PROSPECTRA
an ESPRIT Project

Attribute (Re)evaluation in OPTRAN

Peter Lipps, Ulrich Méncke, Matthias Olk, Reinhard Wilhelm

Universitat des Saarlandes
6600 Saarbricken
Bundesrepublik Deutschland

Deliverable Item S.1.3 - R - 5.0
1987 -01-29

Distribution: public

ABSTRACT

A transformation of a tree decorated according to some attribute
grammar may leave the tree containing attribute inconsistencies. An
attribute reevaluation algorithm computes new attribute values for
affected attribute instances. It has to guarantee, that never an
inconsistent attribute value is accessed. Reps’ algorithm performs
this task in time O(|affected region|). It is data driven as changed
values trigger recomputations of attribute instances dependent on
them. After each transformation, a complete update of the effected
instances is performed. Reps’ algorithm is compared with the data
driven reevaluation scheme used in OPTRAN. It uses the same
strategic information in the initial attribute evaluation and the
reevaluation process. Furthermore, we present a demand driven
scheme for attribute reevaluation. It does not have the linear time
complexity for each update after one transformation but, depending
on the situation, often compares favourably with the data driven
scheme for series of transformations. In addition, the linear time
complexity of the data driven reevaluation algorithm needs fast con-
vergence using an equality test between old and new attribute
values. It is thus necessary, to keep the attribute values at (almost)
all instances. The demand driven reevaluator does not need all the

old attribute values. It can flexibly trade time for space. We also
describe the handling of space consuming attributes, e.g. tables, lists
and trees, in the reevaluation algorithm. An integrated version of
data driven and demand driven reevaluation using these features has
been implemented in the OPTRAN system.

public
(c) 1987 by

Peter Lipps, Ulrich Méncke, Matthias Olk, Reinhard Wilhelm
" Universitit des Saarlandes

in the Project

PROgram development by
SPECification and
TRAnsformation

sponsored by the
Commission of the European Communities
under the

European

Strategic

Programme for

Research and development in
Information

Technology

Project Ref. No. 390

Attribute (Re)evaluation in OPTRAN

Peter Lipps, Ulrich Méncke, Matthias Olk, Reinhard Wilhelm

FB 10 - Informatik
Universitat des Saarlandes
D - 6600 Saarbriicken
Federal Republic of Germany

1. Introduction

Most of the literature on attribute grammars concerns attribute evaluation
strategies for "static” trees, i.e. trees which are constructed by a parser, decorated
with attribute values according to a given attribute grammar, and then passed on
to code generation. Few systems, such as the Cornell program synthesizer
generator [Re82] and the OPTRAN system [GPSW86] work with dynamically
changing trees. While the Cornell program synthesizer generator supports subtree
replacement upon user request, the OPTRAN system supports general transforma-
tions on attributed trees whose applicability may be restricted by predicates on
attributes. OPTRAN is therefore well suited for batch type transformations, e.g.
code optimization, source-to-source translation, code generation, etc. The existence
of special strategies [Kr74,We83] (e.g. bottom-up-lefi-right, top-down-left-right)
makes it possible to perform a series of transformations in batch mode. An
interactive mode is also possible by programming user interaction into predicates.
An OPTRAN transformation rule has the form

transform <tree template >
if <predicate on attributes of the input tree template >
into <tree template >

Application of a rule thus requires a syntactic match, i.e. finding an instance of
the input template in the subject tree, and a successful evaluation of the applicabil-
ity predicate on attribute instances of the matched region of the tree, cf. figure 1.

Application of a transformation rule, in OPTRAN - as well as in Cornell
program synthesizer generator-generated transformers, may destroy the consistency
of attribute values in the transformed region. Due to long reaching attribute
dependencies, attribute instances far away from the point of change may be
affected.

It is the job of an attribute reevaluation algorithm to restore (partial) con-
sistency of attribute values in the tree. It must be guaranteed, that never an
inconsistent value of an attribute instance is accessed. The Cornell program syn-
thesizer generator offers a data driven reevaluation scheme. After each

Research reported herein was partially supported by the Deutsche Forschungsgemeinschaft,
project "manipulation of attributed trees" and ESPFRIT, project PROSPECTRA.

transform

into

,..mﬂlf#%ﬂlnn..._
/B /R

Figure 1
1S: area "covered” covered by the input template
OS: area changed according to the output template, the "transformed area”
T2,T3: rearranged subtrees

transformation, a reevaluation process is started at the point of change. It uses the
attribute dependency graph to locate attribute instances, which may have been
affected by updated attributes. The reevaluation algorithm works in time 0(|N|),
where N is the number of affected attributes. It is thus hard to beat, as long as
the effort for a complete update after one transformation is regarded. However, it
may happen, that subsequent transformations lead to several updates of the same
sct of attribute instances, although none of them was needed in between.

The OPTRAN systemn offers the user a choice to specify data driven or
lemand driven reevaluation for subsets of attributes. Data driven reevaluation
works similar to Reps’ algorithm; differences are described in section 3. In partic-
ular, the OPTRAN reevaluator makes more use of generation time information.
‘The demand driven algorithm is able to delay the reevaluation of attributes, until
their values are needed. A labeling algorithm signals the change to all attributes,
which depend on changed attributes. The first labeling effort after a transforma-
tion may be large; subsequent labeling runs, however, may lead to rapid conver-
gence, as the labeling process terminates at appropriately labeled attributes. The
demand driven algorithm, thus allows several transformations in a row updating
attributes only as needed by some consumer, e.g. an applicability condition of a
transformation rule or the display manager of an interactive program transforma-
tion systemn.

