 

like 

l e t  rec  ( z , y )  = e . . .  

are treated as 

l e t  r e e A =  e a n d x = f i t A a n d y = s n d A a n d . - .  

where f i t  and snd are functions returning the first and the second component of a pair, respectively. 

Although at t r ibute  grammar evaluation according to our method can become reasonably ef- 

ficient when coupled with an efficient implementation of a lazy functional language such as the 
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Lazy-ML compiler [Joh84,Aug84] it is probably less efficient, than eg. the one in [Kat84] which 

accepts a restricted set of at t r ibute grammars. Our method, in constrast has the advantage of full 

generality. 

A similar idea has been mentioned in [KL$1], where a tree with the attr ibutes built into the 

nodes is returned as a result of parsing. A related idea is to let each function be a function from (all) 

inherited at tr ibutes to that  particular synthesized attribute.  This idea has been used in papers on 

semantics [MayS1] [CM79], but  for implementation purposes this idea is useless except in special 

cases, since it can lem:l to large amount of recomputation of at t r ibute values. This recomputation 

can be avoided if the functions are memoized [Hug85]. The evaluator in [Jou84] can be thought of 

as a limited form of lazy evaluator, an imperative program constructed by the evalu~tor-generator. 

4 A functional programming paradigm 

Since parse trees are nothing more than objects of a type generated by the grammar, the at tr ibute 

grammar paradigm for defining values associated to nodes in a tree should be available to us not 

only when doming with context free grammars and parse trees, but also for defining functions over 

any da ta  structure. 

In this context it is apt to refer to a paper by R. Bird [Bir84]. He describes a technique for 

transforming functional programs that  repeatedly traverse a da ta  structure, into more efficient 

ones that  traverse the da ta  structure only once. An essential requirement for this to be possible 

is that  the functional language is lazy, and that  local recursion (such as provided by le t  rec  

or w h e r e  rec)  is present in the language, to be able to define circular da ta  dependencies. He 

makes use of fold-unfold transformations [BD77] to transform the straightforward but inefficient 

program into a program which is more efffcient, but which can be very hard to understand on its 

own. Bird's program derivations are elegant applications of the fold-unfold transformation method 

coupled with circular programming, but they have the definite disadvantage of being accessible 

only to fairly sophisticated programmers, the hardest bit probably being to find the right 'eureka' 

definitions. 

Below we will review two examples from [Bir84]. We will show how exactly the same efficient 

programs can be obtained by simpler and more straightforward means, by first expressing the pro- 

grams as a t t r ibute  grammars over da ta  structures, and then by translating the a t t r ibute  grammars 

into functional programs according to the idea described in 3. The otherwise tangled programs 

will thus reveal themselves as at t r ibute grammar formulations of the algorithms. Although the 

a t t r ibute  grammar may be specifying an inherently multipass algorithm over the da ta  structure, 

the resulting evaluator program will make only one pass over the data  structure. 

The ide~ of specifying at t r ibute  grammars over data  structures rather than over context free 

grammars is not entirely new. A similar idea is the basis of attribute coupled grammars [GG84], 

where an algebraic approach is taken: a t t r ibute  grammars are viewed as specifying translations 

from source language terms to target language terms. Similar ideas appear  in [Pau82]. 

4 . 1  A n  i n t r o d u c t o r y  e x a m p l e  

Our task is to replace all the tips of a binary tree with the minimum tip value, with the shape of 

the new tree the same as the old one. The tree has two constructors, tip and fork: 

t y p e  Tree = tip [at + fork Tree Tree 
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The straightforward solution, given in [Bir84], is as follows) 

transform t = replace t (train t) 

where  ree 

replace (tip ~)  ra = tip ra tl 

replace (fork L R) ra = fork (replace L ra) (replace R ra) ~nd 

trai~ (tip =)  = = II 
trai~ ffork L R) = rai~ (trai~ L) (trai~ R) 

The above program makes two passes over the tree, one performed by tmin to find the minimun 

value and one performed by replace to make the replacements. 

The single pass version of the above program, derived in [Bir84], is as follows. 

transform t = t l  where  rec ( t l , ra l  ) = reprain t ral 

where  rec 

repmi~ (tip ,~) ra = (tip ra, ,~) II 

reprai~ (fork L R) ra = (fork t l  t~, rai~ ral ra~ ) 

where  ( t l , ra l  ) = reprain L ra 

a n d  (t2,ra2) = reprain R ra 

The two functions replace and train have been replaced by a single function repmin doing the same 

work as the two. The above program has been obtained firstly by defining 

repmin t m = (replace t m, train t) 

(the 'eureka' step) from which the repmin function is synthesized by a standard application of the 

fold-unfold transformation method [BD77], and secondly by coupling the two components of the 

result value of repmin to each other using local recursion in transform. 

