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Abstract. The rapid development of social video sharing platforms has
created a huge demand for automatic video classification and annota-
tion techniques, in particular for videos containing social activities of a
group of people (e.g. YouTube video of a wedding reception). Recently,
attribute learning has emerged as a promising paradigm for transferring
learning to sparsely labelled classes in object or single-object short ac-
tion classification. In contrast to existing work, this paper for the first
time, tackles the problem of attribute learning for understanding group
social activities with sparse labels. This problem is more challenging
because of the complex multi-object nature of social activities, and the
unstructured nature of the activity context. To solve this problem, we (1)
contribute an unstructured social activity attribute (USAA) dataset with
both visual and audio attributes, (2) introduce the concept of semi-latent
attribute space and (3) propose a novel model for learning the latent at-
tributes which alleviate the dependence of existing models on exact and
exhaustive manual specification of the attribute-space. We show that our
framework is able to exploit latent attributes to outperform contempo-
rary approaches for addressing a variety of realistic multi-media sparse
data learning tasks including: multi-task learning, N-shot transfer learn-
ing, learning with label noise and importantly zero-shot learning.

1 Introduction

With the rapid development of digital and mobile phone cameras and prolifer-
ation of social media sharing, billions of unedited and unstructured videos pro-
duced by consumers are uploaded to the social media websites (e.g. YouTube) but
few of them are labelled. Obtaining exhaustive annotation is impractically ex-
pensive. This huge volume of data thus demands effective methods for automatic
video classification and annotation, ideally with minimised supervision. A solu-
tion to these problems would have huge application potential, e.g., content-based
recognition and indexing, and hence content-based search, retrieval, filtering and
recommendation of multi-media..

In the paper, we tackle the problem of automatic classification and anno-
tation of unstructured group social activity. Specifically, we are interested in
home videos of social occassions such graduation ceremony, birthday party, and
wedding reception which feature activities of group of people ranging anything
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Wedding 
reception

Wedding
dance

Clapping hands, Slow moving,    Taking photos,  Crowd,    Dinning Room,

Party House, Coloured light, Indoor, People talking noise,

Laugher, Dancing Music, Candles, Camera zoom

Clapping hands,   Dancing,  Slow moving , Bride, Groom,  Party House,

Indoor, Dancing music, Tracking moving object

Birthday
party

Birthday
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Laugher, Birthday song, Wrapped presents, Baloon, Candles

Clapping hands, Blowing candles, Slow moving, People singing,

Group of people, Indoor, Song, People talking noise, Conversation,

Laugher, Birthday song, Square birthday cake, Baloon

Action attributes  Object attributes Scene attributes Sound attributes Camera moving attributes

Fig. 1. Examples in social activity attribute video dataset. Different types of attributes
of both visual and audio modalities are shown in different colour.

between a handful to hundreds (Fig. 1). By classification, we aim to categorise
each video into a class; and by annotation we aim to predict what are present in
the video. This implies a wide range of multi-modal annotation types including
object (e.g. group of people, cake, balloon), action (e.g. clapping hands, hugging,
taking photos), scene (e.g. indoor, garden, street), and sound (e.g. birthday song,
dancing music). We consider that the problem of classification and annotation
are inter-related and should be tackled together. There have been extensive works
on image classification and annotation [1]. However, little effort has been taken
on video data, especially on unstructured group social activity video.

We propose to solve the problem using an attribute learning framework, where
annotation becomes the problem of attribute prediction and video classification
is helped by a learned attribute model. Attributes describe the characterisitics
that embody an instance or a class. Recently, attribute-based learning [2,3,4,5,6]
has emerged as a powerful approach for image and video understanding. Essen-
tially attributes answer the question of describing a class or instance in contrast
to the typical (classification) question of naming an instance [2,3]. The attribute
description of an instance or category is useful as a semantically meaningful in-
termediate representation to bridge the gap between low level features and high
level classes [6]. Attributes thus facilitate transfer and zero-shot learning [6] to
alleviate issues of the lack of labelled training data, by expressing classes in terms
of well known attributes.