Demand driven reevaluation has a clear advantage over data driven reevaluation,

if

- the attribute evaluation rules and the equality test on attribute values are much
more expensive than the (cheap) labeling actions, e.g. for nonscalar attributes;

- the environment is space critical, which often is the case; demand driven
reevaluation, in principle, does not need storage for attribute values;

- a series of transformations has long reaching effects on attribute instances,
which themselves are not needed by any of the transformations in the series.
Premature reevaluation may even lead to the signaling of violated context

v B

conditions, e.g. type inconsistency or use of uninitialized variables after the
introduction of new variables in the declaration part. For that reason, demand
driven reevaluation was envisioned in [Re82] (now implemented in the Cornell
Synthesizer).
Section 2 introduces the necessary terminology. Section 3 describes the data
driven reevaluation scheme implemented in OPTRAN, section 4 the demand
driven scheme. In section 5, we present a way to trade time for space in demand
driven reevaluation. Experiences are reported in section 7.

2. Attribute values and consistency

We assume the familiarity of the reader with the usual terminology about
attribute grammars, c.f. [Co84,DJL86] .

At every production, we call the occurrences of inherited attributes at the
father and the synthesized attributes at the sons used attribute occurrences and the
occurrences of synthesized attributes at the father and of inherited attributes at the
sons defined attribute occurrences. We require the existence of exactly one seman-
tic rule

(a)i) = i((blsil)s s !(bk:il))

for each defined occurrence (a,i) in a production p: Xy X4 - - - X,
Following [Co84] and [BG86] , we regard fas a term built from function symbols
from some signature. The system of equations of the form

(a,m.i) = f{(by,m.iy), . . . ,(bx,m.i))

for a tree t, where (a,m.i) is the attribute instance of (a,i) at node m.it , can be
solved using one of the many available attribute evaluators in two ways: by inter-
preting the function symbols as functions first, or by formally solving the system in
some term algebra and then interpreting the resulting terms.

Example: AXIOM
' o /’ﬁ\

is DECLLIST

STATLIST &

union and

is DECLLIST 53 ECL\!: is STATLISTsd is STAT sd
t t t memberee
union setof trie
is DECLLIST u/ DE}n D Imi £ ID idno
setof F g F
A 1D idna
1 Figure 2

Figure 2 shows an attributed tree for a small program, consisting of a declaration

t m.@ stands for m

vl

and statement part. The corresponding grammar is given in Appendix A. Each
defined occurrence of an identifier is inserted into a set of identifiers (see attributes
ss "synthesized set” and is "inherited set”). For each applied occurrence it is
checked, if a corresponding defined occurrence exists (see sd "synthesized
defined”). If all applied identifiers are declared the value of sd™™ is true, other-
wise false.

The function symbols in this grammar are union, setof, memberof, empty,
and, true, 1, The value of sd*'™ is true; if formally solved, it is the term

and(memberof{1, union(union(empty, setof{1)), setof{2))), true).

For any tree t of a noncircular attribute grammar and any instance (a,m.i) of an
attribute a we have the following close correspondence between its formal value
T(t,a,m.i) and the part D(t,a,m.i) of the dependency graph D(t) directed towards
(a,m). The formal value of (a,m.i) is the term

T(t,a,m.i) = f(T(t,by,m.iy), * + + , T(t,by,m.ix))

Thus, T(t,a,m.i) taken as an ordered, labeled tree, and D(t,a,m.i) with an added
order on the entering edges, are closely related to each other; removing the func-
tion symbols from T{(t,a,m.i) and introducing nodes representing attribute instances
yields D(t,a,m.i).

A value of an attribute instance (a,m) is said to be consistent, iff it agrees
with the interpretation of T{(t,a,m).

3. Data driven rcevaluation in OPTRAN

A data driven reevaluation scheme is defined by: A new consistent attribute
value for an attribute instance is computed if at least one of the arguments of the
function defining the attribute’s value has received a new value, and this update
action is executed, as soon as all its arguments have either new consistent values
or old values, guaranteed to have remained consistent.

The reevaluation process, described by Reps, works on an attribute depen-
dency graph ("model”). The starting graph contains the attribute dependency
graph which is local to the instance of the output template. It is expanded by the
superior characteristic graph at the root and the subordinate characteristic graphs
at the leafs of the output template. Characteristic graphs contain edges between
attribut instances if there is a path in D(t) leading from one instance to the other.
"Topological sorting of the nodes in the model graph is interleaved with expansion
of the graph: An node representing an attribute instance is ready for evaluation if
all the arguments of the defining semantic functions are evaluated. Since nodes
representing computed attribute instances are removed from the model, a node is
ready for computation iff it has indegree 0. If an attribute has changed its value
and influences attribute instances in a neighbour production, the model is
expanded: The characteristic graph located at the frontier to the neighbour produc-
tion is removed from the model and the production local graph is added together
with the characteristic graphs at the outside positions of the neighbour production

oy

excluded the point of expansion itself. The expansion stops if no more attribute
instances outside the model graph are affected by changed instances.

In [M685] , a reevaluation algorithm is introduced for the purpose of restrict-
ing the area of reevaluation as in [Re82] . It uses labels N and E for attribute
instances (N = value h changed, E = value ha- remnained equal). Computa-
tions of updated attribute values 21d labeling of attributes are executed in an inter-
leaved fashion, as soon as the arguments are computed or labeled.

The reevaluation algoritlim is parameterized by the kind of strategic informa-
tion driving it. The actual strategy parameters may be local attribute dependency
graphs as in Reps’ algorithm. They may also be evaluation plans as generated for
initial attribute evaluation, cf. section 4 and [KW?76] . This strategic information
indicates, which attribute instances are candidates for the next update actions.

Productions in a tree being afflicted by the current state of reevaluation are
called active. Those not yet afllicted are called inactive. A production becomes
active, if at least one of its used attributes is labeled N. This means the produc-
tion belongs to the area, where the reevaluator has to work.

All productions in the area changed by the transformation are initially active.
Inside that area, it is necessary to reevaluate, because there exist no old attribute
values except at the border.

The actions of the reevaluation algorithm are now depicted by the correspond-
ing situations in the tree.

