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Abstract. The paper is an overview of recent developments concerning
attribute implications in a fuzzy setting. Attribute implications are for-
mulas of the form A ⇒ B, where A and B are collections of attributes,
which describe dependencies between attributes. Attribute implications
are studied in several areas of computer science and mathematics. We
focus on two of them, namely, formal concept analysis and databases.

Keywords: attribute implication, fuzzy logic, functional dependency,
concept lattice.

1 Introduction

Formulas of the form A ⇒ B where A and B are collections of attributes have
been studied for a long time in computer science and mathematics. In formal
concept analysis (FCA), formulas A ⇒ B are called attribute implications. At-
tribute implications are interpreted in formal contexts, i.e. in data tables with
binary attributes, and have the following meaning: Each object having all at-
tributes from A has also all attributes from B, see e.g. [22, 25]. In databases,
formulas A ⇒ B are called functional dependencies. Functional dependencies are
interpreted in relations on relation schemes, i.e. in data tables with arbitrarily-
valued attributes and have the following meaning: Any two objects which have
the same values of attributes from A have also the same values of attributes
from B, see e.g. [2, 29].

In what follows, we present an overview of some recent results on attribute
implications and functional dependencies developed from the point of view of
fuzzy logic. Section 2 provides an overview to some notions of fuzzy logic which
will be needed. Section 3 deals with attribute implications in a fuzzy setting. Sec-
tion 4 deals with functional dependencies in a fuzzy setting. Section 5 discusses
Armstrong-like rules. Section 6 contains concluding remarks.

2 Preliminaries in Fuzzy Logic and Fuzzy Sets

Contrary to classical logic, fuzzy logic uses a scale L of truth degrees, the most
favorite choice being L = [0, 1] (real unit interval) or some subchain of [0, 1].
� Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079
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This enables to consider intermediate truth degrees of propositions, e.g. “object
x has attribute y” has a truth degree 0.8 indicating that the proposition is
almost true. In addition to L, one has to pick an appropriate collection of logical
connectives (implication, conjunction, . . . ). A general choice of a set of truth
degrees plus logical connectives is represented by so-called complete residuated
lattices (equipped possibly with additional operations). The rest of this section
presents an introduction to fuzzy logic notions we will need. Details can be found
e.g. in [4, 24, 26], a good introduction to fuzzy logic and fuzzy sets is presented
in [28].

A complete residuated lattice is an algebra L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 such that
〈L, ∧, ∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest
element of L, respectively; 〈L, ⊗, 1〉 is a commutative monoid (i.e. ⊗ is commu-
tative, associative, and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy
so-called adjointness property:

a ⊗ b ≤ c iff a ≤ b → c

for each a, b, c ∈ L. Elements a of L are called truth degrees. Fuzzy logic is
truth-functional and ⊗ and → are truth functions of (“fuzzy”) conjunction and
(“fuzzy”) implication. That is, if ||ϕ|| and ||ψ|| are truth degrees of formulas
ϕ and ψ then ||ϕ|| ⊗ ||ψ|| is a truth degree of formula ϕ&ψ (& is a symbol of
conjunction connective); analogously for implication.

A useful connective is that of a truth-stressing hedge (shortly, a hedge) [26, 27].
A hedge is a unary function ∗ : L → L satisfying 1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ →
b∗, a∗∗ = a∗, for each a, b ∈ L. Hedge ∗ is a truth function of logical connective
“very true”, see [26, 27]. The properties of hedges have natural interpretations,
see [27].

A common choice of L is a structure with L = [0, 1] (unit interval) or L being
a finite chain. We refer to [4, 26] for details.

Two boundary cases of (truth-stressing) hedges are (i) identity, i.e. a∗ = a
(a ∈ L); (ii) globalization [34]:

a∗ =
{

1 if a = 1,
0 otherwise.

A special case of a complete residuated lattice with hedge is the two-element
Boolean algebra 〈{0, 1}, ∧, ∨, ⊗, →, ∗, 0, 1〉, denoted by 2, which is the structure
of truth degrees of the classical logic. That is, the operations ∧, ∨, ⊗, → of 2 are
the truth functions (interpretations) of the corresponding logical connectives of
the classical logic and 0∗ = 0, 1∗ = 1. Note that if we prove an assertion for
general L, then, as a particular example, we get a “crisp version” of this assertion
for L being 2.