We contribute a new benchmarking multi-modal attribute dataset for social
activity video classification and annotation: unstructured social activity attribute
(USAA) dataset1. It comprises of 8 classes (around 1500 videos totally) and the
visual and audio content of each video is manually annotated using 69 multi-
modal binary attributes. Figure 1 shows examples of videos with annotated

1 Downloadable from http://www.eecs.qmul.ac.uk/~yf300/USAA/download/

http://www.eecs.qmul.ac.uk/~yf300/USAA/download/
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Fig. 2. (a) Our approach to semi-latent attribute space learning can be applied in
various problem contexts. (b) Representing data in terms of a semi-latent attribute
space partially defined by the user (solid axes), and partially learned by the model
(dashed axes). A novel class (dashed circle) may be defined in terms of both user and
latent attributes. (c) Model overview. New classes are learned via expression in terms
of learned semi-latent attribute-space from (b).

attributes. Learning these attributes can support a wide range of studies includ-
ing object recognition, scene classification, action recognition and audio event
recognition. There are a number of unique characters and challenges of this
dataset which can be beneficial to the wide community: (1) The data is weakly
labelled (each attribute annotation does not tell which part of the video con-
tribute to that attribute). (2) Different instances of one social activity video class
(Fig. 1) typically cover a wide variety of attributes (e.g., birthday party class
may or may not exhibit candles). One thus cannot make the assumption that a
class can be uniquely determined by a deterministic vector of binary attributes
[2]. (3) Even with 69 attributes, one cannot assume that the user-defined space
of attributes is perfectly and exhaustively defined due to limited annotation,
and subjectiveness of manual annotation. (4) The most semantically salient at-
tributes may not be the most discriminative and most discriminative attributes
may not correspond to semantic concept and thus can never be manually de-
fined. Discovering and learning those discriminative yet latent attributes thus
becomes the key.

To this end, in this paper we introduce the novel concept of semi-latent at-
tribute space. As illustrated in Fig. 1(b), this attribute space consists of three
types of attributes: user-defined (UD) attributes, class-conditional (CC) dis-
criminative latent attributes and background non-discriminative (BN) latent
attributes. Among the two types of latent attributes, the CC attributes are
discriminative attributes which are predictive of class, whilst the BN attributes
are uncorrelated to class of interest and should thus be ignored as background
data, e.g. random camera or background object movements which are common
characteristics of most unstructured social activity videos. It is crucial that these
three types of attributes should be learned jointly so that the CC attributes do
not repeat the user-defined attributes (UD attributes often are also discrimi-
native), and are separated explicitly from background attributes which explain
away irrelevant dimension of the data [7].
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To learn this semi-latent attribute space, we present a new approach to at-
tribute learning based on a probabilistic topic model [8,9]. A topic model is cho-
sen because it provides an intuitive mechanism for modelling latent attributes
using latent topics. We consider the attribute/topic learning process as semantic
feature reduction [6] from the raw data to a lower dimensional attribute space
(where the axes are the attribute/topic set) (Fig. 1(b)). Classification is then
performed in this semantic feature space. To learn the three types of attributes:
UD, CC, and BN, the topic model learns three types of topics, namely UD top-
ics, CC topics and BN topics. Among them the UD topics are learned supervised
using the labelled use-defined attributes, whilst the learning of CC is supervised
by the class label available during training, and the BN topics are learned un-
supervised. An important advantage of this approach is that it can seamlessly
bridge the gap between context where the attribute space is completely and
precisely specified by the user; and scenarios where the attribute space is com-
pletely unknown (Fig. 1(a)). This means that unlike existing approaches, our
approach is robust to the amount of domain knowledge / annotation budget
possessed by the user. Specifically, if the relevant attribute space is exhaustively
and correctly specified, we create a topic or set of topics for each attribute, and
learn a topic model where the topics for each instance are constrained to not
violate the instance-attribute labels. However, if the attribute space is only par-
tially known, we complete the semantic space using latent attributes by learning
two additional types of topics: CC topics to discover unique attributes of each
known class [9]; and BN topics to segment out background non-discriminative
attributes [7]. At the extreme, if the relevant attribute space is completely un-
known, the latent attributes alone can discover a discriminative and transferrable
intermediate representation. Figure 1(c) gives an overview of the process.