3.1. Actions of the labeling algorithm outside the transformed area:
(1) The scheduler using strategic information demands the evaluation of an attri-
bute instance a. There are two cases:
(a) The arguments of the attribute instance a are all labeled E. Their values
are not changed by transformation. Therefore the value of instance a
cannot be changed either. Hence, instance a is labeled by E. This is a
so called innert E-propagation, c.f. figure 3.

L

L0 @ HN

E Figure 3: inner E-propagation.
Note, that the old labels are inside the attribute boxes, and the new label
is outside the attribute box.
(b) At least one of the arguments is labeled N, i.e. its value has changed.

t inside the production

o' s

To find out, whether the label of a has to be changed, too, a has to be
recomputed. New and old value are compared. If both are equal,
instance a is labeled E, otherwise N, and a neighbour production
becomes active. This is called a compute-and-label-step, cf. figure 4.

L1

s
{DD mlule]nln

N/

Figure 4: compute-and-label-step
(2) The strategic information requires the evaluator to switch to the neighbour
production of the i’th son or the father:
(a) Reevaluation is necessary, if the neighbour production is active, i.e. at
least one attribute instance is labeled N. The evaluator continues with
the strategic information of the new production, cf. figure 5.

L0 10

N NOCIO OOoOO0

Figure 5
(b) Reevaluation is not necessary, if the neighbour production is inactive,
i.e. no attribute instance is labeled N. All that has to be done is an
outert E-propagation. All used attributes at a node on the border of the
production depending only on already E-labeled attributes are labeled E.
The evaluator continues according to the strategic information of the
actual production, cf. figure 6.

t outside the production

Figure 6
(3) Upon first activation of an instance of a production, all its attribute instances
guaranteed not to have changed their value, must be labeled E, cf. figure 7.

L]

Oooon guOILE] ([N

visit from 2.nd son
Figure 7

3.2. Actions of the reevaluation algorithm inside the transformed area

(1) Al attribute computations as indicated by the actual strategic information
have to be performed. If the attribute instance lies on the border of the out-
put template, new and old values are compared and the instance is appropri-
ately labeled. If the label is N , the neighbour production becomes active.

(2) All production instances, which make up the transformed area, must be
visited for a complete reevaluation.

Using labels and characteristic graphs at any point and any time of reevalua-
tion makes it possible to control the choice of the active production:

A visit of a neighbour production is productive iff

— at least one used attribute instance would become available, i.e. labeled with E
or N, after return from the visit

- and all defining attributes the used attribute depends on are reevaluated and at
least one is labeled with N.

A last visit to the active neighbour may be scheduled for propagating the changes
to instances on which no used instance depends. Scheduling visits with respect to
productivity decreases the tree walking effort necessary for reevaluation. This check
of productivity is only possible, if the status of all defining attribute instances is
available. The labeling scheme described above achieves this improvement. In
contrast to Reps’ algorithm [Re82] (chapter 5), the information about transitive
dependencies (represented in the characteristic graphs) is used all the time and at
any time for checking the productivity.

Computation of al,a2,....an must be delayed
until b is available

Figure 8
A visit to the subtree at X is scheduled iff both a and b are available.
Without this criterion an evaluator could follow the bold line until further argu-
ments are needed (here: attributes depending on b) to compute the value of a,.

4. Reevaluation using plans

Reevaluation using characteristic graphs (local dependency graphs) in general
leaves a nondeterministic choice where to continue, i.e. which instance to evaluate
next and/or which active neighbour production to visit. Reps’ algorithm eliminates
this nondeterminism by inserting evaluable instances into a topologically sorted
worklist. Another algorithm proposed by Reps [Re82] (chapter 9.2) uses the auto-
mata described by [KW76] .

Any evaluation order can be induced by an order precomputed at generation
time. The attribute instances of the whole syntax tree may be grouped together in
classes of simultaneously evaluable instances, and these classes may be totally
ordered. This mapping of the attribute dependency graph can be realized with the
help of precomputed information. Both grouping and ordering has to be done
with respect to the attribute dependencies expressed in the graph D(t). Once such
an ordered partition of all instances is installed, any evaluator schedules the attri-
bute instances according to this order. The evaluators play a "pebbling game” with
values and labels (E, N) on the ordered partition of attribute instances. In the tree
evaluation method of [KW76] the ordering of instances is implied from the
dynamic behaviour of the evaluation automata. In our approach, the order is made
explicit. Classes of instances are scheduled as a whole. Of course, after a transfor-
mation the ordered partition must be adjusted. The restriction of the ordered par-
tition to attribute instances at a tree node shows the visits an evaluator will make
to the upper tree fragment rsp. the subtrees at this node. The restriction to a pro-
duction instance shows the sequence of computations for classes of defining attri-
butes and visits to neighbour productions, which will return with classes of used
attributes. After a transformation, the process of evaluation starts from the output
region, i. e. at the production instances of the output template and activates the
neighbour productions, if there is a change in one of the defining attribute classes.

ol o

The OPTRAN reevaluator uses precomputed evaluation plans to direct both initial
evaluation and reevaluation. Plans are straight line programs. There is no branch-
ing in a plan (in contrast to the [KW76] evaluator). A pownter into a plan is all
that is necessary to find the position where to continue. Besides ordering the attri-
".ate occurrences of a production, a plan groups all those attribute occurrences,
which can be (re)evaluated togetlier. This may decrease the tree traveling effort.
In 4.1, we describe reevaluation using plans, and in 4.2, we sketch, how plans are
generated in OPTRAN.

4.1. Plans at work

An (attribute evaluation) plan for a production p: Xo = X; - - - X is a
sequence of evaluate-class-of-attributes- and visit-i-th-neighbour- instructions, where
i may be 0 for a visit to the father or may be in [1..n] for a visit to a son. For
i = 0 there are subsequences of the form:

compute-class-of-synthesized-attributes-of-the-father ; visit-father.

