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Abstract

Many real data sets in databases may vary dynamically. With such data sets, one has to run a knowledge acquisition
algorithm repeatedly in order to acquire new knowledge. This is a very time-consuming process. To overcome this
deficiency, several approaches have been developed to deal with dynamic databases. They mainly address knowledge
updating from three aspects: the expansion of data, the increasing number of attributes and the variation of data values.
This paper focuses on attribute reduction for data sets with dynamically varying data values. Information entropy is
a common measure of uncertainty and has been widely used to construct attribute reduction algorithms. Based on
three representative entropies, this paper develops an attribute reduction algorithm for data sets with dynamically
varying data values. When a part of data in a given data set is replaced by some new data, compared with the classic
reduction algorithms based on the three entropies, the developed algorithm can find a new reduct in a much shorter
time. Experiments on six data sets downloaded from UCI show that the algorithm is effective and efficient.
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1. Introduction

In real world databases, data sets usually vary with time. This phenomenon occurs in many fields such as economic
research, social survey and medical research. As data sets change with time, especially at an unprecedented rate, it
is very time-consuming or even infeasible to run repeatedly a knowledge acquisition algorithm. To overcome this
deficiency, researchers have recently proposed many new analytic techniques. They usually can directly carry out
the computation using the existing result from the original data set. These techniques mainly address knowledge
updating from three aspects: the expansion of data [1-7], the increasing number of attributes [8-11] and the variation
of data values [12-13]. For the first two aspects, a number of incremental techniques have been developed to acquire
new knowledge without recomputation. However, little research has been done on the third aspect in knowledge
acquisition, which motivates this study. This paper concerns attribute reduction for data sets with dynamically varying
data values. For convenience of the following discussion, here are some specific explanations regarding data sets with
dynamically varying data values. Generally speaking, this case usually occurs in the following several situations.
One situation is that a part of the original data in a database is identified as wrong, thus needing to be corrected.
Wrong data obviously lose their value to store further, and will be directly replaced by correct ones. Another familiar
situation is that, initially collected data in a database may increase gradually, though it usually is not necessary to
acquire knowledge from total data all the time. In other words, the sizes of interested data sets do not change. For
example, in a pollution survey of X city, observed data in last few years or even decades may be stored in a database
totally. However, analysis of pollution in each week (or each day, each month, etc.) does not require total observed
data in the past. In this situation, because data sets of adjacent time intervals are usually similar to each other, an
interested data set at one moment can be slightly amended to obtain a data set for the next moment. In addition, with
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the rapid development of information technology, timeliness of data becomes more and more important. Thus, any
out-of-date data in databases are usually useless. To improve the efficiency of knowledge acquisition, useless data
should be directly updated by the latest or real-time ones. Furthermore, other similar situations occur rather often in
applications such as stock analysis, tests for the disease and annual appraisal of workers.

Feature selection, a common technique for data preprocessing in many areas including pattern recognition, ma-
chine learning and data mining, has hold great significance. Among various approaches to select useful features, a
special theoretical framework is Pawlak’s rough set model [14,15]. One can use rough set theory to select a subset of
features that is most suitable for a given recognition problem [16-21]. Rough feature selection is also called attribute
reduction, which aims to select those features that keep the discerniblity ability of the original ones[22-26]. The
feature subset generated by an attribute reduction algorithm is called a reduct. In the last two decades, researchers
have proposed many reduction algorithms [27-32]. However, most of these algorithms can only be applicable to static
data sets. Although several algorithms have been proposed for dynamic data sets [1-11], as mentioned above, they are
incremental approaches only for the dynamic expansion of data or attributes.

This paper focus on attribute reduction for dynamically varying data values. To tackle this problem, this paper will
exploit information entropy. The information entropy from classical thermodynamics is used to measure out-of-order
degree of a system. Information entropy is introduced in rough set theory to measure uncertainty of a given data set
[33-36], which have been widely applied to devise heuristic attribute reduction algorithms [37-41]. Complementary
entropy [33], combination entropy [35] and Shannon’s entropy [36] are three representative entropies which have
been mainly used to construct reduction algorithms in rough set theory. To fully explore properties in reduct updating
caused by the variation of data values, this paper develops an attribute reduction algorithm for dynamic data sets based
on the three entropies. In view of that a key step of the development is the computation of entropy, this paper first
introduces three updating mechanisms of the three entropies, which determine an entropy by changing one object
to a new one in a decision table. When only one object is changed, instead of recomputation on the given decision
table, the updating mechanisms derive new entropies by integrating the changes of conditional classes and decision
classes into the existing entropies. With these mechanisms, an attribute reduction algorithm is proposed for dynamic
decision tables. When a part of data in a given data set is replaced by some new data, compared with the classic
reduction algorithms based on the three entropies, the developed algorithm can find a new reduct in a much shorter
time. Experiments on six data sets downloaded from UCI show that the algorithm is effective and efficient.

The rest of this paper is organized as follows. Some preliminaries in rough set theory are briefly reviewed in
Section 2. Traditional heuristic reduction algorithms based on three representative entropies are introduced in Section
3. Section 4 presents the updating mechanisms of the three entropies for dynamically varying data values. In Section
5, based on the updating mechanisms, a reduction algorithm is proposed to compute reducts for dynamic data sets.
In Section 6, six UCI data sets are employed to demonstrate effectiveness and efficiency of the proposed algorithm.
Section 7 concludes this paper with some discussions.

2. Preliminary knowledge on rough sets

2.1. Basic concepts

This section reviews several basic concepts in rough set theory. Throughout this paper, the universe U is assumed
a finite nonempty set.

An information system, as a basic concept in rough set theory, provides a convenient framework for the represen-
tation of objects in terms of their attribute values. An information system is a quadruple S = (U, A,V, f ), where U is a
finite nonempty set of objects and is called the universe and A is a finite nonempty set of attributes, V =

⋃
a∈A Va with

Va being the domain of a, and f : U × A→ V is an information function with f (x, a) ∈ Va for each a ∈ A and x ∈ U.
The system S can often be simplified as S = (U, A).

Each nonempty subset B ⊆ A determines an indiscernibility relation in the following way,

RB = {(x, y) ∈ U × U | f (x, a) = f (y, a),∀a ∈ B}.

The relation RB partitions U into some equivalence classes given by

U/RB = {[x]B | x ∈ U}, just U/B,
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where [x]B denotes the equivalence class determined by x with respect to B, i.e.,

[x]B = {y ∈ U | (x, y) ∈ RB}.

Given an equivalence relation R on the universe U and a subset X ⊆ U, one can define a lower approximation of
X and an upper approximation of X by

RX =
⋃
{x ∈ U | [x]R ⊆ X}

and
RX =

⋃
{x ∈ U | [x]R ∩ X , Ø},

respectively [39]. The order pair (RX,RX) is called a rough set of X with respect to R. The positive region of X is
denoted by POS R(X) = RX.

A partial relation � on the family {U/B | B ⊆ A} is defined as follows [37]: U/P � U/Q (or U/Q � U/P)
if and only if, for every Pi ∈ U/P, there exists Q j ∈ U/Q such that Pi ⊆ Q j, where U/P = {P1, P2, · · · , Pm} and
U/Q = {Q1,Q2, · · · ,Qn} are partitions induced by P, Q ⊆ A, respectively. In this case, we say that Q is coarser than
P, or P is finer than Q. If U/P � U/Q and U/P , U/Q, we say Q is strictly coarser than P (or P is strictly finer than
Q), denoted by U/P ≺ U/Q (or U/Q � U/P).

It is clear that U/P ≺ U/Q if and only if, for every X ∈ U/P, there exists Y ∈ U/Q such that X ⊆ Y , and there
exist X0 ∈ U/P and Y0 ∈ U/Q such that X0 ⊂ Y0.