We now recast the above tangled version of the program into a form analogous to an attribute 

grammar. But instead of assigning attributes to nodes in a parse tree for a context free grammar, 

we will look at the constructors of the tree type. In our example the patterns T = tip n and 

T = fork L R correspond to production rules in a context free grammar. (Compare this to the 

as pattern construct in SML and LML, e.g. T as fork L R,  which binds a value, matched by a 

pattern, to a variable.) The variables T, L and R correspond to nonterminal symbols with attribute 

values being assigned to them by the semantic rules. The constructor symbols correspond to the 

terminal symbols. We also need to distinguish a 'start production', here written as T = t, with 

the understanding that this pattern match only at the root of the tree. 

We first define a synthesized attribute min, being the the minimum tip value for each subtree: 

T=t: 

T = fork L R: 

T = tip i: 

TTmin  = rain LTmiu RTmin 

TTmin  = i 

Since we do not want the rain value as a final result from the attribute evaluation, we do not need 

to define TTmin  in the 'start production'. Next, we define the inherited attribute rep, being the 

obtained minimum value to replace the previous tip values--they are simply to be passed down 

the tree to  the tips. 

aIn LML the keyword and separates definitions in a definition list, and I] separates different cases of the same 
function. 
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T = t: tSrep = tTmin  

T = fork L R: L~rep = TJ~rep 

R$rep = T.[rep 

T= tip i: 

Finally, we define another synthesized attribute tree, being the new transformed tree. 

T=t: 

T =  fork L R: 

T = tip i: 

TTtree --_ tTtree 

TTtree = fork LTtree RTtree 

TT t ree - -  tip T~rep 

Merging these three attribute definitions into the same attribute grammar, we get the following. 

T = t: tj.rep = tTmin  

TTtree = tTtree 

T = fork L R: T T m i n  = rain LTmin RTmin  

LJ.rep = T~rep 

R~rep = TJ.rep 

TTtree = fork L~tree RTtree 

T = tip i: T T m i n  = i 

T~tree = tip TJ.rep 

The above attribute grammar can be evaluated in a single pass over the tree, using the technique 

shown in section 3. For this purpose we now define a function F,  which takes as arguments the tree 

to be traversed and the inherited attribute rep, and returns a pair with the synthesized attributes 

tree and rain: 

F : Tree --* (Int  ~ Tree x Int)  

We further need a function which operates on the top level, taking the tree to be traversed and 

returning the attribute tree being the final answer to the programming problem: 

Ftop : Tree -~ Tree 

The two functions are defined as follows. 

Ftop t = le t  rec (t_tree, t_min) = F t t_rep 

and t_rep = t_min 

and T_tree = t_tree 

in  T_tree 

F (fork L R) T_rep = let  ~ec (Z_tree, L_.~i~) = F L L_rep 

and (R_tree, R_min) = F R R_rep 

and T_min = rain L_min R_min 

and L_rep = T_rep 

and R_rep = T_rep 

a n d  T_tree = fork L_tree R_tree 

in  ( T_tree, T_min) 
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F (tip i) T_rep = let  rec T_min = i 

and T_tree = tip T_rep 

in (T_tree, T_min ) 

In this part icular example, the definitions are recursive only in the function Ii2op. After suitable 

simplification and renaming, the above program is exactly identical to the program derived in 

[Bir84], with Ftop as transform and F as repmin. 

4 . 2  A f u r t h e r  e x a m p l e  

In the previous example the number of traversals of the tree was reduced by a small constant factor 

(from 2 to 1) by going from the straightforward solution to the transformed version or the at tr ibute 

grammar version - -  a marginal improvement at best. However, this technique sometimes has the 

power of improving on the complexity of the algorithm, as the next example, also from [Bir84], 

will show. Again we are to transform a binary tree to another with the same shape, but this time 

we require that  the tip values of the new tree are the tip values of the old tree sorted in ascending 

order. The direct solution to this problem can be formulated as follows. 

trams/or., t = replace t (sort (tips t)) 

where  rec 

~eplace (tip n) [m] = tip m II 
repZ,~e (.fork Z R) ~ = fork (replace Z (~aks (size Z) :~)) 

(repla:e .~ (drop (size L) ~)) ~ . d  
tips (tip n) = [n] II 
tips (fork L R)  = tips L ~ tips R and 

s i z e  (tip n) = 1 II 
size (fork L R )  = size L + size R 

The tree is traversed a first time with the function tips to obtain a list of the t ip values of the tree. 