Having L, we define usual notions: an L-set (fuzzy set) A in universe U is a
mapping A : U → L, A(u) being interpreted as “the degree to which u belongs
to A”. We say “fuzzy set” instead of “L-set” if L is obvious. If U = {u1, . . . , un}
then A can be denoted by A = {a1/u1, . . . ,

an/un} meaning that A(ui) equals
ai for each i = 1, . . . , n. For brevity, we introduce the following convention:
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we write {. . . , u, . . .} instead of {. . . , 1/u, . . .}, and we also omit elements of
U whose membership degree is zero. For example, we write {u, 0.5/v} instead
of {1/u, 0.5/v, 0/w}, etc. Let LU denote the collection of all L-sets in U . The
operations with L-sets are defined componentwise. For instance, the intersection
of L-sets A, B ∈ LU is an L-set A ∩ B in U such that (A ∩ B)(u) = A(u) ∧ B(u)
for each u ∈ U , etc. Binary L-relations (binary fuzzy relations) between X and
Y can be thought of as L-sets in the universe X ×Y . That is, a binary L-relation
I ∈ LX×Y between a set X and a set Y is a mapping assigning to each x ∈ X
and each y ∈ Y a truth degree I(x, y) ∈ L (a degree to which x and y are related
by I). An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X . Crisp
L-sets can be identified with ordinary sets. For a crisp A, we also write x ∈ A
for A(x) = 1 and x �∈ A for A(x) = 0. An L-set A ∈ LX is called empty (denoted
by ∅) if A(x) = 0 for each x ∈ X . For a ∈ L and A ∈ LX , a ⊗ A ∈ LX is defined
by (a ⊗ A)(x) = a ⊗ A(x).

Given A, B ∈ LU , we define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
, (1)

which generalizes the classical subsethood relation ⊆. S(A, B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

A binary L-relation ≈ in U (i.e., between U and U) is called reflexive if for each
u ∈ U we have u ≈ u = 1; symmetric if for each u, v ∈ U we have u ≈ v = v ≈ u;
transitive if for each u, v, w ∈ U we have (u ≈ v) ⊗ (v ≈ w) ≤ (u ≈ w); L-
equivalence if it is reflexive, symmetric, and transitive; L-equality if it is an
L-equivalence for which u ≈ v = 1 iff u = v.

In the following we use well-known properties of residuated lattices and fuzzy
structures which can be found in monographs [4, 26]. Throughout the rest of the
paper, L denotes an arbitrary complete residuated lattice and ∗ (possibly with
indices) denotes a hedge.

3 Attribute Implications

3.1 Attribute Implications, Validity, Theories and Models

We first introduce attribute implications. Suppose Y is a finite set (of attributes).

Definition 1. A (fuzzy) attribute implication (over Y ) is an expression A ⇒ B,
where A, B ∈ LY (A and B are fuzzy sets of attributes).

Fuzzy attribute implications are our basic formulas. The intended meaning of
A ⇒ B is: “if it is true that an object has all attributes from A, then it has also
all attributes from B”.

Remark 1. For an fuzzy attribute implication A ⇒ B, both A and B are fuzzy
sets of attributes. Particularly, A and B can both be ordinary sets (i.e. A(y) ∈
{0, 1} and B(y) ∈ {0, 1} for each y ∈ Y ), i.e. ordinary attribute implications are
a special case of fuzzy attribute implications.
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A fuzzy attribute implication does not have any kind of “validity” on its own—it
is a syntactic notion. In order to consider validity, we introduce an interpretation
of fuzzy attribute implications. Fuzzy attribute implications are meant to be
interpreted in data tables with fuzzy attributes. A data table with fuzzy attributes
(called also a formal fuzzy context) can be seen as a triplet 〈X, Y, I〉 where X is
a set of objects, Y is a finite set of attributes (the same as above in the definition
of a fuzzy attribute implication), and I ∈ LX×Y is a binary L-relation between
X and Y assigning to each object x ∈ X and each attribute y ∈ Y a degree
I(x, y) to which x has y. 〈X, Y, I〉 can be thought of as a table with rows and
columns corresponding to objects x ∈ X and attributes y ∈ Y , respectively, and
table entries containing degrees I(x, y). A row of a table 〈X, Y, I〉 corresponding
to an object x ∈ X can be seen as a fuzzy set Ix of attributes to which an
attribute y ∈ Y belongs to a degree Ix(y) = I(x, y).

The basic step in the definition of a validity of a fuzzy attribute implication
A ⇒ B is its validity in a fuzzy set M of attributes.

Definition 2. For a fuzzy attribute implication A ⇒ B over Y and a fuzzy set
M ∈ LY of attributes, we define a degree ||A ⇒ B||M ∈ L to which A ⇒ B is
valid in M by

||A ⇒ B||M = S(A, M)∗ → S(B, M). (2)

Remark 2. (1) S(A, M) and S(B, M) are the degrees to which A and B are
contained in M , as defined by (1); ∗ is a truth-stressing hedge; → is a truth
function of implication. Therefore, it is easily seen that if M is a fuzzy set of
attributes of some object x then ||A ⇒ B||M is a truth degree of a proposition
“if it is (very) true that x has all attributes from A then x has all attributes
from B”.

(2) A hedge ∗ plays a role of a parameter controlling the semantics. Consider
the particular forms of (2) for the boundary choices of ∗. First, if ∗ is identity,
(2) becomes

||A ⇒ B||M = S(A, M) → S(B, M).