For 1SiSn, there are subsequences of the form:
compute-class-of-inherited-attributes-of-the-i-th-son ; visit-i-th-son.
The plans are generated in a way,
~ that no visit (except maybe the last one) to a neighbour is made without the
guarantee, that upon return new values of used attribute instances will have
become available; at least one used attribute will be labeled with E or N after
returning from the visit. In this way, the productivity criterion is incorporated
in the plans. For example, the attributes a, and b (fig. 8) are contained in one
class,
~ that all the attribute instances needed to evaluate a class of defined instances in
a plan precede that class in the plan.
The use of plans and their advantages, i.e. space and time efficiency, have long
been known [KW76,DJL86] . How are they used in attribute reevaluation? The
main question is, how does the reevaluator find the right start in the plan, when a
production is visited for the first time? Let us distinguish the visitor and the visi-
tce. The executed visit in the visitor’s plan indicates which class of instances it
evaluated. Hence, the starting point in the visitee’s plan is the point right after
the last visit to the visitor. If there is no previous visit, the starting point depends
ou the entry position, i.e. the attribute class, which the visitor has defined at last
for use of the visitee. A visit to a neighbour production in a plan may be
skipped, if all earlier attribute instances at that neighbour in the plan are
E-labeled. These attribute instances are members of the classes which the visitor
has already defined for the neighbour. An outer E-propagation is performed
instead.

Sometimes skipping of a visit would be possible, even though not all these
instances are E-labeled, but this cannot be recognized by the evaluator.

s Ji

inh1 inh2 syn2 synl
% 'Jﬂ'
@ E [! E ge g O ?
N
1 2 2 1
eo--n--—

Figure 9

Let inhy; be the last class defined for the neighbour and syn; be the class,
which would be available after the visit. Suppose the attribute instances in inh;
are labeled E and at least one of the attribute instances in inh;_, is labeled N.
Then the visit must be scheduled due to the worst case assumption infered by the
total order on classes, that some attribute in inh; (jSi) may affect an attribute
instance in syn;. Of course, in the actual syntax tree, there need not be such a
dependency. Figure 8 shows this situation: If there was no path e from the inher-
ited attribute in class inh to the attribute in class syn, visit 2 could be skipped.

There may be several plans for one production. For each instance of a pro-
duction, the right plan is selected by taking the upper and lower context into
account. The lower context is given by the subordinate characteristic graphs at
the sons. They can be determined by some bottom-up tree automaton constructed
at generation time. The upper context is given by the ordered partition of the
attribute instances at the father node. An ordered partition [Ni83] is a sequence
((inhg,symy), ... ,(inhy,syn,)) of pairs of classes, where inh; (syn,) are subsets of the
inherited (synthesized) attributes of a nonterminal. The set inh; comprises all the
inherited attributes of the nonterminal, which can be evaluated at the next visit, if
the values of all the attributes in the sets syny, ... ,syn;_; are known. The set syn;
consists of all the synthesized attributes, which can be evaluated, when the values
of all the attributes in the sets inhy, ... ,inh;_; are known. Such an ordered parti-
tion represents one of the evaluation orders for the attributes of that nonterminal,
c.f. section 4.2. The appropriate ordered partitions for the sons of the production
instance are computed by a top-down tree automaton using the ordered partition
of the father, the subordinate characteristic graphs at the sons and the local depen-
dency graph of the production.

As a byproduct, an ordering of all classes, which belong to this production, is
computed. The evaluation plan refers to this ordering. Once a plan is selected,
the starting position depends on the entry position.

4.2. Construction of plans in OPTRAN

Evaluation plans are produced at generation time using grammar flow
analysis [M685,M686] . The computation of evaluation plans is based on the
preceding computation of the subordinate characteristic graphs [Re82, DJL86] and
the ordered partitions. Subordinate characteristic graphs are computed on the

s 11 =

bottom-up grammar-graph, containing two sorts of nodes, nonterminal nodes and
production nodes.

Edges leading from nonterminal nodes to production nodes represent the righ*
side of productions. Associated with them is a function mapping the grammar
flow information at incoming edges. In tt: case of subordinate characteristic
graphs, the function associated wit.. a production
~ takes any combination of subordinate graphs already available at the sons,

- composes it with the procction local dependency graph, and
- restricts the resulting graph to the attributes of the left side.

Edges leading from production nodes to nonterminal nodes co.anbine the
grammar flow information contributed by the different productions for that nonter-
minal. In the case of the subordinate characteristic graphs, the sets of characteris-
tic graphs for the different productions of one nonterminal are united, and the
union is the new information for that nonterminal.

‘T'his computation of sets of graphs is continued until a fixpoint is reached.

The computation of ordered partitions and plans is done by a top-down gram-
mar flow analysis, i.e. iteratively on the top-down grammar-graph. This graph is
obtained from the bottom-up grammar-graph reversing the edges’ direction.

Together with the computation of subordinate characteristic graphs a
bottom-up tree automaton is generated which at runtime, i.e. attribute evaluation
time, computes the actual subordinate characteristic graphs for the individual tree.
With the subordinate characteristic graphs available, the ordered partitions and a
top-down tree automaton determining the individual ones at run time is generated.
This computation is somewhat complicated and therefore described in more detail.

One step in this top-down process works as follows: It uses the ordered parti-
tion computed previously at the left side of the production, the local dependency
graph of the production, and the characteristic graphs stemming from the preced-
ing bottom-up analysis. An ordered partition at the father node indicates the
order of attribute evaluation at instances of that node. The step under considera-
tion has to determine this order for each son. The generator now takes in turn
any inherited class in the ordered partition at the father and finds for each son the
class of now computable inherited attributes. Using the subordinate characteristic
graphs the class of synthesized attributes then computable is evident. In this way,
several possible sequences of pairs (inhy, syn;) can be computed, each indicating
one possible evaluation order for the attributes of that nonterminal in that context.
One is then selected by some heuristics, i.e. left-to-right preference, productivity of
an inherited class or such.