2 Related Work

Learning attribute-based semantic representations of data has recently been top-
ical for images [2,5,10,4,11]. The primary contribution of attribute-based repre-
sentations has been to enable transfer learning (via attribute classifiers) to learn
classes with few or zero instances. However, most of these studies [2,5,4,11] as-
sume that an exhaustive space of attributes has been manually specified. More-
over, it is also assumed that each class is simple enough to be determined by
a single list of attributes. In practice a complete space of relevant attributes is
unlikely to be available a priori since human labelling is limited and the space of
classes is unbounded. Furthermore, semantically obvious attributes for humans
do not necessarily correspond to the space of useful and computable discrimina-
tive attributes [12] (Fig. 1(b)).

A few studies ([3] for object and [13] for action) have considered augmenting
user-defined (UD) attributes with data-driven attributes which correspond to our
definition of class-conditional (CC) attributes. However these do not span the
full spectrum between unspecified and fully specified attribute-spaces as cleanly
as our model. Notably, they learn UD attributes and CC attributes separately.
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This means that the learned CC attributes are not necessarily complementary
to user-defined ones (i.e., they may be redundant). Additionally, some data-
driven attributes may be irrelevant to other discriminative tasks, and should
thus be ignored. This may not be a problem for annotating an object bound-
ing box [3] and a single object action without people interaction [13] where
background information does not present a big issue for learning discriminative
foreground attributes. It is however a problem for unstructured social activ-
ity video where shared characteristics (therefore attributes) across classes may
not be relevant for either classification or annotation. In our approach, by jointly
learning user-defined, class-conditional and background non-discriminative (BN)
attributes, we ensure that the latent attribute space is both complementary and
discriminative.

Probabilistic topic models [8] have been used quie extensively in modelling
images [1] and video [14,15,9,7]. However, the topic spaces in those models are
used for completely unsupervised dimensionality reduction. Here, we focus on an
attribute learning interpretation to learn a semantically meaningful semi-latent
topic-space, which leverages as much from any given prior knowledge, either in
the form of sparely labelled either class or user-defined attributes.

User-defined video attribute learning is related to the video concept detection
(video ontology) work in the multimedia community [16,17,18,19,20,21,22,23]
which has defined top-down shared visual concepts, in order to recognise them
in video. There are several TRECVID challenges about video ontologies, e.g. in
TRECVID Multimedia Event Detection 2. However, these studies generally con-
sider strongly labelled data and prescriptive ontologies and do not leverage dis-
criminative latent attributes for classification.

This paper makes the following specific contributions: (i) To study the is-
sue of unstructured group social activity video classification and annotation, we
present a multi-modal social activity attribute dataset to be made available to
the community. (ii) We propose a new topic-model based approach for attribute
learning. By learning a unified semi-latent space of user-defined and two types of
latent-attributes, we are able to learn a complete and discriminative attribute-
space in a way that is robust to any amount of user prior-knowledge. (iii) We
show how these properties improve a variety of tasks in the sparse data domain
including multi-task learning, N-shot and 0-shot transfer learning. (iv) Our uni-
fied framework enables us to leverage latent attributes even in zero-shot learning
which has not been attempted before.

3 Methods

3.1 Formalisation

Context. Prior work on detection or classification typically takes the approach
of learning a classifier F : X d → Z mapping d-dimensional raw data X to label

2 http://www.nist.gov/itl/iad/mig/med12.cfm

http://www.nist.gov/itl/iad/mig/med12.cfm
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Z from training data D = {(xi, zi)}ni=1. A variant of the standard approach
considers a composition of two mappings:

F = S(L(·)), L : X d → Yp, S : Yp → Z, (1)

where L maps the raw data to an intermediate representation Ya (typically with
a < d) and then S maps the intermediate representation to the final class Z.
Examples of this approach include dimensionality-reduction via PCA [24] (where
L is learned to explain the variance of x) or linear discriminants and multi-layer
neural networks (where L is learned to predict Z).

Attribute learning [2,6] exploits the idea of manually defining Y as a semantic
feature or attribute space. L is then learned by direct supervision with pairs of
instances and attribute vectors D = {(xi,yi)

n
i=1}. A key feature of this approach

is that it permits practical zero-shot learning: the recognition of novel classes
without training examples F : Xd → Z∗ (Z∗ /∈ Z) via the learned attribute
mapping L and a manually specified template S∗of the novel class. Attribute
learning can also assist general multi-task and N-shot transfer learning, where
we learn a second “target” dataset D∗ = {(xi, z

∗
i )}mi=1but m � n. Here, the

attribute mapping L is learned from the large “source” dataset, and is trans-
ferred to the target task, leaving only parameters of S to be learned. Most prior
attribute-learning work, however, assumes the semantic space Ya is completely
defined in advance, an assumption we would like to relax.