The list is then sorted, and the tree is traversed a second time using the function replace to obtain 

the new tree. At  each interior node we take appropiate chunks of the sorted list (the functions take 

and drop takes the k first and all but the k first, respectively, elements of a list) and pass them 

further down the tree. 

The program has a worst t ime behaviour of O(n2), n being the number of tips in the tree. There 

are three separate reasons for this, which each cause the program to have O(n  2) t ime complexity: 

(1) repeated calculation of sizes at each internal node, (2) because of the use of the functions take 

and drop, and (3) because concatenation is used to collect the list of tip values. 

Bird now transforms away each of these inefficiencies. The inefficiency in the use of concatena- 

tion in tips is dealt  with by defining 

ntips t z = tips t ~ z 

which does away with the need for concatenation entirely, since we then have 

,,tips (fork L R) = = ntips L (ntips a z). 

Then, with a ' l i t t le foresight', the rest is taken care of with the following definition. 

repnd t z y = [replace t (take (size t) z) ,  drop (size t) z, ntips t y] 

Using this definition, and three laws for the functions take and drop the following program is finally 

arrived at (we here omit the rather lengthy derivation, for further details see [Bir84]). 
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transform 4 = 41 w h e r e  r e c  (41, x, y) = repnd t (sort y) [] 

w h e r e  r e c  

tepid  (tip ~) ~ y = ( tip (hd ~), a ~, ~.y ) tl 

tepid  (fork L R) • ~ = (fork U t~, ~e, y l )  

w h e r e  r ee  (t l ,  xi ,  y l )  = repnd L x y2 

a n d  ( t2, x2~ y2 ) = repnd R xl  y 

We now derive the  same program using an a t t r ibu te  grammar  formulation.  T h e  efficiency im- 

provement  embodied in the definition of ntip8 can be formulated in terms of a t t r ibutes  as follows. 

Collect the list of tips by having a t t r ibutes  visiting the tips in reverse order, at  each tip the current 

tip value is prepended to the  h i ther to  obtained list of tips. Start  at the root of the  tree with the 

empty  list []. This  requires two at tr ibutes,  one synthesized and one inherited, appropriately called 

stips and itips, whose definition for the  three cases is given below. 

T = 4: 4j.itips = [] The top case. 

T = tip n: TTstips = n. TJAtip8 

T = fork L It: R$itips = T $itips 

L$itips = RTstips 

TTs4@~ = LTs4ips 

prepend the ones on the left ... 

... and then the ones on the right 

To dis t r ibute  the list of sorted tips, we again traverse the tree in the same manner  as above, but 

this t ime in the order from left to right. At each tip the head of the sorted list is taken, and rest 

passed along. For this we require two more at tr ibutes,  which we then call ssorted and isorted. 

Below we also show the construct ion of the new tree, carried by the a t t r ibute  tree. 

T = t: t$i~orted = sort tTstips 

TTtree = tTtree 

Top case: sort tips and pass down 

T =  tip n: TTs,orted = ti T$isorted Consume one element in the sorted list 

T~ tree = tip( hd T J, isorted) 

T = fork L R: Lj, isorted = T$isorted 

R $ isorted = L T ssorted 

T T ssorted = R T ssorted 

TTtree = fork LTtree RTtree 

first dis tr ibute to the left ... 

... and then to the  right ... 

... and pass up what ' s  left over. 

The  above a t t r ibu te  grammar  ( the two sets of definitions merged into one) is t ranslated into two 

evaluat ion functions Ftop and F, in the same manner  as in the previous example. Thus, the 

function Ftop takes the  t ree to be traversed and the synthesized a t t r ibu te  value tree. The  function 

F similarly takes the tree to  be traversed and the inherited a t t r ibutes  itips and isorted, and returns 

a tr iple wi th  the  synthesized at t r ibutes  st@a, ssorted and tree. 