In this case, ||A ⇒ B||M is a truth degree of “if A is contained in M then B is
contained in M”. Second, if ∗ is globalization, (2) becomes

||A ⇒ B||M =
{

S(B, M) if A ⊆ M,
1 otherwise.

In this case, ||A ⇒ B||M is a truth degree of “B is contained in M” provided A
is fully contained in M (i.e. A(y) ≤ M(y) for each y ∈ Y ), and ||A ⇒ B||M is
1 otherwise. Therefore, compared to the former case (∗ being identity), partial
truth degrees of “A is contained in M” are disregarded for ∗ being globalization.

(3) Consider now the case L = 2 (i.e., the structure of truth degrees is a
two-element Boolean algebra of classical logic). In this case, ||A ⇒ B||M = 1 iff
we have that if A ⊆ M then B ⊆ M . Hence, for L = 2, Definition 2 yields the
well-known definition of validity of an attribute implication in a set of attributes,
cf. [22].
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We now extend the definition of a validity of attribute implications to validity
in systems of fuzzy sets of attributes and to validity in data tables with fuzzy
attributes.

Definition 3. For a system M of L-sets in Y , define a degree ||A ⇒ B||M to
which A ⇒ B is true in (each M from) M by

||A ⇒ B||M =
∧

M∈M
||A ⇒ B||M . (3)

Given a data table 〈X, Y, I〉 with fuzzy attributes, define a degree ||A ⇒ B||〈X,Y,I〉
to which A ⇒ B is true in 〈X, Y, I〉 by

||A ⇒ B||〈X,Y,I〉 = ||A ⇒ B||{Ix |x∈X}. (4)

Remark 3. Since Ix represents a row of table 〈X, Y, I〉 corresponding to x (recall
that Ix(y) = I(x, y) for each y ∈ Y ), ||A ⇒ B||〈X,Y,I〉 is, in fact, a degree to
which A ⇒ B is true in a system M = {Ix | x ∈ X} of all rows of table 〈X, Y, I〉.

Remark 4. For a fuzzy attribute implication A ⇒ B, degrees A(y) ∈ L and
B(y) ∈ L can be seen as thresholds. This is best seen when ∗ is globalization,
i.e. 1∗ = 1 and a∗ = 0 for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1,
we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a �≤ b.

Therefore, ||A ⇒ B||〈X,Y,I〉 = 1 means that a proposition “for each object x ∈ X :
if for each attribute y ∈ Y , x has y in degree greater than or equal to (a threshold)
A(y), then for each y ∈ Y , x has y in degree at least B(y)” is true. In general,
||A ⇒ B||〈X,Y,I〉 is a truth degree of the latter proposition. As a particular
example, if A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0 for y �∈ YA) B(y) = b
for y ∈ YB ⊆ Y (and B(y) = 0 for y �∈ YB), the proposition says “for each
object x ∈ X : if x has all attributes from YA in degree at least a, then x has all
attributes from YB in degree at least b”, etc. That is, having A and B fuzzy sets
allows for a rich expressibility of relationships between attributes which is why
we want A and B to be fuzzy sets in general.

Example 1. For illustration, consider Tab. 1, where table entries are taken from
L defined on the real unit interval L = [0, 1] with ∗ being globalization. Consider
now the following fuzzy attribute implications.

(1) {0.3/y3,
0.7/y4} ⇒ {y1,

0.3/y2,
0.8/y4,

0.4/y6} is true in degree 1 in data table
from Tab. 1. On the other hand, implication {y1,

0.3/y3} ⇒ {0.1/y2,
0.7/y5,

0.4/y6}
is not true in degree 1 in Tab. 1—object x2 can be taken as a counterexample:
x2 does not have attribute y5 in degree greater than or equal to 0.7.

(2) {y1, y2}⇒{y4, y5} is a crisp attribute implication which is true in degree
1 in the table. On the contrary, {y5} ⇒ {y4} is also crisp but it is not true in
degree 1 (object x3 is a counterexample).
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Table 1. Data table with fuzzy attributes

I y1 y2 y3 y4 y5 y6

x1 1.0 1.0 0.0 1.0 1.0 0.2
x2 1.0 0.4 0.3 0.8 0.5 1.0
x3 0.2 0.9 0.7 0.5 1.0 0.6
x4 1.0 1.0 0.8 1.0 1.0 0.5

X = {x1, . . . , x4}

Y = {y1, . . . , y6}

(3) Implication {0.5/y5,
0.5/y6}⇒{0.3/y2,

0.3/y3} is in the above-mentioned form
for YA = {y5, y6}, YB = {y2, y3}, a = 0.5, and b = 0.3. The implication is true
in data table in degree 1. {0.5/y5,

0.5/y6}⇒{0.3/y1,
0.3/y2} is also in this form (for

YB = {y1, y2}) but it is not true in the data table in degree 1 (again, take x3 as
a counterexample).