Result of plan construction

position local visit numbers
numbers In production locel totel order

CROEEDEROGRAR B oMY

1 1
3 4 6 7
Figure 10.b

The evaluation plans for a production are straight line programs determining
attribute evaluation and visits to neighbouring productions according to the total
order given by the ordered partitions. They can be computed together with the
ordered partitions at generation time. At run time, a top down tree automaton
selects the appropriate plan for each production from its state at the father and the
states (at the sons) of the bottom-up automaton computing the actual subordinate
characteristic graphs. Our generating tools permit the precomputation of charac-
teristic ~ graphs [Kn68] as well as approximative graphs (e.g. the
I0-graphs [KW76]).

Considering the relationship between nonterminals and subordinate charac-
teristic graphs, and the relationship between subordinate characteristic graphs and
ordered partitions some particular cases may be distinguished. This distinction is
not only of theoretical interest for classification for attributed grammars but leads
to practical consequences in the design of the transformation runtime system.

Let’s start with the most general case and then stepwise refine it to particular
cases.

A set of characteristic graphs, computed for a nonterminal X induces a partition in
equivalence classes of subtrees produced by X (figure 12 left side). Two subtrees
are said to be equivalent if the characteristic graphs assigned to their roots are
identical. Each class is represented by a characteristic graph. The set of subtrees,
produced by X is in general infinite, while the set of classes is finite. Taking a
subtree produced by X out of one class characterized by C, and combining it with
a upper context, the ordered partition for X is determined. Formally seen, the
ordered partition is a function of a characteristic graphs and upper tree contexts

Figure 10.a

- 153 -

(c.f. figure 11).

Figure 11

The upper contexts (tree fragments with the subtree removed) may be split into
equivalence classes, too, each of them represented by an ordered partition (c.f. fig-
ure 12). Therefore, there exists a non-trivial set of ordered partitions for each
characteristic graph, i.e. a one-to-many relationship between graphs and partitions.

X produces

Figure 12

Now, let us discuss particular cases (Figure 13):

For each nonterminal of the grammar there may be exactly one characteristic
graph, characterizing all subtrees produced by X. Then, there is no need for a
bottom-up automaton for propagating graphs, because of the one-to-one relation-
ship between nonterminals and graphs. This is the most desirable situation.

Using the approximative characteristic graphs (IO-graphs [KW76]) - assumed
the grammar is absolutely noncircular — we will guarantee this situation of having
one graph per nonterminal (by construction).

In addition to the above mentioned one-to-one relationship between nonterminals
and graphs, there may be only one ordered partition for each of the characteristic
graphs. Then, the top-down automaton is also not neccessary. In this case, the
attributed gramumar is l-ordered. (cf. [Ka80]). There is a one-to-one relationship
between nonterminals and both characteristic graphs and partitions.

Of course, the latter is a refinement of the slightly more general case, where there
is a one-to-one relationship between characteristic graphs and ordered partitions,

- {4 -

even if there is no one-to-one relationship between nonterminals and characteristic
graphs. We call such a the grammar l-ordered with respect to characteristic graphs.

cheracteristio graphs -
sets of ordered partitions

nonterminals ¥
sets of characteristic graphs v One-to-one one-to-many

no bottom up propagation| no bottom up propagation
no top down propagation | top down propagation

one-to-many bottom up propagation bottom up propagation
no top down propagation | top down propagation

one-to-one

Figure 13

It should be pointed out, that the heuristics for constructing the ordered partitions
will not always succeed in constructing a one-to-one relationship between graphs
and partitions, even if there is one.

Reevaluation using plans does not depend on the way they are generated. In
particular, each simple-multi-pass partition [Al81,EF82] of attributes induces a
totally ordered partition of attribute instances for each tree.

A promising approach is the mixture of a simple-pass partition method and the
generation method described above.

Sometimes, use of such a precomputed partition is crucial. In analogy to the
worst-case behaviour of the computation of characteristic graphs the number of
ordered partitions may grow very fast. Unfortunately, this is not only a matter of
theoretical interest. The large numbers of ordered partition can be observed in
practical examples. The reason is, that the heuristics constructing ordered parti-
tions tries to schedule attributes for computation as early as possible. Of course,
for each attribute the time of scheduling depends on the upper tree context. Dif-
ferent contextsmay schedule the same attributes for earlier or later visits. Even if
the different schedules affect only few attributes, the combination of them leads to
an explosion in the number of partitions. From this viewpoint we would prefer to
delay the computation of attributes, and in this way construct a smaller set of
coarser ordered partitions. On the other hand, practical experience shows, that in
general the attribute grammars are "almost” pass oriented (c.f. figure 14), i.e. with
the exception of some "runaway” attributes, the remanining set may be scheduled
in simple passes. Then, attribute evaluation is seen as a sequence of evaluation
phases, where some phases are passes (w.l.o.g. left-to-right, right-to-left) and some
phases are not pass computable. Therefore, we have parametrized our ordered
partition construction by the pass partition. It must schedule attributes according
to the precomputed pass partition, i.e. in particular delay some evaluations for all
attributes which are computable in a pass. Therefore, most of the time visits are

-15 -

performed in passes. Only for those attributes, which do not fit into the pass
scheme, the heuristics is free in planning their visits. Only sets of such attributes
may be splitted for different visits at one nonterminal (c.f. figure 14).

par tial partition in passes:

LR : left—to—right
AL : right—to—left
NO : not pass—evaluable

splitted attribute set: 3

3
(w) g)(n) 1] 2 Rl 4 4 2;]
1 5 4

Figure 14

Of course, if the whole attributed grammar is pass computable, no work is left for
the ordered partition constructor.

This method prevents the combinatoric explosion, mentioned before (e.g.
reduces the number of ordered partitions from 50 to 3 in a Pascal-grammar which
is attributed for code generation). The space needed both for propagating auto-
mata and for production local attribute evaluation plans can be drastically reduced,
without restricting the power of the attribute evaluator.

5. Demand driven reevaluation

We now describe a scheme for demand driven evaluation. The principle is,
to delay the reevaluation of attribute instances, until there is a demand for their
values, i.e. an attempt to access them.