Ftop t -- 

l e t  r ec  (t_stips~ t_~sorted, t_tree) = F t t_itip~ t_isorted 

a n d  t_itips = [] 

a n d  t_i~orted = sort t_stips 

a n d  T_tree = t_tree 
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in  T_tree 

a n d  

F (tip n) T_it@s T_isorted = 

l e t  r ec  T_stips = n. T_itips 

a n d  T.~orted = tl T.isorted 
a n d  T_tree = tip(hd T_isorted) 

in ( T_stips, T_ssorted~ T_tree) 

II 
F (fork L R) 

le t  rec  

a n d  

a n d  

a n d  

a n d  

a n d  

a n d  

a n d  

T_itips T_isorted = 
(L_stips, L_ssorted, L_tree) = F L L_itips L_isorted 

( R_stips, R_ssorted, R_tree) = F R R_it@s R_isorted 

R_itip8 = T_itips 

L_itips = R_st@s 

T_stips = L_stips 

L_isorted = T_isorted 

R_isorted = L_ssorted 

T_ssorted = R_ssorted 

a n d  ]'_tree = fork L_tree R_tree 
in  ( T_stips, T_ssorted, T_tree) 

simplifying the definitions as much as possible (which might be done by the compiler), we get: 

Ftop t = 
l e t  r ec  (t_stips, t_ssorted, t_tree) = F t [] (sort t_ziips) 
in  t_tree 

a n d  

F (tip n) T_itips T_i~orted = 

(n. T_itips, tl T_isorted, tip(hd T_isorted)) 
II 
F (fork L R) T.itips T,  isorted = 

le t  rec  (L_stips, L_ssorted, L_tree) = F L R_stips T_isorted 
a n d  ( R_stips, R_~sorted, R_tree) = F R T_itips L_ssorted 

in  ( L_stips, R_ssorted, fork L_tree R_tree) 

The above program is essentially the same as derived by Bird, except for variable and function 

names. The function F corresponds to the function repnd, and Ftop to transform. 

As we have seen, a definite disadvantage of the Darlington-BurstaU method is that  it requires 

great sophistication and cunning to find the right eureka definition, on the part  of the user - -  this 

second example is a good example of that. Our method is more straightforward in that  respect. 

On the other hand, once one has found the right eureka definition(s), the transformations provide 

more or less their own correctness proof. Thus, our at tr ibute paradigm can also be thought of as 

a systematic method for obtaining the heureka definitions. 

5 Implementat ion through graph reduction 

We now show how a graph reduction implementation of a lazy functional language behaves 

when executing programs like the ones in the previous section. 

Figure 1 illust rates graph reduction £ la G -machine [Joh84] of the expression Ftop (fo rk ( tip 2 ) (tip 

5)), with Ftop defined as in section 4.1. Figure l (a)  shows the graph for the initial expression. 
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Figure 1: Graph reduction of Ftop(fork(tip 2)(tip 5)) from the introductory example. 

When reducing a function application where the body of the function contains recursive data 

definitions, as in e.g. the function Ftop, the compiled G-machine code for the function builds cyclic 

graphs corresponding to the circular data depedencies. Thus, in our example the G-code for Ftop 
rewrites the graph to that of (b). The reduction then continues with an application of fsL fst 
calls eva1 for its argument thus causing the reduction of the application of F, which reduces the 

application of F to pair-form, (c). fst then calls eval for the first component of the pair, but in this 

case it is allready on constructor form (i.e. fork), so eval immediately returns. Finally, fst copies 

the fork constructor node onto the ]st application, (d). Having reduced the entire expression to 

fork form, the original call to eval is now completed. 

Let us further assume that the value of the left component of fork is requested: then fst calls eval 

to reduce its argument (the application F(tip 2) . . . )  to pair-form, calls eval for the first component 

of the resulting pair and finally copies the tip node onto the fst application (figures (e) and (f)). 

Let us finally assume that the integer value of the tip is requested. Now the evaluation of the 

minimum tip value takes place, resulting in the graph shown in figure (g). 

Thus the lazy evaluator has taken over the job normally done by the special purpose attribute 

evaluation machinery. Normally in other attribute grammar systems the order in which the at- 

tributes are evaluated are determined at evaluator-generation time. In our scheme this order 

is implicitly determined by the lazy evaluator at runtime. The order is entirely determined by 

the data dependencies, and may vary depending on the order in which the values of the various 

attributes are demanded. 
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Similar behaviour will be exhibited when the at t r ibute evaluation machinery is incorporated 

into the parser, shown in section 3. No explicit parse tree is built. What  will happen instead is 

that  a tree-structured graph will be built, representing a function from the inherited attr ibutes to 

the synthesized ones. This 'function tree' will have the same structure as the parse tree. When 

this function is applied to the initial inherited attributes,  and evaluation demanded to obtain the 

values of the synthesed attr ibutes of the root, graph reduction will proceed in a manner similar to 

figure 1. As graph reduction proceeds, the function tree gradually disappears. 