A decision table is an information system S = (U,C ∪ D) with C ∩ D = Ø, where an element of C is called a
condition attribute, C is called a condition attribute set, an element of D is called a decision attribute, and D is called a
decision attribute set. Given P ⊆ C and U/D = {D1,D2, · · · ,Dr}, the positive region of D with respect to the condition
attribute set P is defined by POS P(D) =

⋃r
k=1 PDk.

For a decision table S and P ⊆ C, X ∈ U/P is consistent iff all its objects have the same decision value; otherwise,
X is inconsistent. The decision table S is called a consistent decision table iff ∀X ∈ U/C are consistent; and if
∃x, y ∈ U are inconsistent, then the table is called an inconsistent decision table. One can extract certain decision
rules from a consistent decision table and uncertain decision rules from an inconsistent decision table.

For a decision table S and P ⊆ C, when a new object x is added to S , x is indistinguishable on B iff, ∃y ∈ U,
∀a ∈ P, such that f (x, a) = f (y, a); and x is distinguishable on P iff, ∀y ∈ U, ∃a ∈ P such that f (x, a) , f (y, a).

2.2. Attribute reduction in rough set theory

Given an information system, all the attributes are not necessarily in the same importance, and some of them are
irrelevant to the learning or recognition tasks. The concept of attribute reduction was first originated by Pawlak in
[14, 15], which aimed to delete the irrelevant or redundant attributes on the condition of retaining the discernible
ability of original attributes (the whole attributes set). The retained attribute subset got from attribute reduction is
called a reduct.

Definition 1. Let S = {U, A} be an information system. Then B ⊆ A is a reduct of S if
(1) U/B = U/A and
(2) ∀a ∈ B,U/(B − {a}) , U/B.

There are usually multiple reducts in a given information system, and the intersection of all reducts is called core.
Given a decision table, the retained attribute subset got from attribute reduction is called a relative reduct, and the
intersection of all relative reducts is called relative core [14, 15].

Definition 2. Let S = {U,C ∪ D} be a decision table. Then B ⊆ C is a relative reduct of S if
(1) POS B(D) = POS C(D) and
(2) ∀a ∈ B, POS B−{a}(D) , POS B(D).

For these two definitions, the first condition guarantees that the reduct has the same distinguish power as the whole
attribute set, and the second condition guarantees that there is no redundant attributes in the reduct. A reduct is called
an exact reduct if it satisfies both of these two constraints, otherwise, is just an approximate reduct. In [40], Skowron
proposed a discernibility matrix method to find all exact reducts of an information system without decision attributes.
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However, it has been proved that using this algorithm to generate reducts is an NP-hard problem. For decision tables,
Kryszkiewicz proposed an approach to computing the minimal set of attributes that functionally determine a decision
attribute[41]. This algorithm can find an exact reduct of a given decision table. These two approaches are both very
time-consuming.

As is well known, Pawlak’s rough set model is applicable for the case that only nominal attributes exist in data sets.
However, many real data in applications usually come with a complicated form. To conceptualize and analyze various
types of data, researchers have generalized Pawlak’s classic rough set model, and attribute reduction based on these
generalizations was also redefined. Reducts generated by these reduction algorithms are usually approximate reducts.
Ziarko provided the concept of β-reduct based on the introduction of variable precision rough set model (VPRS)[42].
VPRS deals with partial classification by introducing a probability value β. The β value represents a bound on the
conditional probability of objects in a condition class which are classified to the same decision class. Yao proposed
the decision-theoretic rough set model and also defined attribute reduction based on this generalized model[43, 44].
This model with loss functions aims to obtain optimization decisions by minimizing the overall risk with Bayesian
decision procedures. An extensive review of multi-criteria decision analysis based on dominance rough sets was given
by Greco et al. [45]. Dominance rough set model has also been applied for ordinal attribute reduction and multi-
criteria classification [46, 47]. Dubois and Prade constructed the first fuzzy rough model by extending equivalence
relation to fuzzy equivalence relation [48], where fuzzy equivalence relations satisfy reflexivity, symmetry and max-
min transitivity. Reduction algorithms based on above generalized rough set models usually generate one or more
approximation reducts and have been applied to solve their corresponding issues. It is deserved to point out that each
kind of attribute reduction tries to preserve a particular property of a given table.

In addition, to save computational time of finding reduct, researchers have also developed many heuristic attribute
reduction algorithms which can generate a single reduct from a given table [33, 35, 37, 38, 49]. Most of them are
greedy and forward search algorithms, keeping selecting attributes with high significance until the dependence no
longer increases. The reduct generated by a heuristic reduction algorithm is usually considered as an approximation
reduct. It will be an exact reduct when deleting its redundant attributes.

However, the above analysis about generating an exact reduct and an approximation reduct is not very rigorous.
For example, though reducts generated by heuristic reduction algorithms are considered as approximation reducts,
some of them are often exact redcuts. Because so many reduction algorithms have been proposed in the last two
decades and it is very difficult to list all of them here, this section just introduces a common distinction between
generating an exact reduct and generating an approximation reduct.

3. Attribute reduction based on information entropy

Among various heuristic attribute reduction algorithms, reduction based on information entropy (or its variants) is
a kind of common algorithm which has attracted much attention. There are three representative entropies which are
used to construct reduction algorithms. They are complementary entropy[33], combination entropy[35] and Shannons
information entropy[36]. The heuristic attribute reduction algorithms based on these three entropies are reviewed in
this section.

In [33], the complementary entropy was introduced to measure uncertainty in rough set theory. Liang et al. also
proposed the conditional complementary entropy to measure uncertainty of a decision table in [34]. By preserving the
conditional entropy unchanged, the conditional complementary entropy was applied to construct reduction algorithms
and reduce the redundant features in a decision table [35]. The conditional complementary entropy used in this
algorithm is defined as follows[33, 34, 35].

Definition 3. Let S = (U,C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partitions
U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}. Based on these partitions, a conditional entropy of B relative to
D is defined as

E(D|B) =

m∑

i=1

n∑

j=1

|Xi ∩ Y j|
|U |

|Yc
j − Xc

i |
|U | , (1)

where Yc
i and Xc

j are complement set of Yi and X j respectively.
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Another information entropy, called combination entropy, was presented in [35] to measure the uncertainty of
data tables. The conditional combination entropy was also introduced and can be used to construct the heuristic
reduction algorithms [35]. This reduction algorithm can find a feature subset that possesses the same number of pairs
of indistinguishable elements as that of the original decision table. The definition of the conditional combination
entropy is defined as follows[35].

Definition 4. Let S = (U,C ∪ D) be a decision table and B ⊆ C. Then one can obtain the condition partitions
U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}. Based on these partitions, a conditional entropy of B relative to
D is defined as

CE(D|B) =

m∑

i=1

(
|Xi|
|U |

C2
|Xi |

C2
|U |
−

n∑

j=1

|Xi ∩ Y j|
|U |

C2
|Xi∩Y j |
C2
|U |

). (2)

where C2
|Xi | denotes the number of pairs of objects which are not distinguishable from each other in the equivalence

class Xi.

Based on the classical rough set model, Shannon’s information entropy[36] and its conditional entropy were also
introduced to find a reduct in a heuristic algorithm [38, 50]. In [38], the reduction algorithm keeps the conditional
entropy of target decision unchanged, and the conditional entropy is defined as follows[38].