We now come to the notions of a theory and a model. In logic, a theory is
considered as a collection of formulas. The formulas are considered as valid
formulas we can use when making inferences. In fuzzy logic, a theory T can be
considered as a fuzzy set of formulas, see [30] and also [23, 26]. Then, for a formula
ϕ, a degree T (ϕ) to which ϕ belongs to T can be seen as a degree to which we
assume ϕ valid (think of ϕ as expressing “Mary likes John”, “temperature is
high”, etc.). This will be also our approach. In general, we will deal with fuzzy
sets T of attribute implications. Sometimes, we use only sets T of attribute
implications (particularly when interested only in fully true implications). The
following definition introduces the notion of a model.

Definition 4. For a fuzzy set T of fuzzy attribute implications, the set Mod(T )
of all models of T is defined by

Mod(T ) = {M ∈ LY | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||M}.

That is, M ∈ Mod(T ) means that for each attribute implication A ⇒ B, a degree
to which A ⇒ B holds in M is higher than or at least equal to a degree T (A ⇒ B)
prescribed by T . Particularly, for a crisp T , Mod(T ) = {M ∈ LY | for each A ⇒
B ∈ T : ||A ⇒ B||M = 1}.

3.2 Relationship to Fuzzy Concept Lattices

Analogously as in the ordinary case, there is a close relationship between at-
tribute implications and concept lattices. A useful structure derived from
〈X, Y, I〉 which is related to attribute implications is a so-called fuzzy concept
lattice with hedges [10]. Let ∗X and ∗Y be hedges (their meaning will become
apparent later). For L-sets A ∈ LX (L-set of objects), B ∈ LY (L-set of at-
tributes) we define L-sets A↑ ∈ LY (L-set of attributes), B↓ ∈ LX (L-set of
objects) by

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
and B↓(x) =

∧
y∈Y

(
B(y)∗Y → I(x, y)

)
.

We put B(X∗X , Y ∗Y , I) = {〈A, B〉 ∈ LX × LY | A↑ = B, B↓ = A}. For 〈A1, B1〉,
〈A2, B2〉 ∈ B(X∗X , Y ∗Y , I), put 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff B2 ⊆
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B1; both ways are equivalent). Operators ↓, ↑ form a Galois connection with
hedges [10]. 〈B(X∗X , Y ∗Y , I), ≤〉 is called a fuzzy concept lattice (with hedges)
induced by 〈X, Y, I〉; 〈A, B〉 ∈ B(X∗X , Y ∗Y , I) are called formal concepts. For
∗Y = idL (identity), we write only B(X∗X , Y, I).

Remark 5. (1) Fuzzy concept lattices with hedges generalize some of the ap-
proaches to concept lattices from the point of view of a fuzzy approach, see [14]
for details.

(2) Hedges can be seen as parameters which control the size of a fuzzy concept
lattice (the stronger the hedges, the smaller B(X∗X , Y ∗Y , I)). See [10] for details.

(3) For L = 2, a fuzzy concept lattice with hedges coincides with the ordinary
concept lattice.

For each 〈X, Y, I〉 we consider a set Int(X∗X , Y ∗Y , I) ⊆ LY of all intents of
concepts of B(X∗X , Y ∗Y , I), i.e.

Int(X∗X , Y ∗Y , I) = {B ∈ LY | 〈A, B〉 ∈ B(X∗X , Y ∗Y , I) for some A ∈ LX}.

For ∗X = ∗ (the hedge used in (2)) and ∗Y = idL (identity on L), B(X∗, Y, I)
and Int(X∗, Y, I) play analogous roles for fuzzy attribute implications to the
roles of ordinary concept lattices and systems of intents for ordinary attribute
implications.

We close this section by a theorem showing some formulas expressing a degree
||A ⇒ B||M in terms of fuzzy concept lattices with hedges and the operators ↑

and ↓. For hedges •, ∗ : L → L put • ≤ ∗ iff a• ≤ a∗ for each a ∈ L.

Theorem 1 ([13]). For a data table 〈X, Y, I〉 with fuzzy attributes, hedges •
and ∗ with • ≤ ∗, and an attribute implication A ⇒ B, the following values are
equal:

||A ⇒ B||〈X,Y,I〉, ||A ⇒ B||Int(X∗,Y,I), S(B, A↓↑),∧
x∈X,a∈L S(a∗ ⊗ A, { 1/

x}↑)• → S(a∗ ⊗ B, { 1/
x}↑),∧

x∈X,a∈L S(A, { a
/
x}↑)• → S(B, { a

/
x}↑),∧

a∈L ||a∗ ⊗ A ⇒ a∗ ⊗ B||〈X,Y,I〉,∧
M∈Int(X∗,Y,I) S(A, M)• → S(B, M).

3.3 Complete Sets and Guigues-Duquenne Bases

We now turn our attention to the notions of semantic entailment, completeness
in data tables, non-redundant basis, etc.