6 A l a n g u a g e  c o n s t r u c t  

In section 4 we demonstrated that  the at tr ibute grammar paradigm is useful for constructing 

functional programs. So far, we have appealed to the readers intuition on some issues-- for 

instance, one at t r ibute  grammar rule was simply dubbed the 's tar t  production'  or the ' top case', 

and the a t t r ibute  grammar was translated into functions with this in mind. It is t ime to formalize 

our hitherto informal notation. In this section we define an LML language construct, called case 

rec,  (in analogy with the case  expression in SML and LML). 

But why would we want a language construct for something which is so simple to translate 

into ordinary LML anyway? Firstly, providing a specific notation for a programming paradigm 

makes it easier to learn and use (c.f. abstract da ta  types for modular programming, the if-then-else 

and while for structured programming, etc). Secondly, the mere existence of a certain language 

feature at t racts  the programmers at tention to a solution method that  would perhaps not otherwise 

occur to h i m - - a  particularly important  consideration in our case, since the programs involved are 

by themselves counter-intuitive. Also, for a programmer trying to understand someone else's 

program, a program like the ones we have derived may appear  completely incomprehensible unless 

he knows how the program has been derived. 

We want to design an LML language construct which could we regarded as syntactic sugar for 

the translation of it into evaluation functions, in the man_~er we described in the previous sections. 

Thus, we also want to be faithful to the polymorphic typing scheme of LML (and SML). 

The first a t tempt  looks as follows: 

transform t = 

case  rec  t in 

T = t :  

I1 
T = fork L R: 

II 
T = ~@ i: 

end 

TTtree = tTtree a n d  

tJ.rep = tTmin 

TTmin = rain LTmin RTmin and 

TTtree = fork LTtree RTtree and 

L.trep = T~rep and 

R~rep = Tj.rep 

TTmin = i and 

TTgrce =$ip T~rep 

The intended value of the above case  rec  expression is the value of the TTtree of the root. 

The above simple-minded construction have some obvious problems. 

• What  exactly should be the value of the case  rec  expression in general? We could just 

stipulate that  at  the root there must be only a single synthesized at t r ibute  and no inherited 



166 

one, in which case the value of the case rec expression obviously is the value of that attribute. 

This however seems to be an unnecessary restriction. More generally, we could let the 

value of the case rec  expression be a function from the inherited attributes to a tuple 

with the synthesized ones~ just as the resulting evaluation function. But in that case, the 

programmer needs to know in what order to apply the initial inherited attributes to the case 

t ee  expression, and in what order the synthesized attributes comes in the tuple being the 

value of the ease  rec  expression. 

® Somehow it must be made clear that the pattern T = t above is intended to match only at 

the root of the scrutinized data structure. 

• In the same case rec expression we may want to traverse data of different types; for instance, 

t y p e  Ezpr = ID id + APL  (Lis t (Expr))  

case rec e in 

T =  I D i :  . .° 

T = A P L  el : .." 

T= e.el: . . .  
T=N: .,. 

end 

We have patterns and expressions both of types Ezpr and list( Expr ). To get a well-typed 

program the above case rec expression has to be translated into (at least) two functions, 

one traversing objects of type Expr, one travering data of type Iist(Expr). An example of 

this will be given in section 6.3. 

, Different sets of attributes may be of interest at different places. This is exemplified in our 

transform program above, where we have different sets of attributes associated to the left 

hand variables T in the 'productions'. Again this will cause a typing problem if we attempt 

to translate the case  rec  expression to a single evahmtion function. 

• We may also want different sets of attributes, or no attributes at all, to be associated to 

the variables in the right hand side patterns--so far we have no means of expressing our 

intentions in that respect. For instance, in our example we want to associate all the three 

attributes rep, rain and tree to the variables L and R in the pattern fork L R, whereas we 

are not interested in any attributes for n in tip n. 