Definition 5. Let S = (U,C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partitions
U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}. Based on these partitions, a conditional entropy of B relative to
D is defined as

H(D|B) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi ∩ Y j|
|Xi| log(

|Xi ∩ Y j|
|Xi| ). (3)

For convenience, a uniform notation ME(D|B) is introduced to denote these three entropies. For example, if one
adopts Shannon’s conditional entropy to define the attribute significance, then ME(D|B) = H(D|B). Given a decision
table S = (U,C ∪ D) and B1, B2 ⊆ C. According to literatures [33, 35, 38], if U/B1 � U/B2, one can get that
ME(D|B1) ≤ ME(D|B2). This conclusion indicates that, for a given decision table, as its condition classifications
become finer, its entropies (the three entropies) are monotone decreasing. In addition, as the condition classifications
become finer, the classified quality (see Definition 11) of the given decision table is monotone increasing. Thus, one
can get that the three entropies of a given decision table are monotone decreasing with the classified quality increasing.
Especially, when the classified quality is one, the entropies are zero [33, 35, 38].

The attribute significances based on entropies in a heuristic reduction algorithm is defined as follows (See Defini-
tions 6-7) [33, 35, 38].

Definition 6. Let S = (U,C∪D) be a decision table and B ⊆ C. ∀a ∈ B, the significance measure (inner significance)
of a in B is defined as

S iginner(a, B,D) = ME(D|B − {a}) − ME(D|B). (4)

Definition 7. Let S = (U,C ∪ D) be a decision table and B ⊆ C. ∀a ∈ C − B, the significance measure (outer
significance) of a in B is defined as

S igouter(a, B,D) = ME(D|B) − ME(D|B ∪ {a}). (5)

Given a decision table S = (U,C∪D) and a ∈ C. From the literatures [26-29], one can get that if S iginner(a,C,D) >
0, then the attribute a is indispensable, i.e., a is a core attribute of S . Based on core attributes, a heuristic attribute
reduction algorithm can find a reduct by gradually adding selected attributes to the core. The definition of reduct
based on information entropy is defined as follows [26-29].
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Definition 8. Let S = (U,C ∪ D) be a decision table and B ⊆ C. Then the attribute set B is a relative reduct if B
satisfies:

(1) ME(D|B) = ME(D|C);
(2) ∀a ∈ B, ME(D|B) , ME(D|B − {a}).
Formally, the searching strategies in reduction algorithms based on the three entropies are similar to each other.

The specific steps are written as follows [33, 35, 38].

Algorithm 1. Classic attribute reduction algorithm based on information entropy for a decision table (CAR)

Input: A decision table S = (U,C ∪ D)
Output: Reduct red

Step 1: red ← ∅;
Step 2: f or ( j = 1; j ≤ |C|; j + +)

{ if S iginner(a j,C,D) > 0, then red ← red ∪ {a j};
}

Step 4: P← red, while (ME(D|P) , ME(D|C)) do
{

Compute and select sequentially S igouter(a0, P,D) = max{S igouter(ai, P,D)}, ai ∈ C − P;
P← P ∪ {a0};
}

Step 5: red ← P, return red and end.

Based on Definition 6, one can get core attributes according to steps 1-2 in this algorithm. Steps 3-4 add selected
attributes to the core gradually, and then one can obtain a reduct of the given table. This algorithm can be considered
as the common attribute reduction algorithm based on information entropy. The time complexity of CAR given in
[37] is O(|U ||C|2). However, this time complexity does not include the computational time of entropies. For a given
decision table, computing entropies is a key step in above reduction algorithm, which is not computationally costless.
Thus, to analyze the exact time complexity of above algorithm, the time complexity of computing entropies is given
as well.

Given a decision table, according to Definitions 3-5, it first needs to compute the conditional classes and decision
classes, respectively, and then computes the value of entropy. Xu et al. in [51] gave a fast algorithm for partition with
time complexity being O(|U ||C|). So, the time complexity of computing entropy is

O(|U ||C| + |U | +
m∑

i=1

|Xi| ·
n∑

j=1

|Y j|) = O(|U ||C| + |U | + |U ||U |) = O(|U |2),

where the specific introduction of m, n, Xi and Y j is shown in Definitions 3-5. Thus, the time complexity of computing
core (steps 1-2) is O(|C||U |2), and the time complexity of computing reduct according to CAR is

O(|C||U |2 + |C|(|U ||C| + |U |2)) = O(|C|2|U | + |C||U |2).

4. Updating mechanism of information entropy

Given a dynamic decision table, based on the three representative entropies, this section presents the updating
mechanisms of the three entropies for dynamically varying data values. As data values in a decision table vary with
time, recomputing entropy is obviously time-consuming. To overcome this deficiency, the updating mechanisms
derive new entropies by integrating the changes of conditional classes and decision classes into existing entropies.
When data values of a single object vary, Theorems 1-4 introduce the updating mechanisms for the three entropies
respectively.

For convenience, here are some explanations which will be used in the following theorems. Let S = (U,C ∪ D)
be a decision table, B ⊆ C and x ∈ U. U/B = {X1, X2, · · · , Xm}, U/D = {Y1,Y2, · · · ,Yn}, x ∈ Xp1 and x ∈ Yq1
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(p1 ∈ {1, 2, · · · ,m} and q1 ∈ {1, 2, · · · , n}). If attribute values of x are varied, and here assumes that x is changed to x′.
Let Ux′ denotes the new universe, one has x′ ∈ X′p2

and x′ ∈ Y ′q2
(X′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). Obviously, one can

get that X′p2
− {x} ∈ U/B, Y ′q2

− {x} ∈ U/D, Xp1 − {x} ∈ Ux′/B and Yq1 − {x} ∈ Ux′/D. In addition, X′p1
, Y ′q1

, Xp2 and Yq2

denote Xp1 − {x}, Yq1 − {x}, X′p2
− {x} and Y ′q2

− {x}, respectively.

Theorem 1. Let S = (U,C ∪ D) be a decision table and B ⊆ C. The complementary conditional entropy of D with
respect to B is EU(D|B). Then, one can obtain the partitions U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}.
x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then x′ ∈ X′p2

and x′ ∈ Y ′q2
(X′p2

∈ Ux′/B and
Y ′q2
∈ Ux′/D). The new conditional complementary entropy becomes

EUx′ (D|B) = EU(D|B) +
2|X′p2

− Y ′q2
| − 2|X′p1

− Y ′q1
|

|U |2 ,

where X′p1
= Xp1 − {x} and Y ′q1

= Yq1 − {x}.

Proof. For the decision table S , when x is changed to x′, there are four situations about the changes of conditional
classes and decision classes, which are as follows:

(a) Ux′/B = {X1, X2, · · · , X′p1
, · · · , Xm, {x′}} and Ux′/D = {Y1,Y2, · · · , Y ′q1

, · · · ,Yn, {x′}};
(b) Ux′/B = {X1, X2, · · · , X′p1

, · · · , X′p2
, · · · , Xm, }, x′ ∈ X′p2

, and Ux′/D = {Y1,Y2, · · · ,Y ′q1
, · · · ,Yn, {x′}};

(c) Ux′/B = {X1, X2, · · · , X′p1
, · · · , Xm, {x′}}, Ux′/D = {Y1,Y2, · · · ,Y ′q1

, · · · ,Y ′q2
, · · · ,Yn} and x′ ∈ Y ′q2

;
(d) Ux′/B = {X1, X2, · · · , X′p1

, · · · , X′p2
, · · · , Xm, }, x′ ∈ X′p2

and Ux′/D = {Y1,Y2, · · · ,Y ′q1
, · · · ,Y ′q2

, · · · ,Yn}, x′ ∈ Y ′q2
.