The straightforward recursive evaluator is the applicative evaluator P4
in [En84] . It does not keep any attribute values. When a value is needed, P4
recursively walks through the (noncircular) dependency graph, until it returns with
the value. Its drawback is the frequent reevaluation of the same (namely shared)
attribute instances, even in the case of nontransformed trees. Its worst case com-
plexity is exponential in the size of the attributed tree.

We will go to the other extreme in this section, assuming that the recursive
evaluator will leave the (new) value at each instance (much like P5 in [En84]),
when returning. It must then be guaranteed, that no inconsistent attribute values
will ever be accessed. For that purpose, it has to be signaled to all (possibly)
affected attribute instances, that their value may have been changed due to a
transformation.

We introduce two labels to distinguish (possibly) inconsistent attributes from
(certainly) consistent ones, an I-label (for inconsistency) and a K-label (for

- 16 -

consistency). Demand driven reevaluation is split into two phases, a labeling

phase distributing I and K-labels and an updating phase, recursively recomputing

values of needed attribute instances, A labeling phase is exccuted after each

transformation, an updating phase before each transformation, which issues a

demand. Each updating phase relabels the updated instances as consistent (label

K).

If a transformation involves demand attribute instances, thost instances and
all instances depending on them (instances of the so called "depending area”) will
be I-labeled. For the momen: we will state that an attribute instance is involved
in a transformation, iff it’s value may have changed as a consequence of this
transformation. (One may ask for a stronger requirement at this point: ’ the value
certainly must have changed”).

Let’s sum up the meaning of these new labels:

- An attribute instance (a,m) is I-labeied, if a preceding transformation may
have changed the term T{(t,a,m) and if there was no intervening reevaluation
so far,

- An attribute instance (a,m) is K-labeled, if the interpretation of the term
1(t,a,m) certainly equals the last value computed for it and stored at the
instance.

Note, that the term T{(t,a,m) is not interpreted and checked for equality during the

labeling phase.

Between any labeling and updating phases the following invariants hold:

Invariant 1:
All instances depending on an I-labeled instance are also I-labeled .

Invariant 2:

If an instance is K-labeled, none of the instances it depends on is labeled I.
Invariant 2 is a consequence of invariant 1. However, both invariants nicely mir-
ror two different aspects of demand driven reevaluation. Invariant 1 is significant
for the labeling phase. It means, that all instances, which transitively depend on
an [-labeled instance, have to be labeled I. It also supplies one convergence cri-
terion for the labeling phase: stop at every I-labeled instance.

Invariant 2 is significant for the updating phase. It means, that the updating
phase should not continue over any K-labeled instance. In particular has every
instance a consistent value, all of whose arguments are K-labeled.

If the value of an I-labeled attribute instance has to be evaluated, the recur-
sive evaluator is called. We will give an example of a modified recursive evaluator
in section 6.

= §s

5.1. Footholds in demand driven reevaluation

As described in the previous section, pure demand driven attribute evaluation
does not need storage of attribute values. Any time an attribute value is needed,
the recursive evaluator is called to (re)compute it. The completely opposite
approach, which stores the value with each inctance, was used in the last section.
In F!!C [JoG4] only the values ol synthesized attributes are stored, inherited attri-
butes have to be recomputed, but the saving in space should not b. substantial.

We describe a compromiise, that allows to flexibly trade time for space. The
user specifies some attribute occurrences as footholds. Any instance of a foothold
will have its last computed value stored with it, all other instances of complex
attributes will have no permanent value. Of course, the introduction of footholds
will not change the worst-case time complexity, which is exponential in the tree
size, but in practice declaring the right occurrences (e.g. symbol table attribute at
the top node of the statement part) as footholds decreases the runtime significantly.

6. Integration of data driven and demand driven reevaluation,

This section describes a combination of data driven and demand driven
reevaluation. We assume (as is the case in OPTRAN), that a subset of the attri-
butes is specified as to have non-atomic domain. We call them complex attributes.
Each instance of a complex attribute is evaluated by demand. Footholds for them
may be specified. Only for these footholds the values will be kept. Attribute
instances with atomic domain not depending (even transitively) on any complex
attribute instance are called regular. They are evaluated and reevaluated in a data
driven fashion. Their values are stored. Atomic attribute instances depending on
complex attribute instances will also be reevaluated by demand, but their values
will be kept. These attribute instances and the complex ones together constitute
the class of so called demand attributes. Note, that there may be both regular and
demand instances for the same attribute occurrence in a production’s instance.
Example:

If is/ss, the set of defined identifiers in figure 2, is declared to be a complex

attribute, then sd™®™ will be evaluated by demand since it transitively
depends on a complex attribute instance. Deleting the subtree at STATLIST
will cause sd®™™ to become a regular instance with value true.

‘The reevaluation algorithm of section 5 is now extended, as to serve for the
reevaluation of both regular and demand attribute instances. For this reason, the
above mentioned labels K (value is consistent) and I (value may be inconsistent)
are introduced.

There are now two types of labels, N and E for regular attribute instances
and K and I for demand attribute instances.

Reevaluation in the combined scheme starts with data driven reevaluation for
the regular attribute instances and the labeling phase for the demand attribute
instances. N and E are used during data driven reevaluation with their

- 18 -

conventional interpretation. When this is finished, their interpretation changes.
Both N and E then signal, "consistent regular attribute instance”.

K- and I-labels control demand driven evaluation. Note, that K and I labels
tre distributed without any recomputation, not even inside the ontput template,
while E/N-labeling and reevaluaticn work in an interleaved way.

After termination of a labeling phase invariant 1 is established, i.e. all successors
of an attribute instance labeled 1 are labeled I, too.

In the combined reevaluator, a production becomes active, if at least oiie used
attribute instance is labeled N or newly labeled I. This means, the label has
changed from K to I in the actual labeling phase. Any instance, labeled I by a
previous reevaluation phase signals: no further action for the evaluator. Invariant
| states, that all the successors of that instance are labeled 1.