To deal with these shortcomings, we propose that the programmers intentions should be made 

explicit by annotating the case rec expression with attribute sorts. By an attribute sort we mean 

an enumeration of the inherited and synthesized attributes that we associate to a variable. In our 

example, in the case T = fork L R we thus have the attribute sort rep --+ min tree associated to 

the variables T, L and R, and We would like to so annotate them. Similarly, for the case T = tip 

n we have the same attribute sort associated to T, but no attributes associated to n. In the case 

T = t we would annotate t with the same sort as above, whereas T would receive the annotation 

--* tree, since T here has the single synthesized attribute tree. But in order for the notation not 

to be too cumbersome, we give names to the attribute sorts, and annotate with the names of the 

attribute sorts instead. In general an attribute sort declaration will thus look like 

where A stands for the name of the attribute sort, i i ' -  ' i~ for the names of the inherited attributes, 

and s l - "  s~ for the names of the synthesized attributes. For our example, we thus need two 

attribute sort declarations, one for the general case, 
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a = rep --+ tree rain 

and one for the top case, 

atop = -~ tree. 

To indicate what attributes we are interested in for the top case, we put the corresponding attribute 

sort name (atop in this case) in conjunction with the expression to be scrutinized (t in this case). 

Doing this roughly corresponds to indicating the starting nonterminal in a context free grammar. 

We have now arrived at the final form of the proposed case rec construct. Below we give the 

t rans form program anew, with attribute sort declarations and annotations added. 

t rans form t = 

case rec t::atop 

sor t  atop = --* tree 

a n d  a = rep ~ tree min  

in 

T::atop = (t::a): 

II 
T::a = fork  (L::a) (R::a): 

tl 
T::a = tip i: 

end  

T$tree = t~tree a n d  

t~rep = tTmin  

T T m i n  = rain LTmin  R T m i n  a n d  

TTtree = fork LTtree RTtree a n d  

L~rep = T~rep a n d  

R~rep = T~rep  

T T m i n  = i a n d  

TTtree = tip T+rep 

6 .1  S e m a n t i c s  o f  t h e  c a s e  r e c  e x p r e s s i o n  

So far, the semantics of the case rec expression has been described on terms of what it is translated 

into. In this section we give a semantics which is independent on the translation (albeit very similar 

in spirit). 

The ease ree expression has the following general form. 

case rec e::A s o r t  S i n  D end  

where 

e is the scrutinized expression, 

A is the name of one of the attribute sorts declared in S, 

S is the list of attribute sort declarations, with the syntax 

S ::= s a n d  s a n d  --- 

s : : = i d *  ~ id + 

i.e., there must be at least one synthesized attribute, and 

D is the list of cases, with the syntax 



168 

D ::= d Hd II .~. 

d ::= id  :: id = pattern: decl 

where pa t t e rn  is as ordinarily found in a case expression, except that variable may be anno- 

tated with the name of an attribute sort, id::sor tname,  and decl is a declaration as ordinarily 

found in a le t  or le t  rec  expression in LML. 

In the case expression and in functions defined by cases in LML the patterns are to be tested for 

a match against the value of the scrutinized expression in sequential order from the first pattern 

to the last one. We want this to hold also for the case rec  expression, but here we also consider 

the left hand variable and its annotation to be a part of the pattern. Thus to match we must have 

both that the scrutinized expression matches the pattern in the ordinary sense, and that the sort 

name annotating the left hand variable in the pattern is the same as the variable A annotating the 

scrutinized expression (which is checked before we try to match the pattern). 

We define the value of the case rec expression as follows. First, find a pattern matching the 

scrutinized expression, as explained above. Assume that  V : : A  = pattern:  decI is the first such 

match. Assume further that pa t t e rn  has N annotated va:4ables Vi::a j .  A and a i are defined in S 

a s  

aj  =i  j: • • • ij,~, --r s j l  •. • s j ~  

A = i l  . • • i , ,  --~ sl  • • • s~ 

Then the value of the case rec expression is the same as the value of 

,~v$i:.. . .  ,~V$i,,. 
le t  r ec  (P~Ts:I, . . .  , V:Ts:~) = case rec Vl::a: so r t  S in D e n d  

Vl~in . .-  V:~il,~: and 

(VNTSN:,  . .  , V N T s N ~ )  ---- case rec Vg::alv sor t  S in D end  

V N $ i m  . . .  VNIi~v,~N and 

decl 

in (YTs:, " " ,  VTs,~). 

Here attr ibute identifiers V T a  and V S a  have the same status as ordinary identifiers, but V T a  etc 

should only be allowed to occur if V is an annotated variable for which we want attribute values, 

and that a is a valid attribute for V. 

6.2 T ran s la t i on  of  the  case  rec  e x p r e s s i o n  

Each case rec expression is translated into a set of mutually recursive evaluation functions, one 

for each attribute sort declaration. 