Definition 5. A degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows
from a fuzzy set T of attribute implications is defined by

||A ⇒ B||T = ||A ⇒ B||Mod(T ). (5)

That is, ||A ⇒ B||T can be seen as a degree to which A ⇒ B is true in each
model of T . From now on in this section, we will assume that T is an ordinary
set of fuzzy attribute implications.
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Definition 6. A set T of attribute implications is called complete (in 〈X, Y, I〉)
if ||A ⇒ B||T = ||A ⇒ B||〈X,Y,I〉 for each A ⇒ B. If T is complete and no proper
subset of T is complete, then T is called a non-redundant basis (of 〈X, Y, I〉).

Note that both the notions of a complete set and a non-redundant basis refer to
a given data table with fuzzy attributes.

Since we are primarily interested in implications which are fully true in
〈X, Y, I〉, the following notion seems to be of interest. Call T 1-complete in
〈X, Y, I〉 if we have that ||A ⇒ B||T = 1 iff ||A ⇒ B||〈X,Y,I〉 = 1 for each
A ⇒ B. Clearly, if T is complete then it is also 1-complete. Surprisingly, we
have also

Theorem 2 ([12]). T is 1-complete in 〈X, Y, I〉 iff T is complete in 〈X, Y, I〉.

The following assertion shows that the models of a complete set of fuzzy attribute
implications are exactly the intents of the corresponding fuzzy concept lattice.

Theorem 3 ([7]). T is complete iff Mod(T ) = Int(X∗, Y, I).

In the following, we focus on so-called Guigues-Duquenne basis, i.e. a non-
redundant basis based on the notion of a pseudointent, see [21, 22, 25]. As we
will see, the situation is somewhat different from what we know from the ordi-
nary case. We start by the notion of a system of pseudointents.

Definition 7. Given 〈X, Y, I〉, P ⊆ LY (a system of fuzzy sets of attributes) is
called a system of pseudo-intents of 〈X, Y, I〉 if for each P ∈ LY we have:

P ∈ P iff P �= P ↓↑ and ||Q ⇒ Q↓↑||P = 1 for each Q ∈ P with Q �= P .

It is easily seen that if L is a complete residuated lattice with globalization then
P is a system of pseudo-intents of 〈X, Y, I〉 if for each P ∈ LY we have:

P ∈ P iff P �= P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q ⊂ P .

In addition to that, in case of finite L, for each data table with finite set of
attributes there is exactly one system of pseudo-intents which can be described
recursively the same way as in the classical case [22, 25]:

Theorem 4 ([11]). Let L be a finite residuated lattice with globalization. Then
for each 〈X, Y, I〉 with finite Y there is a unique system of pseudo-intents P of
〈X, Y, I〉 and

P = {P ∈ LY | P �= P ↓↑ and Q↓↑ ⊆ P holds for each Q ∈ P such that Q ⊂ P}.

Remark 6. (1) Neither the uniqueness of P nor the existence of P is assured in
general, see [11].

(2) For L = 2, the system of pseudointents described by Theorem 4 coincides
with the ordinary one.

The following theorem shows that each system of pseudointents induces a non-
redundant basis.
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Theorem 5 ([11]). Let P be a system of pseudointents of 〈X, Y, I〉. Then T =
{P ⇒ P ↓↑| P ∈ P} is a non-redundant basis of 〈X, Y, I〉 (so-called Guigues-
Duquenne basis).

Non-redundancy of T does not ensure that T is minimal in terms of its size.
The following theorem shows a generalization of a well-known result saying that
Guigues-Duquenne basis is minimal in terms of its size.

Theorem 6 ([11]). Let L be a finite residuated lattice with ∗ being the global-
ization, Y be finite. Let T be a Guigues-Duquenne basis of 〈X, Y, I〉, i.e. T =
{P ⇒ P ↓↑ | P ∈ P} where P is the system of pseudointents of 〈X, Y, I〉. If T ′ is
complete in 〈X, Y, I〉 then |T | ≤ |T ′|.

Remark 7. For hedges other than globalization we can have several systems of
pseudointents. The systems of pseudointents may have different numbers of ele-
ments, see [11].

3.4 Algorithms for Generating Systems of Pseudointents

CASE 1: Finite L and ∗ being globalization. If L is finite and ∗ is globalization,
there is a unique system P of pseudointents for 〈X, Y, I〉, see Theorem 4. In what
follows we describe an algorithm for computing this P . The algorithm is based
on the ideas of Ganter’s algorithm for computing ordinary pseudointents, see
[21, 22]. Details can be found in [7].

For simplicity, let us assume that L is, moreover, linearly ordered. For Z ∈ LY

put

ZT ∗
= Z ∪

⋃
{B ⊗ S(A, Z)∗ | A ⇒ B ∈ T and A �= Z},

ZT ∗
0 = Z,

ZT ∗
n = (ZT ∗

n−1)T ∗
, for n ≥ 1,

and define an operator clT ∗ on L-sets in Y by

clT ∗(Z) =
⋃∞

n=0 ZT ∗
n .