We now give an example of a recursive evaluator, considering demand attri-
bute instances, K/I-labels and footholds for complex attribute instances. Note, that
footholds are specified for complex attribute occurrences. Propagation of I-labels is
part of the scheduler’s work, which is not presented here.

procedure Eval (aip);
/* Eval tests label of aip and calls recursive evaluator if necessary */
def

- attribute instance to be computed: aip
- label of attribute instance ai: label, (ai) ¢ {E,N,K,I}
~ foothold label of attribute instance ai: label, (ai) € {No,Yes}
— test, if attribute instance has complex domain: Complex(ai)
begin
case labely(aiy) of
E,N : null;
/* a regular attribute instance has a consistent value */
I : DemandValue(aip);
/* evaluate inconsistent demand attribute instance */
K : if Complex(aip) then

if labely(aip) = No then
/* aiy is a complex attribute instance and
no foothold and therefore has to be reevaluated */
DemandValue(aip);

/* aip is a foothold with consistent value */
null;
f;
else
/* aiy is a non-complex attribute instance
with consistent value */
null;
&;
esac;
cndproc;

+ 19

procedure DemandValue (aip);
/* recursive evaluator */

def
- function, which compntes the value of aiy:
- arguments of function {
- corresponding attribute occurrence:
~ test, if attribute occurrence ao is a foothold:
begin

for i: = 1 to rank(f) do
/* evaluate arguments of function f */
Eval (aiy);

aig: = faiy, ... ,alrn(r));

label,(aip): = K;

/* aip now has a consistent value */

if Foothold(Occurrence(aip)) then

f

ai; (1SiSrank(f))
Occurrence(ai)
Foothold(ao)

/* corresponding attribute occurrence is specified as foothold;

label the attribute instance accordingly */
label(aig): = Yes;
else
labelg(aip): = No;

endproc;

6.1. Actions outside the transformed area

The combined evaluator starts in the transformed area of the tree. It per-
forms data driven evaluation, as long as it does not encounter instances labeled I
or K, i.e. demand instances. It behaves like the pure demand driven reevaluator
of section 4 when reevaluating demand instances. The following subsections

describe the situations involving both demand and regular instances.

No recomputation of an instance’s value needs to be performed, if all argu-
ments are labeled E or if at least one argument is labeled K or I. In the latter

case, demand attribute instances are involved, whose updating is delayed.

However, if one argument is inconsistent, the attribute instance to be com-
puted may be inconsistent. Therefore, the evaluator labels an attribute instance I,

if at least one of its arguments is labeled I.

- 20 -

o

Il:l HEpEIN@ NN

Figure 15: inner 1-propagation
The value of an attribute instance may have changed, if it has as arguments a
consistent demand attribute and a regular attribute, whose value has changed.
Therefore, the evaluator must label the goal attribute I, if no argument is labeled
I, but at least one K and one N.

D 00 O

Figure 16

An attribute instance has a consistent value, if it depends on consistent
demand attributes and on regular attributes, the values of which have not changed.
An instance may have been inconsistent before, so that it keeps its inconsistency.
That means, no I labels are removed during the labeling phase.

6.2. Actions inside the transformed area

Inside the transformed area all attribute instances are labeled I, which have at
least one argument labeled K or I. Even attribute instances depending only on
K-labeled arguments have to be labeled I, because inside the transformed area
attribute instances don’t have old values.

- 921 -

7. Experience

The following example will show a significant improvement in time and space
requirement if demand attributes are used. The measures stated below were made
for programs written in a toy language named BLAN.

BLAN is a Pascal-like, block-structured language with a statement part similar
to BJ as described in [Wi79] . There is a symbol tablet mechanism that supports
static semantic and type checking. The tree transformer for BLAN generated by
OPTRAN performs constant propagation and invariant code motion using data
flow information collected by means of a special attributation. A description can
be found in [Wi79] .

In this paper we will concentrate on a particular attribute; the so-called con-
stant pool, represented by a list, where all variables with constant value are col-
lected. Out of our OPTRAN specification, we will present only the transforma-
tions replacing a variable by a constant, if the variable occurring in a BLAN pro-
gram has a value known to be constant. The latter property is checked by execut-
ing a pool membership test. The transformation has the following form:

transform < variable >

if variable € constant-pool
into <constant>

The only need to know the pool’s value will arise when evaluating the predicate.
Because of this and the fact that the pool must be represented by a complex struc-
ture (e.g. a list of pairs (name of variable, value of variable)) we have chosen a
complex attribute for it.

Figure 18 shows the benefit of choosing a complex attribute (version C)
instead of a regular one (version R). Remember that attributes having complex
type will only be evaluated when needed, whereas attributes of regular type will be
reevaluated after each transformation. The examples were run under UNIX 4.2
BSD on a SUN 3/160 in single user mode. Note, that in a paged environment a
saving in space will cause a runtime improvement in most cases.

Input: Tree with 5399 operator nodes
action runtime | space version
in sec kB
initial 58.76 2704 R
cvaluation 36.68 1592 C
after 43 74.48 2792 R
transformations | 57.72 2112 C

tusing attributes of complex type

-22.

Input: Tree with 20614 operator nodes
action runtime | space version
in sec kB
initial 234.08 10232 R
evaluation 154.34 5904 Cc
after 413 398.80 10792 R
transformations | 237.68 7760 C

Figure 18
There is not only a substantial decrease in time, but also in space, since only
attribute values at footholds are stored. Leaving out footholds would cause run-
times of several hours, as each entry in the pool depends on symbol table informa-
tion and the symbol table itself is evaluated by demand, too.

8. Conclusion

The attribute evaluation and reevaluation scheme of the OPTRAN system
was described. It combines data driven and demand driven (re)evaluation and
allows efficient space management depending on user specification of footholds for
attribute value storage. OPTRAN runs on VAX and SUN under UNIX 4.2 BSD.
Comparative figures were given for nontrivial examples using purely data driven
evaluation and demand driven evaluation with footholds.