For convenience, here introduces a uniform notation about these four situations.
Let U/B = {X1, X2, · · · , Xm, Xm+1} and Xm+1 = ∅. Then, we have Ux′/B = {X1, X2, · · · , X′p1

, · · · , X′p2
, · · · , Xm+1, },

X′p1
= Xp1 − {x′} and X′p2

= {x′} ∪ Xp2 . Similarly, let Yn+1 = ∅, we can get that U/D = {Y1,Y2, · · · ,Yn+1}, Ux′/D =

{Y1,Y2, · · · ,Y ′q1
, · · · ,Y ′q2

, · · · ,Yn+1} and Y ′q2
= {x′} ∪ Yq2 . Obviously, for situation (a), we have X′p2

= Xm+1 ∪ {x′} =

∅ ∪ {x′} = {x′} and Y ′q2
= Yn+1 ∪ {x′} = {x′}. Similarly, for situation (b), we have Y ′q2

= Yn+1 ∪ {x′} = {x′}. And for
situation (c), we have X′p2

= {x′}.
According to the uniform notation, the updating mechanism of complementary conditional entropy is as follows.

E(D|B)
=

∑m
i=1

∑n
j=1
|Xi∩Y j |
|U |

|Yc
j−Xc

i |
|U |

=
∑m

i=1
∑n

j=1
|Xi∩Y j |
|U |

|Xi−Y j |
|U | .

And
EUx′ (D|B)

=
∑m−1

i=1 (
∑n−1

j=1
|Xi∩Y j ||Xi−Y j |

|U |2 +
|Xi∩Y ′q1

||Xi−Y ′q1
|

|U |2 +
|Xi∩Y ′q2

||Xi−Y ′q2
|

|U |2 ) +
∑n−1

j=1
|X′p1
∩Y j ||X′p1

−Y j |
|U |2 +

|X′p1
∩Y ′q1

||X′p1
−Y ′q1

|
|U |2 +

|X′p1
∩Y ′q2

||X′p1
−Y ′q2

|
|U |2 +

∑n−1
j=1

|X′p2
∩Y j ||X′p2

−Y j |
|U |2 +

|X′p2
∩Y ′q1

||X′p2
−Y ′q1

|
|U |2 +

|X′p2
∩Y ′q2

||X′p2
−Y ′q2

|
|U |2

=
∑m−1

i=1 (
∑n−1

j=1
|Xi∩Y j ||Xi−Y j |

|U |2 +
|Xi∩Yq1 ||Xi−Yq1 |

|U |2 +
|Xi∩Yq2 ||Xi−Yq2 |

|U |2 )+
∑n−1

j=1
|Xp1∩Y j |·(|Xp1−Y j |−1)

|U |2 +
(|Xp1∩Yq1 |−1)·|Xp1−Yq1 |

|U |2 +
|Xp1∩Yq2 |·(|Xp1−Yq2 |−1)

|U |2

+
∑n−1

j=1
|Xp2∩Y j |·(|Xp2−Y j |+1)

|U |2 +
|Xp2∩Yq1 |·(|Xp2−Yq1 |+1)

|U |2 +
(|Xp2∩Yq2 |+1)·|Xp2−Yq2 |

|U |2

=
∑m+1

i=1
∑n+1

j=1
|Xi∩Y j ||Xi−Y j |

|U |2 +
|Xp2−Yq2 |−|Xp1−Yq1 |

|U |2 +
∑n+1

j=1, j,q2

|Xp2∩Y j |
|U |2 −∑n+1

j=1, j,q1

|Xp1∩Y j |
|U |2

= EU(D|B) +
|X′p2
−Y ′q2

|−|X′p1
−Y ′q1

|
|U |2 +

∑n+1
j=1, j,q2

|X′p2
∩Y j |
|U |2 −∑n+1

j=1, j,q1

|X′p1
∩Y j |
|U |2

= EU(D|B) +
|X′p2
−Y ′q2

|−|X′p1
−Y ′q1

|
|U |2 +

∑n+1
j=1, j,q2

|X′p2
∩Y j |
|U |2 +

|X′p2
∩Y ′q2

|
|U |2 − |X

′
p2
∩Y ′q2

|
|U |2 −∑n+1

j=1, j,q1

|X′p1
∩Y j |
|U |2 − |X

′
p1
∩Y ′q1

|
|U |2 +

|X′p1
∩Y ′q1

|
|U |2

= EU(D|B) +
|X′p2
−Y ′q2

|−|X′p1
−Y ′q1

|
|U |2 +

|X′p2
|−|X′p2

∩Y ′q2
|

|U |2 − |X
′
p1
|−|X′p1

∩Y ′q1
|

|U |2

= EU(D|B) +
2|X′p2

−Y ′q2
|−2|X′p1

−Y ′q1
|

|U |2 . This completes the proof. ¤

For convenience of introducing combination entropy, here gives a deformation of the definition of combination
entropy (see Definition 2). According to C2

N =
N(N−1)

2 , the following deformation can be got. Then the updating
mechanism of combination conditional entropy is introduced on the basis of this deformation.
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Definition 9. Let S = (U,C ∪ D) be a decision table and B ⊆ C. One can obtain the condition partition U/B =

{X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}. The combination conditional entropy of B relative to D is defined as

CE(D|B) =

m∑

i=1

(
|Xi|2(|Xi| − 1)
|U |2(|U | − 1)

−
n∑

j=1

|Xi ∩ Y j|2(|Xi ∩ Y j| − 1)
|U |2(|U | − 1)

). (6)

Theorem 2. Let S = (U,C ∪ D) be a decision table and B ⊆ C. The combination conditional entropy of D with
respect to B is EU(D|B). Then, one can obtain the partitions U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}.
x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then x′ ∈ X′p2

and x′ ∈ Y ′q2
(X′p2

∈ Ux′/B and
Y ′q2
∈ Ux′/D). The new combination conditional entropy becomes

CEUx′ (D|B) = CEU(D|B) + ∆,

where ∆ =
|X′p2
−Y ′q2

|(3|X′p2
|+3|X′p2

∩Y ′q2
|−5)−|X′p1

−Y ′q1
|(3|X′p1

|+3|X′p1
∩Y ′q1

|+1)
|U |2 , X′p1

= Xp1 − {x} and Y ′q1
= Yq1 − {x}.

Proof. Similarly, when x is added to S , there are four same situations as the proof in Theorem 1. Then, the combina-
tion conditional entropy is

CEUx′ (D|B)

=
∑m−1

i=1 ( |Xi |2(|Xi |−1)
|U |2(|U |−1) −

∑n−1
j=1

|Xi∩Y j |2(|Xi∩Y j |−1)
|U |2(|U |−1) − |Xi∩Y ′q1

|2(|Xi∩Y ′q1
|−1)

|U |2(|U |−1) − |Xi∩Y ′q2
|2(|Xi∩Y ′q2

|−1)
|U |2(|U |−1) ) +

|X′p1
|2(|X′p1

|−1)
|U |2(|U |−1) −

∑n−1
j=1

|X′p1
∩Y j |2(|X′p1

∩Y j |−1)
|U |2(|U |−1)

− |X
′
p1
∩Y ′q1

|2(|X′p1
∩Y ′q1

|−1)
|U |2(|U |−1) − |X

′
p1
∩Y ′q2

|2(|X′p1
∩Y ′q2

|−1)
|U |2(|U |−1) +

|X′p2
|2(|X′p2

|−1)
|U |2(|U |−1) −

∑n−1
j=1

|X′p2
∩Y j |2(|X′p2

∩Y j |−1)
|U |2(|U |−1) − |X

′
p2
∩Y ′q1

|2(|X′p2
∩Y ′q1

|−1)
|U |2(|U |−1)

− |X
′
p2
∩Y ′q2

|2(|X′p2
∩Y ′q2

|−1)
|U |2(|U |−1)