For an annotated expression to match a pattern our semantics required that the sort annotating 

the left hand variable in the pattern is the same as the sort requested, i.e., as annotated to the 

scrutinized expression, and in attempting to match we thus need only try those patterns that has 

the correct annotation. We thus translate case rec e::A . . .  end  into the function application 

F/~.A e, where the function F E _ A  tries to match eTA against the patterns Vk::ak = pat ternk.  In 

the test for match the function FE_A need only include those cases where the identifier ak is the 

same as A, and this goes for all the e ~ u a t i o n  functions. The function F E _ A  thus becomes 

F E _ A  pat tern~l  = trans la t ion  o f  declkl ]] 

F E _ A  pattern~2 -= translat ion o f  declk2 tl 
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where kl, k2 etc are the places where the attribute sort name ak, are the same as A,  pattern' 

is the same as pattern but with annotations removed. The translation of declk is a function, 

and can be a )~-expression analogous to the one in 6.1. For each case V::A = pattern: decI, 

assuming the the pattern has N annotated variables Vj::aj and where the ajs have been declared 

as a j = i j l . . ,  i j ,~ --* sil . . .  s in i and A is declared as A = i ~ . . .  im --~ sl . "  sn, the corresponding case 

for the evaluation can be written as 

FE_A pattern' V_il . . .  V_iN = 

let  rec (Vl-s11, . . ' ,  V1-slnl) = FE.al  V1 Vl-ill ""  Vl-iz,~l a nd  

(Vg .~m,  ""  , VN.ZN~)  = FE_aN VN VN-im ""  VN-iN,~N a n d  

decl I 

in  (V-s1, . . . ,  V.z,)  

where decl' is the same as decl but with attribute operators VTa translated into identifiers V_a 

(the variables for the inherited attributes have been moved to the left hand side of the equal-sign, 

instead of being ~-bound in the right hand side, but the meaning is the same). The entire case 

rec expression is translated into 

FE_A e 

where  rec declarations of evaluation functions. 

Our transform example from section 4.1 will according to the above scheme be translated into 

the program given below. 

transform t = 

FE_atop t 

where  rec 

FE_atop t = 

let  rec (t_tree, t_min) = FE_a t t_rep a nd  

T_tree = t_tree and  

t_rep = t_min 

in T_tree 

and  

FE_a (fork L R) T_rep = 

let  rec (L_tree, L_min) = FE_a L L_rep a nd  

(R_tree, R_min) = FE_a R R_rep a nd  

T_min = rain L_min R_min a nd  

T_tree = fork L_tree R_tree a nd  

L_rep = T_rep a n d  

R_rep = T_rep 

in  (T_tree, T ra in )  

FE_a (tip i) T_rep = 

le t  rec T_min = i a n d  

T_tree = tip T_rep 

in  (T_tree, T_min ) 

6 .3  F u r t h e r  e x a m p l e s  

As a further example of the use of the case rec expression, we offer the following compiler- 

oriented one: assigning unique names to identifiers, so that identifiers bound in a let  rec allways 
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have different names. The  tree to be traversed has the following type: 

Expr = ID Id + A P  Expr Expr + L E T R E C  (Li~t(Id × Expr))  Expr 

The  a t t r ibu te  sort e is for traversal  of Expr, and d for traversal of List(Id x Expr).  Note that  even 

if we had wanted wanted the  same at t r ibutes  to be defined over the two types, it had still been 

necessary to have two sort declarations. Note  Mso that  sorts may  have the same name as variables 

wi thout  causing any confusion be tween the  two (except perhaps in the mind  of the  programmer).  

c a s e  r e e  e::e~op 

s o r t  e t o p =  --~ ten 

a n d  e = map iu ~ ten 8u 

a n d  d = map iu --+ ten  su newmap 

in  

E::etop = e::e : 

B::e = A P  eI::e e2::e : 

E::e = ID id : 

E::e = L E T R E C  d::d e::e : 

D::d = (id, e::e) . d::d : 

D : : d  = ! ] :  

e n d  

ETren = eTren a n d  

eSmap = [] a n d  e$,u  = 0 11 

E~ren = A P  eITren e2Tren a n d  

el Smap = E$map  and e21map = ESmap  a n d  

e l~ iu  = EJ, iu a n d  ee i iu  = e I T , u  a n d  ETsu = e2Tsu 1] 