Semi-latent Attributes. We aim to define an attribute-learning model L
which can learn an attribute-space Ya from training data D where |y| = aud,
0 ≤ aud ≤ a. That is, only an aud sized subset of the attribute dimensions are
labeled, and ala other relevant latent dimensions are discovered automatically.
The attribute-space is partitioned into observed and latent subspaces: Ya =
Yaud

ud × Yala

la with a = aud + ala. To support a full spectrum of applications, we
should permit a = au (traditional attribute learning), and a = al (unsupervised
latent space).

3.2 Semi-latent Attribute Space Topic Model

LDA. To learn a suitably flexible model for L (Eq. (1)), we generalize LDA[8],
modeling each attribute as a topic. LDA provides a generative model for a dis-
crete dataset D = {xi} in terms of a latent topic yij for each word xij given
prior topic concentration α and word-topic parameters β. Assuming vector topic
proportions α we have

p(D|α, β) =
∏

i

∫ ⎛

⎝
∏

j

∑

yij

p(xij |yij , β)p(yij |θi)
⎞

⎠ p(θi|α)dθi, (2)

where j indexes individual words, θi|α is the Dirichlet topic prior for instance i,
xij |yij and yij |θi are discrete with parameters βyij and θi.
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Variational inference for LDA approximates the intractable posterior
p(θi,yi|xi, α, β) in terms of a factored variational distribution: q(θi,yi|γi, φi) =
q(θi|γi)

∏
j q(yij |φij) resulting in the updates:

φijk ∝ βxijk exp(Ψ(γik)), γik = αik +
∑

j

φijk . (3)

Semi-Latent Attribute Space (SLAS). With no user defined attributes (a =
ala, aud = 0), an a-topic LDA model provides a mapping L from raw data x to
an a-dimensional latent space by way of the variational posterior q(θ|γ). This
is a discrete analogy to the common use of PCA to reduce the dimension of
continuous data. However, to (i) support user-defined attributes when available
and (ii) ensure the latent representation is discriminative, we add constraints.

User defined attributes are typically provided in terms of size aud binary
vectors vud

z specifying which are present in class z [2,6] We cannot use v to
directly determine or constrain the LDA topic vector yud. This is because LDA
associates each word xij with a topic yij , and we don’t know word-attribute
correspondence.We only know whether each attribute is present in each instance.
To enforce this type of constraint, we define a per instance prior αi = [αud

i , αla
i ],

setting αud
i,k = 0 whenever vudz(i),k = 0. That is, enforcing that instances i of

class z lacking an attribute k can never use that attribute the explain the data;
but otherwise leaving the inference algorithm to infer attribute proportions and
word correspondence. Interestingly, in contrast to other methods, this allows
our approach to reason about how strongly each attribute is exhibited in each
instance instead of only modeling binary presence and absence.

To learn the latent portion of the attribute-space, we could simply leave the
remaining portion αla of the prior unconstrained; however while resulting latent
topics/attributes will explain the data, they are not necessarily discriminative.
Instead, inspired by [9,7], we split the prior into two components αla

i = [αcc
i , αbn].

The first, αcc
i = {αi,z}Nz

z=1, is a series of “class conditional” subsets ai,z corre-
sponding to classes z. For an instance i with label zi, all the other components
αcc
i,z �=zi

are constrained to zero. This enforces that only instances with class z can
allocate topics yccz and hence that these topics are discriminative for class z. The
second component of the latent space prior, αbg is left unconstrained, meaning
that in contrast to the CC topics, these “background” topics are shared between
all classes. When learned jointly with the CC topics, BN topics are therefore
likely to represent common non-discriminative background information [9,7] and
thus should be ignored for classification. This is supported by our experiments
where we show that better CC topics are learned when BN topics are present.