=
∑m−1

i=1 ( |Xi |2(|Xi |−1)
|U |2(|U |−1) −

∑n+1
j=1

|Xi∩Y j |2(|Xi∩Y j |−1)
|U |2(|U |−1) ) +

(|Xp1 |−1)2(|Xp1 |−2)
|U |2(|U |−1) −∑n−1

j=1
|Xp1∩Y j |2(|Xp1∩Y j |−1)

|U |2(|U |−1) − (|Xp1∩Yq1 |−1)2(|Xp1∩Yq1 |−2)
|U |2(|U |−1) −

|Xp1∩Yq2 |2(|Xp1∩Yq2 |−1)
|U |2(|U |−1) +

(|Xp2 |+1)2 |Xp2 |
|U |2(|U |−1) −

∑n−1
j=1

|Xp2∩Y j |2(|Xp2∩Y j |−1)
|U |2(|U |−1) − |Xp2∩Yq1 |2(|Xp2∩Yq1 |−1)

|U |2(|U |−1) − (|Xp2∩Yq2 |+1)2 |Xp2∩Yq2 |
|U |2(|U |−1)

=
∑m+1

i=1 ( |Xi |2(|Xi |−1)
|U |2(|U |−1) −

∑n+1
j=1

|Xi∩Y j |2(|Xi∩Y j |−1)
|U |2(|U |−1) ) +

−3|Xp1 |2+5|Xp1 |+3|Xp1∩Yq1 |2−5|Xp1∩Yq1 |
|U |2(|U |−1) +

3|Xp2 |2+|Xp2 |−3|Xp2∩Yq2 |2−|Xp2∩Yq2 |
|U |2(|U |−1)

= CEU(D|B) +
|Xp2−Yq2 |(3|Xp2 |+3|Xp2∩Yq2 |+1)

|U |2(|U |−1) − |Xp1−Yq1 |(3|Xp1 |+3|Xp1∩Yq1 |−5)
|U |2(|U |−1) .

And because X′p2
= Xp2 ∪ {x} and Y ′q2

= Yq2 ∪ {x}, from Theorem 2, one can also get that
CEUx′ (D|B)

= CEU(D|B) +
|Xp2−Yq2 |(3|Xp2 |+3|Xp2∩Yq2 |+1)

|U |2(|U |−1) − |Xp1−Yq1 |(3|Xp1 |+3|Xp1∩Yq1 |−5)
|U |2(|U |−1) . This completes the proof. ¤

The following two theorems are the updating mechanisms of Shannon’s conditional entropy shown in Definition
3.

Theorem 3. Let S = (U,C ∪ D) be a decision table and B ⊆ C. The Shannon’s conditional entropy of D with respect
to B is EU(D|B). Then, one can obtain the partitions U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}. x ∈ Xp1 and
x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then x′ ∈ X′p2

and x′ ∈ Y ′q2
(X′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). The

new Shannon’s conditional entropy becomes

HUx′ (D|B) = HU(D|B) − ∆,

where ∆ =
∑n

j=1, j,q1

|Xp1∩Y j |
|U | log

|Xp1 |
|X′p1 |

+
∑n

j=1, j,q2

|Xp2∩Y j |
|U | log

|Xp2 |
|X′p2 |

+
|Xp1∩Yq1 |
|U | · log

|X′p1
∩Y ′q1

||Xp1 |
|Xp1∩Yq1 ||X′p1 |

+
|Xp2∩Yq2 |
|U | log

|X′p2
∩Y ′q2

||Xp2 |
|Xp2∩Yq2 ||X′p2 |

+

1
|U | log

|X′p1
||X′p2

∩Y ′q2
|

|X′p2 ||X′p1∩Y ′q1 |
, X′p1

= Xp1 − {x} and Y ′q1
= Yq1 − {x}.

Proof. Similar to the proof in Theorem 4, it can be easily proved. ¤

In view of that the formula of ∆ is complicated, thus, for the large-scale data tables, an approximate computational
formula is proposed in the following theorem.
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Theorem 4. Let S = (U,C ∪ D) be a large-scale decision table and B ⊆ C. The conditional Shannon’s entropy of D
with respect to B is EU(D|B). Then, one can obtain the partitions U/B = {X1, X2, · · · , Xm} and U/D = {Y1,Y2, · · · ,Yn}.
x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then x′ ∈ X′p2

and x′ ∈ Y ′q2
(X′p2

∈ Ux′/B and
Y ′q2
∈ Ux′/D). The new Shannon’s conditional entropy becomes

HUx′ (D|B) ≈ HU(D|B) − 1
|U | log

|X′p1
||X′p2

∩ Y ′q2
|

|X′p2
||X′p1

∩ Y ′q1
| ,

where X′p1
= Xp1 − {x} and Y ′q1

= Yq1 − {x}.

Proof. Similarly, when x is added to S , there are four same situations as the proof in Theorem 1. Then, the Shannon’s
conditional entropy is

HUx′ (D|B)

= −(
∑m−1

i=1
|Xi |
|U | (

∑n−1
j=1

|Xi∩Y j |
|Xi | log |Xi∩Y j |

|Xi | +
|Xi∩Y ′q1

|
|Xi | log

|Xi∩Y ′q1
|

|Xi | +
|Xi∩Y ′q2

|
|Xi | log

|Xi∩Y ′q2
|

|Xi | ) +
|X′p1
|

|U | (
∑n−1

j=1
|X′p1
∩Y j |
|X′p1 |

log
|X′p1
∩Y j |
|X′p1 |

+
|X′p1
∩Y ′q1

|
|X′p1 |

·
log

|X′p1
∩Y ′q1

|
|X′p1 |

+
|X′p1
∩Y ′q2

|
|X′p1 |

· log
|X′p1
∩Y ′q2

|
|X′p1 |

) +
|X′p2
|

|U | (
∑n−1

j=1
|X′p2
∩Y j |
|X′p2 |

log
|X′p2
∩Y j |
|X′p2 |

+
|X′p2
∩Y ′q1

|
|X′p2 |

log
|X′p2
∩Y ′q1

|
|X′p2 |

+
|X′p2
∩Y ′q2

|
|X′p2 |

· log
|X′p2
∩Y ′q2

|
|X′p2 |

))

= −(
∑m−1

i=1
|Xi |
|U | (

∑n+1
j=1

|Xi∩Y j |
|Xi | log |Xi∩Y j |

|Xi | )+
|Xp1 |
|U |

∑n−1
j=1

|Xp1∩Y j |
|Xp1 |

log
|Xp1∩Y j |
|X′p1 |

+
|Xp1 |
|U | ·

|Xp1∩Yq1 |−1
|Xp1 |

log
|X′p1
∩Y ′q1

|
|X′p1 |

+
|Xp1 |
|U | ·

|Xp1∩Yq2 |
|Xp1 |

·log
|X′p1
∩Y ′q2

|
|X′p1 |

+
|Xp2 |
|U |

∑n−1
j=1

|Xp2∩Y j |
|Xp2 |

· log
|Xp2∩Y j |
|X′p2 |

+
|Xp2 |
|U | ·

|Xp2∩Yq1 |
|Xp2 |

log
|Xp2∩Yq1 |
|X′p2 |

+
|Xp2 |
|U | ·

|Xp2∩Yq2 |+1
|Xp2 |

· log
|X′p2
∩Y ′q2

|
|X′p2 |

)

= −(
∑m−1

i=1
|Xi |
|U |

∑n+1
j=1

|Xi∩Y j |
|Xi | log |Xi∩Y j |

|Xi | +
|Xp1 |
|U |

∑n−1
j=1

|Xp1∩Y j |
|Xp1 |

(log
|Xp1∩Y j |
|Xp1 |

+ log
|Xp1 |
|X′p1 |

)+
|Xp1 |
|U | ·

|Xp1∩Yq1 |
|Xp1 |

(log
|Xp1∩Yq1 |
|Xp1 |

+ log
|X′p1
∩Y ′q1

||Xp1 |
|Xp1∩Yq1 ||X′p1 |

)