Theorem 7 ([7]). clT ∗ is a fuzzy closure operator, and

{clT ∗(Z) | Z ∈ LY } = P ∪ Int(X∗, Y, I).

Using Theorem 7, we can get all intents and all pseudo-intents (of a given data
table with fuzzy attributes) by computing the fixed points of clT ∗ . This can be
done with polynomial time delay using a “fuzzy extension” of Ganter’s algorithm
for computing all fixed points of a closure operator, see [6]. We refer to [7] for
details.

CASE 2: Finite L and arbitrary ∗. If L is finite and ∗ is an arbitrary hedge
(not necessarily globalization), the systems of pseudointents for 〈X, Y, I〉 can be
computed using algorithms for generating maximal independent sets in graphs.



54 R. Bělohlávek and V. Vychodil

Namely, as we show in the following, systems of pseudointents in this case can
be identified with particular maximal independent sets. (details can be found in
[15]): For 〈X, Y, I〉 define a set V of fuzzy sets of attributes by

V = {P ∈ LY | P �= P ↓↑}. (6)

If V �= ∅, define a binary relation E on V by

E = {〈P, Q〉∈ V | P �= Q and ||Q ⇒ Q↓↑||P �= 1}. (7)

In this case, G = 〈V, E ∪ E−1〉 is a graph. For any Q ∈ V and P ⊆ V define
the following subsets of V : Pred(Q) = {P ∈ V | 〈P, Q〉 ∈ E}, and Pred(P) =⋃

Q∈P Pred(Q).

Theorem 8 ([15]). Let L be finite, ∗ be any hedge, 〈X, Y, I〉 be a data table
with fuzzy attributes, P ⊆ LY , V and E be defined by (6) and (7), respectively.
Then the following statements are equivalent.

(i) P is a system of pseudo-intents;
(ii) V − P = Pred(P);
(iii) P is a maximal independent set in G such that V − P = Pred(P).

The Theorem gives a way to compute systems of pseudo-intents. It suffices to find
all maximal independent sets in G and check which of them satisfy additional
condition V − P = Pred(P).

4 Functional Dependencies over Domains with Similarity
Relations

As we mentioned in Section 1, ordinary attribute implications have been used
in databases under the name functional dependencies. Functional dependencies
are interpreted in data tables with arbitrarily-valued attributes. A table entry
corresponding to an object (row) x and an attribute (column) y contains an
arbitrary value from a so-called domain Dy (set of all possible values for y). Then,
A ⇒ B is considered true in such a table if any two objects (rows) which agree
in their values of attributes from A agree also in their values of attributes from
B. In this section we consider functional dependencies from the point of view of
a fuzzy approach. We show several relationships to fuzzy attribute implications.
Most importantly, we argue that in a fuzzy setting, the concept of a functional
dependence is an interesting one for the theory of databases.

Definition 8. A (fuzzy) functional dependence (over attributes Y ) is an ex-
pression A ⇒ B, where A, B ∈ LY (A and B are fuzzy sets of attributes).

Therefore, the notion of a fuzzy functional dependence coincides with the notion
of a fuzzy attribute implication. We prefer using both of the terms, depending
on the context of usage. Fuzzy functional dependencies will be interpreted in
data tables over domains with similarities.
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Definition 9. A data table over domains with similarity relations is a tuple
D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉 where

– X is a non-empty set (of objects, table items),
– Y is a non-empty finite set (of attributes),
– for each y ∈ Y , Dy is a non-empty set (of values of attribute y) and ≈y is

a binary fuzzy relation which is reflexive and symmetric,
– T is a mapping assigning to each x ∈ X and y ∈ Y a value T (x, y) ∈ Dy

(value of attribute y on object x).

D will always denote some data table over domains with similarity relations with
its components denoted as above.

Remark 8. (1) Consider L = {0, 1} (case of classical logic). If each ≈y is an
equality (i.e. a ≈y b = 1 iff a = b), then D can be identified with what is called
a relation on relation scheme Y with domains Dy (y ∈ Y ) [29].

(2) For x ∈ X and Z ⊆ Y , x[Z] denotes a tuple of values T (x, y) for y ∈ Z.
We may assume that attribute from Y are numbered, i.e. Y = {y1, . . . , yn},
and thus linearly ordered by this numbering, and assume that attributes in x[Z]
are ordered in this way. Particularly, x[y] is x[{y}] which can be identified with
T (x, y).

(3) D can be seen as a table with rows and columns corresponding to x ∈ X
and y ∈ Y , respectively, and with table entries containing values T (x, y) ∈ Dy.
Moreover, each domain Dy is equipped with an additional information about
similarity of elements from Dy.