Classification. Defining the mapping L in Eq. (2) as the posterior statistic
γ in SLAS (Eq. (3)), the remaining component to define is the attribute-class
mapping S. Importantly, for our complex data, this mapping is not deterministic
and 1:1 as is often assumed [2,6]. Like [13], we therefore use standard classifiers
to learn this mapping from the γis obtained from our SLAS attribute learner.
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Zero-Shot Learning (ZSL) with Latent Attributes. To recognize novel
classes Z∗, we define the mapping S manually. Existing attribute-learning ap-
proaches [2,6] define a simple deterministic prototype vud

z∗ ∈ Yu for class z∗,
and classify by NN matching of data to prototype templates. For realistic un-
structured video data, huge intra-class variability means that a single proto-
type is a very poor model of a class, so zero-shot classification will be poor.
Counter-intuitively, but significantly more interestingly, we can actually lever-
age the latent portion of the attribute-space even without training data for novel
class z∗ (so long as there is at least one UD attribute, au ≥ 1) with the following
self-training algorithm:

1. Infer attributes γ∗ for novel test data X∗ (Eq. (3))
2. NN matching in the user-defined space γud,∗ against prototypes vud

z∗

3. For each novel class z∗:

(a) Find top-K most confident test-set matches {γl,z∗}Kl=1

(b) Self train a new prototype in the full attribute-space: vz∗ = 1
K

∑
l γl,z∗ .

4. NN matching in the full attribute space of γ∗ against prototypes vz∗ .

Previous ZSL studies are constrained to UD attributes, thus being critically
dependent on the completeness of the user attribute-space. In contrast, our ap-
proach uniquely leverages a potentially much larger body of latent attributes via
even a loose manual definition of a novel class. We will show later this approach
can significantly improve zero-shot learning performance.

4 Experiments

In this section we first introduce our new dataset, and then describe the quan-
titative results obtained for four types of problems: Multi-task classification;
learning with label noise; N-shot learning and ZSL. For each reported experi-
ment, we report test set performance averaged over 5 cross-validation folds with
different random selections of instances, classes, or attributes held out as appro-
priate. We compare the following models:

Direct: Direct KNN or SVM classification on raw data without attributes. SVM
is used for experiments with > 10 instances and KNN otherwise.3.

SVM-UD+LR: SVM attribute classifiers learn available UD attributes. A
logistic regression (LR) classifier then learns classes given the probability
mapped attribute classifier outputs.4 This is the obvious generalisation of
Direct Attribute Prediction (DAP) [2] to non-deterministic attributes.

SLAS+LR: Our SLAS is learned, then a LR classifier learns classes based on
the UD and CC topic profile.

3 Our experiments show that KNN performed consistently better than SVM until
#Instance > 10.

4 LR was chosen over SVM because it is more robust to sparse data.
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For all experiments, we cross-validate the regularisation parameters for SVM and
LR. For all SVM models, we use the χ2 kernel. For SLAS, in each experiment,
we keep the complexity fixed at 85 topics, up to 69 of which are UD attributes,
and the others equally divided between CC and BN latent attributes. The UD
part of the SLAS topic profile is estimating the same thing as the SVM attribute
classifiers, however the latter are slightly more reliable due to being discrimina-
tively optimised. As input to LR, we therefore actually use the SVM attribute
classifier outputs in conjunction with the latent part of our topic profile.

4.1 Unstructured Social Activity Attribute (USAA) Dataset:
Classes and Attributes

A new benchmark attribute dataset for social activity video classification and
annotation is introduced. We manually annotate the groundtruth attributes for
8 semantic class videos of CCV dataset [16], and select 100 videos per-class for
training and testing respectively. These classes were selected as the most complex
social group activities. As shown in Fig. 1, a wide variety of attributes have been
annotated. The 69 attributes can be broken down into five broad classes: actions,
objects, scenes, sounds, and camera movement. We tried our best to exhaustively
define every conceivable attribute for this dataset, to make a benchmark for un-
structured social video classification and annotation. Of course, real-world video
will not contain such extensive tagging. However, this exhaustive annotation
gives the freedom to hold out various subsets and learn on the others in order to
quantify the effect of annotation density and biases on a given algorithm. These
eight classes are birthday party, graduation party, music performance, non-music
performance, parade, wedding ceremony, wedding dance and wedding reception
(shown in Fig. 3). Each class has a strict semantic definition in the CCV video
ontology. Directly using the ground-truth attributes (average annotation density
11 attributes per video) as input to a SVM, the videos can be classified with
86.9% accuracy. This illustrates the challenge of this data: while the attributes
are informative, there is sufficient intra-class variability in the attribute-space,
that even perfect knowledge of the attributes in an instance is insufficient for
perfect classification. The SIFT, STIP and MFCC features for all these videos
are extracted according to [16], and included in the dataset. We report the base-
line accuracy of SVM-attribute classifiers learned on the whole test set in Fig. 4.
Clearly some can be detected almost perfectly, and others cannot be detected
given the available features.