− 1
|U | log

|X′p1
∩Y ′q1

|
|X′p1 |

+
|Xp1 |
|U | ·

|Xp1∩Yq2 |
|Xp1 |

·(log
|Xp1∩Yq2 |
|Xp1 |

+log
|Xp1 |
|X′p1 |

)+
|Xp2 |
|U |

∑n−1
j=1

|Xp2∩Y j |
|Xp2 |

·(log
|Xp2∩Y j |
|Xp2 |

+log
|Xp2 |
|X′p2 |

)+
|Xp2 |
|U | ·

|Xp2∩Yq1 |
|Xp2 |

(log
|Xp2∩Yq1 |
|Xp2 |

+ log
|Xp2 |
|X′p2 |

) +
|Xp2 |
|U | ·

|Xp2∩Yq2 |
|Xp2 |

· (log
|Xp2∩Yq2 |
|Xp2 |

+ log
|X′p2
∩Y ′q2

||Xp2 |
|Xp2∩Yq2 ||X′p2 |

) + 1
|U | log

|X′p2
∩Y ′q2

|
|X′p2 |

).
To simplify the calculations of above formula, for the large-scale decision tables, here are some approximated

expressions. In view of that |Xp1 | and |Xp2 | based on the large-scale decision tables are relatively large, respectively,
one can get that |Xp1 | ≈ |X′p1

| and |Xp2 | ≈ |X′p2
| (X′p1

= Xp1 − {x} and X′p2
= Xp2 ∪ {x}), e.t. log

|Xp1 |
|X′p1 |
≈ 0 and log

|Xp2 |
|X′p2 |
≈ 0.

Similarly, one can also get from |Xp1 ∩ Yq1 | ≈ |X′p1
∩ Y ′q1

| and |Xp2 ∩ Yq2 | ≈ |X′p2
∩ Y ′q2

| that log
|X′p1
∩Y ′q1

||Xp1 |
|Xp1∩Yq1 ||X′p1 |

≈ 0 and

log
|X′p2
∩Y ′q2

||Xp2 |
|Xp2∩Yq2 ||X′p2 |

≈ 0. Hence, the above formula can be simplified to

HUx′ (D|B)

≈ −(
∑m

i=1
|Xi |
|U |

∑n
j=1
|Xi∩Y j |
|Xi | log |Xi∩Y j |

|Xi | − 1
|U | log

|X′p1
∩Y ′q1

|
|X′p1 |

+ 1
|U | · log

|X′p2
∩Y ′q2

|
|X′p2 |

)

= HU(D|B) − 1
|U | log

|X′p2
∩Y ′q2

||X′p1
|

|X′p2 ||X′p1∩Y ′q1 |
. Thus, this completes the proof. ¤

5. Attribute reduction algorithm for decision tables with dynamically varying attribute values

Based on the updating mechanisms of the three entropies, this section introduces an attribute reduction algorithm
based on information entropy for decision tables with dynamically varying attribute values. In view of that core
is another key concept besides redcut in rough set theory [14, 15], this section also gives an algorithm for core
computation. In rough set theory, core is the intersection of all reducts of a given table, and core attributes are
considered as the indispensable attributes in a reduct. Note that, for the three entropies, the following algorithms are
commonly used to update core and reduct.

Algorithm 2. An algorithm to core computation for a dynamic decision table (ACOREx′ )

Input: A decision table S = (U,C ∪ D) and object x ∈ U is changed to x′

Output: Core attribute COREx′ on Ux′

Step 1 : Find X′p1
and X′p2

: in U/C = {X1, X2, · · · , Xm} and x ∈ Xp1 . If x is changed to x′, and x′ ∈ X′p2
. One have

X′p1
= Xp1 − {x′} and Ux′/C = {X1, X2, · · · , X′p1

, · · · , X′p2
, · · · , Xm}.
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Step 2 : Find Y ′q1
and Y ′q2

: in U/D = {Y1,Y2, · · · ,Yn} and x ∈ Yq1 . If x is changed to x′, and x′ ∈ Y ′q2
. We have

Y ′q1
= Yq1 − {x′} and Ux′/D = {Y1,Y2, · · · ,Y ′q1

, · · · ,Y ′q2
, · · · ,Yn}.

Step 3 : Compute MEUx′ (D|C) (according to Theorems 1, 2 or 4);
Step 4 : COREUx′ ← ∅, for each a ∈ C

1) In U/(C − {a}) = {M1,M2, · · · ,Mm′ } (m′ ≤ m) and x ∈ Mt1 . If x is changed to x′, one have x′ ∈ M′t2 ,
M′t1 = Mt1 − {x′} and Ux′/(C − {a}) = {M1,M2, · · · ,M′t1 , · · · ,M′t2 , · · · ,Mm′ }.

2) Compute MEUx′ (D|C − {a}) (according to Theorems 1, 2 or 4).
3) If MEUx′ (D|C − {a}) , MEUx′ (D|C), then COREUx′ = COREUx′ ∪ {a}.

Step 5 : Return COREUx′ and end.

Based on updating mechanisms of the three entropies, an attribute reduction algorithm for decision tables with
dynamically varying attribute values is introduced in the following. In this algorithm, the existing reduction result is
one of inputs, which is used to find its new reduct after data changes.

Algorithm 3. An algorithm to reduct computation for a dynamic decision table (AREDx′ )
Input: A decision table S = (U,C ∪ D), reduct REDU on U, and the changed object x which is changed to x′

Output: Attribute reduct REDUx′ on Ux′

Step 1 : Find M′t1 and M′t2 : in U/B = {M1,M2, · · · ,Mm′ } and x ∈ Mt1 . If x is changed to x′, and x′ ∈ M′t2 . One have
M′t1 = Mt1 − {x′} and Ux′/B = {M1,M2, · · · ,M′t1 , · · · ,M′t2 , · · · ,Mm′ }.

Step 2 : Find Y ′q1
and Y ′q2

: in U/D = {Y1,Y2, · · · ,Yn} and x ∈ Yq1 . If x is changed to x′, and x′ ∈ Y ′q2
. One have

Y ′q1
= Yq1 − {x′} and Ux′/D = {Y1,Y2, · · · ,Y ′q1

, · · · ,Y ′q2
, · · · ,Yn}.

Step 3 : Compute MEUx′ (D|B) (according to Theorems 1, 2 or 4);
Step 4 : Find X′p1

and X′p2
: in U/C = {X1, X2, · · · , Xm} and x ∈ Xp1 . If x is changed to x′, and x′ ∈ X′p2

. One have
X′p1

= Xp1 − {x′} and Ux′/C = {X1, X2, · · · , X′p1
, · · · , X′p2

, · · · , Xm}.
Step 5 : Compute MEUx′ (D|C) (according to Theorems 1, 2 or 4);
Step 6 : If MEUx′ (D|B) = MEUx′ (D|C), then REDUx′ ← REDU , turn to Step 8; else turn to Step 7.
Step 7 : B← REDU , while MEUx′ (D|B) , MEUx′ (D|C) do

{ For each a ∈ C − B, compute S igouter
Ux′

(a, B,D) (according to Theorems 1, 2 or 4 and Definition 6);
Select a0 = max{S igouter

Ux′
(a, B,D)}, a ∈ C − B;

B← B ∪ {a0}.
}

Step 8 : For each a ∈ B do
{ Compute S iginner

Ux′
(a, B,D);

If S iginner
Ux′

(a, B,D) = 0, then B← B − {a}. }
Step 9 : REDUx′ ← B, return REDUx′ and end.