Given a data table D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉, we want to introduce a
condition for a functional dependence A ⇒ B to be true in D which says basically
the following: “for any two objects x1, x2 ∈ X : if x1 and x2 have similar values
on attributes from A then x1 and x2 have similar values on attributes from
A”. Define first for a given D, objects x1, x2 ∈ X , and a fuzzy set C ∈ LY of
attributes a degree x1(C) ≈ x2(C) to which x1 and x2 have similar values on
attributes from C (agree on attributes from C) by

x1(C) ≈ x2(C) =
∧

y∈Y

(
C(y) → (x1[y] ≈y x2[y])

)
. (8)

That is, x1(C) ≈ x2(C) is truth degree of proposition “for each attribute y ∈ Y :
if y belongs to C then the value x1[y] of x1 on y is similar to the value x2[y] of x2
on y”, which can be seen as a degree to which x1 and x2 have similar values on
attributes from C. Then, the above idea of validity of a functional dependence
is then captured by the following definition.

Definition 10. A degree ||A ⇒ B||D to which A ⇒ B is true in D is defined by

||A ⇒ B||D =
∧

x1,x2∈X

(
(x1(A) ≈ x2(A))∗ → (x1(B) ≈ x2(B))

)
. (9)
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Remark 9. (1) If A and B are crisp sets then A and B may be considered as
ordinary sets and A ⇒ B may be seen as an ordinary functional dependence.
Then, if ≈y is an ordinary equality for each y ∈ Y , we have that ||A ⇒ B||D = 1
iff A ⇒ B is true in D in the usual sense of validity of ordinary functional
dependencies.

(2) For a functional dependence A ⇒ B, degrees A(y) ∈ L and B(y) ∈ L can
be seen as thresholds. Namely, if ∗ is globalization, ||A ⇒ B||D = 1 means that
a proposition “for any objects x1, x2 ∈ X : if for each attribute y ∈ Y , A(y) ≤
(x1[y] ≈y x2[y]), then for each attribute y′ ∈ Y , B(y′) ≤ (x1[y′] ≈y x2[y′])”
is true. That is, having A and B fuzzy sets allows for a rich expressibility, cf.
Remark 4.

We now have two ways to interpret a fuzzy attribute implication (fuzzy func-
tional dependence) A ⇒ B. First, given a data table T = 〈X, Y, I〉 with fuzzy
attributes, we can consider a degree ||A ⇒ B||T to which A ⇒ B is true in
T , see (4). Second, given a data table D over domains with similarities, we can
consider a degree ||A ⇒ B||D to which A ⇒ B is true in D, see (9). In the rest of
this section, we focus on presenting the following relationship between the two
kinds of semantics for our formulas A ⇒ B: The notion of semantic entailment
based on data tables with fuzzy attributes coincides with the notion of semantic
entailment based on data tables over domains with similarity relations.

As in case of fuzzy attribute implications, we introduce the notions of a model
and semantic entailment for functional dependencies. For a fuzzy set T of fuzzy
functional dependencies, the set ModFD(T ) of all models of T is defined by

ModFD(T ) = {D | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||D},

where D stands for an arbitrary data table over domains with similarities. A
degree ||A ⇒ B||FD

T ∈ L to which A ⇒ B semantically follows from a fuzzy set
T of functional dependencies is defined by

||A ⇒ B||FD
T =

∧
D∈ModFD(T ) ||A ⇒ B||D.

Denoting now ||A ⇒ B||T , see (5), by ||A ⇒ B||AI
T , one can prove the following

theorem.

Theorem 9 ([17]). For any fuzzy set T of fuzzy attribute implications and any
fuzzy attribute implication A ⇒ B we have

||A ⇒ B||FD
T = ||A ⇒ B||AI

T . (10)

5 Armstrong Rules and Provability

In this section we present a system of Armstrong-like rules for reasoning with
fuzzy attribute implications. Throughout this section we assume that L is finite.
We show that the system is complete w.r.t. the semantics of fuzzy attribute
implications based on data tables with fuzzy attributes. Due to Theorem 9, this
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is equivalent to completeness w.r.t. the semantics based on data tables over
domains with similarities. In fact, we show two kinds of completeness. The first
one is a usual one and concerns provability and entailment of A ⇒ B from
a set T of attribute implications. Provability and entailment remain bivalent:
A ⇒ B is provable from T iff A ⇒ B semantically follows from T in degree 1.
The second one (called also graded completeness or Pavelka-style completeness)
concerns provability and entailment of A ⇒ B from a fuzzy set T of attribute
implications. Provability and entailment themselves become graded: A degree to
which A ⇒ B is provable from T equals a degree to which A ⇒ B semantically
follows from T . Details can be found in [12, 16].

Our axiomatic system consists of the following deduction rules.

(Ax) infer A ∪ B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A ⇒ B infer c∗ ⊗ A ⇒ c∗ ⊗ B

for each A, B, C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood
as follows: having functional dependencies which are of the form of functional
dependencies in the input part (the part preceding “infer”) of a rule, a rule
allows us to infer (in one step) the corresponding functional dependence in the
output part (the part following “infer”) of a rule.