9. Acknowledgements

Thanks go to Beatrix Weisgerber for her continuous support in the design and
implementation of OPTRAN and many discussions about the subject of this
paper. Heiner Tittelbach implemented the identity classes [Ti86] in OPTRAN.

- 928 -

Appendix A

G ={N, T, P, Z}

N = {AXIOM, DECLLIST, DECL, STATLIST, STAT, ID}

T = {var, begin, end, ;}

P = {AXIOM ::= var DECLLIST begin STATLIST end ,
DECLLIST :: = DECLLIST ; DECL ,

DECLLIST :: = empty ,
DECL = ID,
STATLIST ::= STATLIST ; STAT ,
STATLIST ::= empty ,
STAT ::= ID}
Attr = Inh U Syn, Inh = {is}, Syn = {ss, sd}
AXIOM :: = var DECLLIST begin STATLIST end
g AXIOH - gSTATLIST
igPECLLIST = emptyset
{STATLIST = ggDECLLIST
DECLLIST ::= DECLLIST ; DECL
{gPELLISTy o igCLLISTy
ssTo®Te o union (ss 1, ag
DECLLIST 11 = empty
ggDECLLIST = jgDECLLIST
DECL = ID
ssPECt = setof (idno™)
STATLIST ::= STATLIST ; STAT
. STATLIST, . STATLIST,
is - is
{§STAT o 3 STATLISTy
oA —)
STATLIST 1= empty
§JSTATLIST - e
STAT = ID
sd™M = memberof (idno'®, is°™T)
References
[Al81] Alblas, H., "A Characterization of Attribute Evaluation in Passes”,
Acta Informatica, (16) pp. 427 - 464 (1981).
|BG86] Bertling, H. and H. Ganzinger, "A Structure Editor Based on Term
Rewriting”, Conference Pre - Prints, Esprit Technical Week (23 - 25
Sept. 1985).
|Co84] Courcelle, B., ”Attribute Grammars: Definitions, Analysis of Depen-

dencies, Proof Methods”, pp. 81 -102 in Methods and Tools for
Compiler Construction, ed. B. Lorho, Cambridge University Press

[DJL86]

|LF82)

|[En84]

[GPSW86]

[JoB84]
[Ka80]

[KW76]

[Kn68]
[Kr74]

[M&85]

[M586]

[Ni83]

[Re82]

[1i86]

[WeB3]

[Wi79]

- 24 -

(1984).

Deransart, P., M. Jourdan, and B. Lorho, "A Survey on Attribute
Grammars - Part 1: Main Results on Attribute Grammars”, Rap-
ports de Recherche, INRIA - Centre de Rocquencourt, Le
Chesnay Cedex (January 1986).

Engelfriet, J. and G. File, "Passes, Sweeps and Visits in Attribute
Grammars”, INF - 82 - 6, Twente University of Technology (1982).
Engelfriet, J., "Attribute Grammars: Attribute Evaluation Methods”,
pp. 113 in Methods and Tools for Compiler Construction, ed. B.
Lorho, Cambridge University Press (1984).

Greim, M., St. Pistorius, M. Solsbacher, and B. Weisgerber,
"POPSY and OPTRAN -Manual”, PROSPECTRA - Project,
S.1.6 - R - 3.0, Universitit des Saarlandes, Saarbriicken (1986).
Jourdan, M., "Les Grammaires Attribuees: Implantation, Applica-
tion, Optimisations”, Ph.D. Thesis, Universite Paris VII (1984).
Kastens, U., "Ordered Attribute Grammars®, Acta Informatica,
(13) pp. 229 - 256 (1980).

Kennedy, K. and S.K. Warren, "Automatic Generation of Efficient
Evaluators for Attribute Grammars”, Conf. Record of 3rd Sympo-
sium on Principles of Programming Languages, pp. 32 -49 (1976).
Knuth, D.E., "Semantics of context - free languages”, Math. Systems
Theory 2 pp. 127 - 145 (June 1968).

Kron, H.H., "Practical Subtree Transformational Grammars®, Mas-
ter Thesis, University of California, Santa Cruz (1974).

Méncke, U., "Generierung von Systemen zur Transformation attri-
butierter OperatorbAume - Komponenten des Systems und
Mechanismen der Generierung”, Dissertation, Universitit des Saar-
landes, Saarbriicken (1985).

Méncke, U., "Grammar Flow Analysis”, ESPRIT: PROSPECTRA
Project Report S.1.3 - R.2.1 (1986).

Nielson, H.R., "Computation Sequences: A Way to Characterize
Subclasses of Attribute Grammars”, Acta Informatica, (19) pp.
255 - 268 (1983).

Reps, Th., "Generating Language - Based Environments”, Ph.D.
Thesis, Cornell University (1982).

Tittelbach, H., "Effiziente Attributspeicherverwaltung fiir ein baum-
transformierendes System”, Diploma Thesis, Universitit des Saar-
landes, Saarbriicken (1986).

Weisgerber, B., "Die Baumanalyse und Untersuchungen zu Transfor-
mationsstrategien”, Diploma Thesis, Universitit des Saarlandes,
Saarbriicken (1983).

Wilhelm, R., "Computation and Use of Data Flow Information in
Optimizing Compilers”, Acta Informatica 12Springer-Verlag, (1979).

	fb1987-01-0001
	fb1987-01-0002
	fb1987-01-0003
	fb1987-01-0004
	fb1987-01-0005
	fb1987-01-0006
	fb1987-01-0007
	fb1987-01-0008
	fb1987-01-0009
	fb1987-01-0010
	fb1987-01-0011
	fb1987-01-0012
	fb1987-01-0013
	fb1987-01-0014
	fb1987-01-0015
	fb1987-01-0016
	fb1987-01-0017
	fb1987-01-0018
	fb1987-01-0019
	fb1987-01-0020
	fb1987-01-0021
	fb1987-01-0022
	fb1987-01-0023
	fb1987-01-0024
	fb1987-01-0025
	fb1987-01-0026
	fb1987-01-0027