The following is time complexities of above two algorithms. First is the time complexity of computing entropy
according to Theorems 1, 2, and 4, which is O(m|C| + n + |X′p1

||Y ′q1
| + |X′p2

||Y ′q2
|) = O(max(|X′p1

||Y ′q1
|, |X′p2

||Y ′q2
|)) ( the

explanations of m, n, X′p1
,Y ′q1

, X′p2
and Y ′q2

are shown in Theorems 1, 2, and 4). For convenience, Θ′ is used to denote
the above time complexity, i.e., Θ′ = O(max(|X′p1

||Y ′q1
|, |X′p2

||Y ′q2
|)).

In the algorithm ACOREx′ , the time complexity of Steps 1-3 is Θ′; in Step 4, the time complexity is |C|Θ′. Hence,
the time complexity of algorithm ACOREx′ is

O(Θ′ + |C|Θ′) = O(|C|(max(|X′p1
||Y ′q1
|, |X′p2

||Y ′q2
|))) = O(max(|C||X′p1

||Y ′q1
|, |C||X′p2

||Y ′q2
|)).

In algorithm AREDx′ , the time complexity of Steps 1-3 is Θ′; the time complexity of Steps 4-5 is also O(Θ′);
in Step 7, the time complexity of adding attributes is O(|C|Θ′); in Step 8, the time complexity of deleting redundant
attributes is O(|B|Θ′). Hence, the total time complexity of algorithm IA REDx is

O(Θ′ + |C|Θ′ + |B|Θ′) = O(|C|Θ′) = O(|C|2|U | + max(|C||X′p1
||Y ′q1
|, |C||X′p2

||Y ′q2
|)).

To stress above findings, the time complexities of computing core and reduct are shown in Table 1. CA COREx′

and CA REDx′ denote classic algorithms based on information entropy for computing core and reduct, respectively.
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Table 1: Comparison of time complexity

Entropy Classic Incremental

O(|U |2) O(|U ||C| + max(|X′p1
||Y ′q1
|, |X′p2

||Y ′q2
|))

Core CA COREx′ ACOREx′

O(|C||U |2) O(max(|C||X′p1
||Y ′q1
|, |C||X′p2

||Y ′q2
|))

Reduct CA REDx′ AREDx′

O(|C|2|U | + |C||U |2) O(|C|2|U | + max(|C||X′p1
||Y ′q1
|, |C||X′p2

||Y ′q2
|))

Table 2: Description of data sets

Data sets Samples Attributes Classes

1 Backup-large 307 35 19
2 Dermatology 366 33 6
3 Breast-cancer-wisconsin(Cancer) 683 9 2
4 Mushroom 5644 22 2
5 Letter-recognition(Letter) 20000 16 26
6 Shuttle 58000 9 7

In Table 1, |X′p1
||Y ′q1
| (or |X′p2

||Y ′q2
|) is usually much smaller than |U |2. Hence, based on the three entropies, the cal-

culation of proposed algorithms (ACOREx′ and AREDx′ ) are usually much smaller than that of the classic algorithms
for reduct (or core).

6. Experimental analysis

The objective of the following experiments is to show effectiveness and efficiency of the proposed reduction
algorithm AREDx′ . Due to that the core is a subset of a reduct, we only run the reduction algorithms in the experiments.
Data sets used in the experiments are outlined in Table 2, which were all downloaded from UCI repository of machine
learning databases. All the experiments have been carried out on a personal computer with Windows XP and Inter(R)
Core(TM) 2 Quad CPU Q9400, 2.66 GHz and 3.37 GB memory. The software being used is Microsoft Visual Studio
2005 and programming language is C#.

There are two objectives to conduct the experiments. The first one is to show whether the reduct found by AREDx′

is feasible by comparing with that of CAR (see in section 6.1). The second one is to compare the efficiency of AREDx′

and CAR (see in section 6.2). Six UCI data sets are employed to test the two algorithms. Mushroom and Breast-
cancer-wisconsin are data sets with missing values, and for a uniform treatment of all data sets, the objects with
missing values have been removed. Moreover, Shuttle is preprocessed using the data tool Rosetta.

6.1. Effectiveness analysis

In this subsection, to test the effectiveness of AREDx′ , four common evaluation measures in rough set theory are
employed to evaluate the decision performance of the reducts found by CAR and AREDx′ . The four evaluation mea-
sures are approximate classified precision, approximate classified quality, certainty measure and consistency measure.

In [14], Pawlak defined the approximate classified precision and approximate classified quality to describe the
precision of approximate classification in rough set theory.

Definition 10. Let S = (U,C ∪ D) be a decision table and U/D = {X1, X2, · · · , Xr}. The approximate classified
precision of C with respect to D is defined as

11



APC(D) =
|POS C(D)|
∑r

i=1 |CXi|
. (7)

Definition 11. Let S = (U,C ∪ D) be a decision table. The approximate classified quality of C with respect to D is
defined as

AQC(D) =
|POS C(D)|
|U | . (8)

In rough set theory, by adopting reduction algorithms, one can get reducts for a given decision table. Then, based
on a reduct, a set of decision rules can be generated from a decision table. Here briefly recalls the notions of decision
rules [14, 52], which will be used in the following development.

Definition 12. Let S = (U,C ∪ D) be a decision table. U/C = {X1, X2, · · · , Xm}, U/D = {Y1,Y2, · · · ,Yn} and ∩Y j , ∅.
des(Xi) and des(Y j) are denoted the descriptions of the equivalence classes Xi and Y j, respectively. A decision rule
induced by C is formally defined as

Zi j : des(Xi)→ des(Y j), Xi ∈ U/C,Y j ∈ U/D. (9)

In [53, 54], certainty measure and support measure were introduced to evaluate a single decision rule. For a rule
set, two measures were introduced to measure the certainty and consistency in [15]. However, it has been pointed out
that those two measures cannot give elaborate depictions of the certainty and consistency for a rule set in [52]. To
address this issue, Qian et al. in [52] defined certainty measure and consistency measure to evaluate the certainty and
consistency of a set of decision rules, which has attracted considerable attention [55].

Definition 13. Let S = (U,C ∪ D) be a decision table, U/C = {X1, X2, · · · , Xm}, U/D = {Y1,Y2, · · · ,Yn}, and
RULE = {Zi j|Zi j : des(Xi) → des(Y j), Xi ∈ U/C,Y j ∈ U/D} . The certainty measure α of the decision rules on S is
defined as

α(S ) =

m∑

i=1

n∑

j=1

|Xi ∩ Y j|2
|U ||Xi| . (10)

Definition 14. Let S = (U,C ∪ D) be a decision table, U/C = {X1, X2, · · · , Xm}, U/D = {Y1,Y2, · · · ,Yn}, and
RULE = {Zi j|Zi j : des(Xi) → des(Y j), Xi ∈ U/C,Y j ∈ U/D}. The consistency measure β of the decision rules on S is
defined as

β(S ) =

m∑

i=1

|Xi|
|U | [1 −

4
|Xi|

n∑

j=1

|Xi ∩ Y j|2
|Xi| (1 − |Xi ∩ Y j|

|Xi| )]. (11)