E~ren = 11) newid a n d  

newid = lookup id E,[map a n d  

ETsu  = E$iu  II 

Eyren  = L E T R E C  dTren eTren a n d  

extendedmap = E~map Q dTnewmap a n d  

eJ, m a p =  extendedmap a n d  dJ, m a p =  extendedmap a n d  

d+iu = E+iu a n d  e l iu  = dTsu and ETsu -- eTsu [1 

DTren = (newid, e~ren).dTren a n d  

newid = i toname D+iu a n d  

e~map = Ej .map a n d  dJ, m a p =  E+map a n d  

DT newmap = ( id, newid) .dTnewmap a n d  

e$iu = D$iu + 1 and d$iu = eTsu a n d  DTsu = dTsu ![ 

DTren = [] a n d  

DTsu = D£iu a n d  

DTnewma p = [] 

T h e  not ion of a t t r ibu te  sorts is quite  a generM and powerful device. It  can be  used to  specify that  

different computa t ions  are to be  done in different contexts. As an example of this, the  following 

case  r e c  expression has the value true if the  scrutinized list I has an even number  of number  of 

elements, .false otherwise. 

c a s e  r e c  l:even s o r t  even = ~ r a n d  odd = -~ r in  

Z::even = [] : ZTr = ~rue 

II L::odd = [] : L T r  = false 
{t L::even = _.  l::odd : LTr = lT r 

[[ L::odd = _.  t::even : Lyr  = l~r 

e n d  
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7 On circular a t tr ibute  definit ions 

A classical problem with at t r ibute  grammars is to determine whether a part icular at t r ibute gram- 

mar is well-formed or non-circular, i.e., that for every possible parse tree, there are no circular 

data  dependencies. This test has been proved to be intrinsically exponential [JOR75]. The usual 

assumption then is that for an at tr ibute definition XTa -- expression, the values of the at tr ibute 

occurences in expression must be computed before the value of XTa can be computed. This is not 

true with is lazy functional language: for instance, 

XTa = 1 . X T  a 

is a circular a t t r ibute  definition in the traditional sense, but  is perfectly well-defined in lazy func- 

tional language, the value of XTa being the infinite list of ones. Furthermore, not only can an 

at t r ibute  value be totally defined or totally undefined, now we can also have part ial ly defined val- 

ues, like 1.2_ (i.e., computation of this value terminates with a cons and the first element defined, 

but the tail  of the list is undefined). So, with a lazy functional language, the problem of wellde- 

finedness of an at t r ibute  grammar is a much more diversified one. It is a subject for further research 

to determine to what extent existing algorithms for circularity-check can be usefully adapted to 

at tr ibute grammar systems with lazy functional languages. 

So the only practical road open to us seems to be to detect circularities at run-time; fortunately, 

though, this can be done at very little extra cost. In the G-machlne [Joh84] this can be done by 

changing the tag of the apply node which is later going to be updated anyway with the value of 

the function application. 

8 Conc lud ing  remarks  

In this paper  we have described a particular way of taking advantage of the normal-order semantics, 

to obtain non-obvious solutions to programming problems. As yet, we have not implemented the 

case rec  expression in LML, but the style of circular programming implied has been used in 

programming the LML compiler itself (which is almost entirely written in LML). We first used 

this circular style when programming the lambda-lifting pa r t - - t he  functional program in [Joh85] 

is of this kind. It was only afterwards the we discovered that  at t r ibute grammars provided a clear 

explanation of what was going on! This technique was subsequently used also in the G-machine 

code to target code generator, for propagating information backwards and forwards in the G- 

code stream. In our opinion we are barely beginning to learn how to use the full power of lazy 

evaluation in functional programming, and how to construct functional programs which might be 

just as efficient as conventional imperative solutions. 

Conventional wisdom has it that  for conventional languages "semantic evaluation methods 

based on at t r ibute  grammars are currently not efficient enough compared with ad-hoc algorithms 

used in the usual hand-written compilers" (quote from [Kat84]), For functional languages the re- 

verse may well be t rue--where a conventional functional program would make multiple passes over 

the abstract  syntax tree and perhaps in the process build intermediate structures to store inter- 

mediate information between passes, a functional at t r ibute evaluator makes only one pass over the 

parse tree - -  intermediate values are "stored" in closures representing the da ta  dependencies. An 

efficient implementation of a lazy functional language such as the Lazy ML-compiler [Joh84,Aug84] 

is optimized to handle closures, the central mechanism of lazy evaluation. Thus I would not find 

it surprising if an at t r ibute  evaluator implemented in this manner could still compete successfully 

with a more conventional at t r ibute evaluator implemented in a conventional language. 

A c k n o w l e d g e m e n t s :  Lennart Augnstsson, John Hughes, Bengt NordstrSm, GSran Uddeborg, 
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