Completeness. A fuzzy attribute implication A ⇒ B is called provable from a
set T of fuzzy attribute implications using (Ax)–(Mul), written T � A ⇒ B,
if there is a sequence ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is
A ⇒ B and for each ϕi we either have ϕi ∈ T or ϕi is inferred (in one step)
from some of the preceding formulas (i.e., ϕ1, . . . , ϕi−1) using some of deduction
rules (Ax)–(Mul). To comply to the notation T � A ⇒ B, we write T |= A ⇒ B
to denote that ||A ⇒ B||T = 1 (A ⇒ B semantically follows from T in degree
1). Then we have the first kind of completeness:

Theorem 10 ([16]). For any set T of fuzzy attribute implications and any fuzzy
attribute implication A ⇒ B we have

T � A ⇒ B iff T |= A ⇒ B.

Graded completeness. Now, we are going to define a notion of a degree |A ⇒ B|T
of provability of a functional dependence of a fuzzy set T of functional dependen-
cies. Then, we show that |A ⇒ B|T = ||A ⇒ B||FD

T which can be understood as a
graded completeness (completeness in degrees). Note that graded completeness
was introduced by Pavelka [30], see also [23, 26] for further information.

For a fuzzy set T of fuzzy attribute implications and for A ⇒ B we define a
degree |A ⇒ B|T ∈ L to which A ⇒ B is provable from T by

|A ⇒ B|T =
∨

{c ∈ L | c(T ) � A ⇒ c ⊗ B}, (11)

where c(T ) is an ordinary set of fuzzy attribute implications defined by

c(T ) = {A ⇒ T (A ⇒ B) ⊗ B | A, B ∈ LY and T (A ⇒ B) ⊗ B �= ∅}. (12)
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Then we have the second kind of completeness:

Theorem 11 ([16]). For any fuzzy set T of fuzzy attribute implications and
any fuzzy attribute implication A ⇒ B we have

|A ⇒ B|T = ||A ⇒ B||T .

6 Concluding Remarks

6.1 Bibliographic Remarks

The first study on fuzzy attribute implications is S. Pollandt’s [31]. Pollandt
uses the same notion of a fuzzy attribute implication, i.e. A ⇒ B where A, B
are fuzzy sets, and obtains several results. Pollandt’s notion of validity is a
special case of ours, namely the one for ∗ being identity on L. On the other
hand, her notion of a pseudointent corresponds to ∗ being globalization. That is
why Pollandt did not get a proper generalization of results leading to Guigues-
Duquenne basis. Pollandt’s [31] contains some other results (proper premises,
implications in fuzzy-valued contexts) which we did not discuss here. We will
comment more on Pollandt’s results elsewhere.

[19, 33, 35] are papers dealing with fuzzy functional dependencies. Our ap-
proach presented in this paper is more general. Namely, [33, 35] consider formu-
las A ⇒ B with A and B being ordinary sets, i.e. A and B are not suitable for
expressing thresholds. In [19], thresholds in A and B are present but are the
same in A and the same in B. Furthermore, the degrees are restricted to values
from [0, 1] in [19, 33, 35].

Our paper is based on [4]–[17].

6.2 Further Issues

Due to a limited scope of this paper, we did not cover several interesting topics,
some of which are still under investigation. For instance, it is shown in [9, 13] that
a data table T with fuzzy attributes can be transformed to a data table T ′ with
binary attributes in such a way that fuzzy attribute implications true in degree
1 in T correspond in a certain way to ordinary attribute implications which
are true in T ′. The transformation of data tables and attribute implications
makes it possible to obtain an ordinary non-redundant basis T ′ for T ′ and to
obtain a corresponding set T of fuzzy attribute implications from T ′. However,
while T is always complete for T , it may be redundant. Note that some results
on transformations of data tables with fuzzy attributes to tables with binary
attributes which are related to attribute implications are also present in [31].

Interesting open problems include: further study of relationships between at-
tribute implications in a fuzzy setting and ordinary attribute implications (from
both ordinary formal contexts and many-valued contexts); study of further prob-
lems of attribute implications in a fuzzy setting; further study of functional
dependencies and other kinds of dependencies in databases in a fuzzy setting;
development of agenda for databases where domains are equipped with similarity
relations.
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14. Bělohlávek R., Vychodil V.: What is a fuzzy concept lattice? Proc. CLA 2005,
September 7–9, 2005, Olomouc, Czech Republic, pp. 34–45.
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17. Bělohlávek R., Vychodil V.: Functional dependencies of data tables over domains
with similarity relations. IICAI 2005, Pune, India (to appear).

18. Buckles B. P., Petry F. E.: Fuzzy databases in the new era. Proceedings of the
1995 ACM symposium on Applied computing, pp. 497–502, Nashville, Tennessee,
ISBN 0-89791-658-1, 1995.
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