4.2 Multi-task Learning

The main advantage of attribute-centric learning when all classes are known in
advance is exploiting feature sharing [25]. The statistical strength of data sup-
porting a given attribute can be aggregated across its occurrences in all classes.
This treats classification like a multi-task learning problem where the class mod-
els share parameters, rather than each class being modelled independently.
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Fig. 3. Example frames from the eight class unstructured social activity dataset
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Fig. 4. Attribute-classification accuracy using SVM

Table 1 summarises our results. We first consider the simplest classification
scenario where the data is plentiful and the attributes are exhaustively defined.
In this case all the models perform similarly. Next, we consider a sparse data
variant, with only 10 instances per class to learn from. Here Direct KNN per-
forms poorly due to insufficient data. The attribute models perform better due
to leveraging statistical strength across the classes. To the most realistic case of
a sparsely defined attribute space, we next limit the attributes to a randomly se-
lected seven every trial, rather than the exhaustively defined 69. In this challeng-
ing case SVM+LR performance drops 10% while our SLAS continues to perform
similarly, now outperforming the others by a large margin. It is able to share
statistical strength among attributes (unlike Direct KNN) and able to fill out
the partially-defined attribute space with latent attributes (unlike SVM+LR).
Finally, the other challenge in learning from real-world sources of unstructured
social video is that the attribute annotations are likely to be very noisy. To

Table 1. Multi-task classification performance (%). (8 classes, chance = 12.5%).

Direct SVM+LR SLAS+LR

100 Inst, 69 UD 66 65 65

10 Inst, 69 UD 29 37 40

10 Inst, 7 UD 29 27 36

10 Inst, 7 UD, attribute noise 27 23 36
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Fig. 5. Confusion matrices for multi-task classification with 10 instances per class

simulate this, we repeated the previous experiment, but randomly changed 50%
of attribute bits on 50% of the training videos (so 25% wrong attribute annota-
tions). In this case, performance of the traditional attribute-learning approach
is further reduced, while the that of our model is unchanged. This is because
our model learns and leverages a whole space of latent attributes to produce a
robust representation which can compensate for noise in the UD attributes.

Fig. 5 shows the confusion matrices for the 10 instance, 7 attribute task. The
matricies for the traditional Direct KNN and SVM attribute classification have
vertical bands indicating consistent misclassifications. Our SLAS has the clearest
diagonal structure with little banding, indicating no consistent errors.

4.3 N-Shot Transfer Learning

In transfer learning, one assumes ample examples of a set of source classes, and
sparse examples of a disjoint set of target classes. To test this scenario, in each
trial we randomly split our 8 classes into two disjoint groups of four source and
target classes. We use all the data from the source task to train our attribute
learning models (SLAS and SVM), and then use these to obtain the attribute
profiles of the target task. Using the target task attribute profiles we perform N-
shot learning, with the results summarised by Table 6. Importantly, traditional
attribute learning approaches cannot deal with zero attribute situations. Our
SLAS performs comparably or better than both Direct-KNN and SVM+LR for
zero, seven and 34 attributes.This illustrates the robustness of our model to
the density of the attribute-space definition. Importantly, standard attribute-
learning (SVM+LR) cannot function with zero attributes, but our attribute
model maintains a significant margin over Direct KNN in this case.

4.4 Zero-Shot Learning

One of the most interesting capabilities of attribute-learning approaches is zero-
shot learning. Like N-shot learning, the task is to learn transferrable attribute
knowledge from a source dataset for use on a disjoint target dataset. However, no
training examples of the target are available. Instead, user manually specifies the
definition of each novel class in the semantic attribute space. Zero-shot learning
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1-shot 5-shot

Direct KNN SVM+LR SLAS+LR Direct KNN SVM+LR SLAS+LR

0 UD 30 - 34 34 - 42

7 UD 30 32 33 34 43 44

34 UD 30 37 35 34 47 48

Fig. 6. N-shot classification performance (%). (4 classes, chance = 25%)

is often evaluated in simple situations where classes have unique 1:1 definitions
in the attribute-space [2]. For our unstructured social data, strong intra-class
variability violates this assumption, making evaluation slightly more subtle. We
compare two approaches: “continuous” prototypes, where a novel class definition
is given by continuous values in attribute-space, and “binary” prototypes, where
the novel class is defined as a binary attribute vector. These correspond to two
models of human provided semantic knowledge: continuous or thresholded prob-
ability that a new class has a particular attribute. E.g., saying that cakes and
candles are definite attributes of a birthday party vs saying they might occur
with 90% and 80% probability respectively. To simulate these two processes of
prior knowledge generation, we take the mean and the thresholded mean (as in
[13,10]) of the attribute profiles for each instance.

Our results are summarised in Table 2. Using latent attributes to support
the user-defined attributes (Sec. 3.2) allows our SLAS model to improve on the
conventional user-defined attribute only approach to zero-shot learning. Inter-
estingly, continuous definition of class prototypes is a significantly more powerful
approach for both methods (Table 2, Continuous vs Binary). To illustrate the
value of our other contribution, we also show the performance of our model
when learned without free background topics (SLAS (NF)). The latent attribute
approach is still able to improve on using pure user-defined attribute, but by
a smaller margin. The BN topics generally improve performance by segment-
ing the less discriminative dimensions of the latent attribute space and allowing
them to be ignored by the classifier.

Table 2. Zero-shot classification performance (%). (4 classes, chance = 25%).

Continuous Binary

UD UD+Latent UD UD+Latent

SVM-DAP SLAS SLAS (NF) SVM-DAP SLAS SLAS (NF)

38 45 41 31 36 31

5 Conclusions

Summary. In this paper we have considered attribute learning for the chal-
lenging task of understanding unstructured multi-party social activity video. To
promote study of this topical issue, we introduced a new multi-modal dataset
with extensive detailed annotations. In this context, a serious practical issue is
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the limited availability of annotation relative to the number and complexity of
relevant concept classes. We introduced a novel semi-latent attribute-learning
technique which is able to: (i) flexibly learn a full semantic-attribute space when
attribute space is exhaustively defined, or completely unavailable, available in
a small subspace (i.e., present but sparse), or available but noisy; (ii) perform
conventional and N-shot while leveraging latent attributes and (iii) go signif-
icantly beyond existing zero-shot learning approaches (which only use defined
attributes), in leveraging latent attributes.. In contrast, standard approaches of
direct classification or regular attribute-learning fall down in some portion of the
contexts above (Section 4).

Future Work. There are a variety of important related open questions for future
study. Thus far, our attribute-learner does not consider inter-attribute correla-
tion explicitly (like most other attribute learners with the exception of [13]).
This can be addressed relatively straightforwardly by generalising the correlated
topic model (CTM) [26] for our task instead of regular LDA [8]. A correlated
attribute model should produce commensurate gains in performance to those
observed elsewhere [13].

We have made no explicit model [27] of the different modalities of observations
in our data. However explicit exploitation of the different statistics and noise-
processes of the different modalities is an important potential source of improved
performance and future study (e.g., learning modality-attribute correlations and
inter-modality correlations via attributes).

The complexity of our model was fixed to a reasonable value throughout (i.e.,
the size of the semi-latent attribute/topic-space), and we focused on learning
with attribute-constraints on some sub-set of the topics. More desirable would
be a non-parametric framework which could infer the appropriate dimensionality
of the latent attribute-space automatically. Moreover, we ware able to broadly
separate foreground and “background” topics via the different constraints im-
posed; however it is not guaranteed that background topics are irrelevant, so
not using them in classification may be sub-optimal. A more systematic way
(e.g., [7]) to automatically segment discriminative ”foreground” and distracting
”background” attributes would be desirable.
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