For each data set in Table 2, 50% objects are selected randomly and replaced by new ones. Then, algorithms CAR
and AREDx′ are employed to update reduct of each varying data set. The generated reducts are shown in Tables 3, 5
and 7, and the evaluation results of reducts based on the four evaluation measures are shown in Tables 4, 6 and 8.
• Comparison of CAR and AREDx′ based on complementary entropy
It is easy to note from Table 4 the values of the four evaluation measures of the generated reducts by using the two

algorithms are very close, and even identical on some data sets. But, according to Table 3, the computational time of
AREDx′ is much smaller than that of CAR. In other words, the performance and decision making of the reduct found
by AREDx′ are very close to that of CAR, but AREDx′ is more efficient. Hence, the experimental results indicate that,
compared with the classic reduction algorithm CAR based on complementary entropy, the algorithm AREDx′ can find
a feasible reduct in a much shorter time.
• Comparison of CAR and AREDx′ based on combination entropy
From Tables 5 and 6, it is easy to get that algorithm AREDx′ can find a reduct which has same performance and

decision making as those of reduct generated by CAR in a much shorter time. Thus, compared with CAR based on
combination entropy, the algorithm AREDx′ is more efficient to deal with dynamic data sets.
• Comparison of CAR and AREDx′ based on Shannon’s entropy
According to experimental results in Tables 7 and 8, it is easy to see that performance and decision making of

reducts generated by AREDx′ and CAR are relatively close. But, AREDx′ is more efficient than CAR. Hence, one can
observe that algorithm AREDx′ can find a feasible reduct, and save lots of computational time.
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Table 3: Comparison of reducts based on complementary entropy

CAR AREDx′

Data sets Reduct Time/s Reduct Time/s
Backup-large 1,4,7,8,10,13,16,22 4.5937 1,4,7,8,10,13,22 0.1406
Dermatology 1,2,3,4,5,14,16,18,19 5.7812 1,2,3,4,5,14,18,19 0.2031
Cancer 1,2,4,6 2.0000 1,2,4,6 0.5000
Mushroom 1,2,3,5,7,8,9,20 486.26 1,2,3,5,7,9,20 37.312
Letter 1,2,3,4,5,8,9,10,11,12,13,15,16 9602.6 1,2,3,4,5,8,9,10,11,12,15,16 358.81
Shuttle 1,2,3,5 17010.1 1,2,3,5 5122.1

Table 4: Comparison of evaluation measures based on complementary entropy

CAR AREDx′

Data sets AQ AP α β AQ AP α β

Backup-large 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 0.9996 0.9993 0.9993 0.9986
Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle 0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953

Table 5: Comparison of reducts based on combination entropy

CAR AREDx′

Data sets Reduct Time/s Reduct Time/s
Backup-large 1,4,7,8,10,13,16,22 4.5312 1,4,7,8,10,13,22 0.1366
Dermatology 1,2,3,4,5,14,16,18,19 5.7500 1,2,3,4,5,14,18,19 0.2030
Cancer 1,2,4,6 1.9843 1,2,4,6 0.4987
Mushroom 1,2,3,4,7,8,9,20 478.37 1,2,3,4,7,8,9,20 37.301
Letter 1,2,3,4,5,8,9,10,11,12,13,15,16 8825.6 1,2,3,4,5,8,9,11,12,13,15,16 358.81
Shuttle 1,2,3,5 19935.7 1,2,3,5 5089.1
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Table 6: Comparison of evaluation measures based on combination entropy

CAR AREDx′

Data sets AQ AP α β AQ AP α β

Backup-large 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle 0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953

Table 7: Comparison of reducts based on Shannon’s entropy

CAR AREDx′

Data sets Reduct Time/s Reduct Time/s
Backup-large 1,4,5,6,7,8,10,16,22 5.3281 1,4,5,6,7,8,10,22 0.1368
Dermatology 1,4,5,9,12,14,17,18,21,22,26 5.7500 1,4,5,9,12,14,17,18,26 0.2030
Cancer 2,3,5,6 1.9843 2,3,5,6 0.5125
Mushroom 1,2,3,4,5,9,20,22 482.75 1,2,3,5,9,20,22 37.751
Letter 1,2,3,4,5,8,9,10,11,12,13,15,16 8389.8 1,2,3,4,5,8,9,10,11,13,16 358.87
Shuttle 1,2,3,5 23698.5 1,2,3,5 5130.6

Table 8: Comparison of evaluation measures based on Shannon’s entropy

CAR AREDx′

Data sets AQ AP α β AQ AP α β

Backup-large 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 0.9996 0.9993 0.9993 0.9986
Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle 0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953
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Table 9: Comparison of computational time based on LE

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Backup-large 4.6875 4.8594 5.0625 4.4688 4.5937 0.0312 0.0468 0.0781 0.1250 0.1406
Dermatology 5.3906 5.5781 5.6093 6.6250 5.7812 0.0468 0.0781 0.1250 0.1562 0.2031
Cancer 1.4843 1.5937 1.7187 1.9062 2.0000 0.0781 0.1718 0.2656 0.4062 0.5000
Mushroom 221.01 283.78 368.71 411.28 468.26 4.3125 9.9218 17.906 29.000 37.312
Letter 8133.2 8283.2 8630.1 9260.2 9602.6 83.625 140.25 220.48 292.68 358.81
Shuttle 12909.8 13905.3 14523.9 16100.1 17010.1 776.10 1707.3 2979.3 4098.7 5122.1

Table 10: Comparison of computational time based on CE

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Backup-large 4.8125 4.8750 5.0468 4.4531 4.5312 0.0412 0.0568 0.0781 0.1193 0.1366
Dermatology 5.3906 5.4687 5.5156 5.7500 5.7500 0.0478 0.0781 0.1250 0.1563 0.2030
Cancer 1.4843 1.5781 1.7187 1.9062 1.9843 0.0781 0.1718 0.2656 0.4063 0.4987
Mushroom 222.75 253.15 371.06 424.51 478.37 4.3712 9.9118 17.860 28.937 37.301
Letter 7201.4 7669.8 8011.8 8485.2 8825.6 83.505 142.05 200.45 289.66 358.81
Shuttle 14122.1 15468.9 16236.1 18896.9 19935.7 758.11 1668.3 3005.3 4120.8 5089.1

6.2. Efficiency analysis
The objective of experiments in this subsection is to further illustrate efficiency of algorithm AREDx′ . For each

data set in Table 2, 10%, 20%, · · ·, 50% objects are selected, in order, and are replaced by new ones. For each data set
after each variation (from 10% to 50%), algorithms CAR and AREDx′ are used to update reducts, respectively. The
efficiency of the two algorithms are demonstrated by comparing their computational time. Experimental results are
shown in Tables 9-11. 10%, 20%, · · ·, 50% in the tables mean 10%, 20%, · · ·, 50% objects with data values being
varied, respectively.

Based on the three entropies, it is easy to see from the Tables 9-11 that, for each data set after each variation, the
computational time of algorithm AREDx′ is much smaller than that of the classic reduction algorithm CAR, especially
for the larger data sets Mushroom and Letter. In addition, with the number of varying objects increasing (from 10% to
50%), the computational time of AREDx′ is always much smaller than that of CAR. Hence, the experimental results
show that algorithm AREDx′ is efficient to solving data sets with dynamically varying data values.

6.3. Related discussion
This subsection summarizes the advantages of algorithm AREDx′ for generating reduct and offers explanatory

comments. Obviously, in above two subsections, the experimental results better illustrate effectiveness and efficiency
of AREDx′ .
• Algorithm AREDx′ based on each of the three entropies can find a feasible reduct of a given dynamic decision

table.
According to experimental results in Section 6.1, it is easy to get that the decision performance of reducts generated

by CAR and AREDx′ are very close, and even identical on some data sets. Hence, compared with the classic reduction
algorithms based on the three entropies, the reduct generated by AREDx′ can be considered as a feasible reduct.
• Compared with the classic reduction algorithms (CAR) based the three entropies, AREDx′ finds a reduct in a

very efficient manner.
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Table 11: Comparison of computational time based on SE

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Backup-large 4.5937 4.7343 5.0000 5.2187 5.3281 0.0402 0.0568 0.0781 0.1194 0.1368
Dermatology 5.1875 5.5781 4.2500 6.3125 6.6562 0.0478 0.0750 0.1250 0.1565 0.2036
Cancer 1.4843 1.6093 1.7500 1.8750 1.9843 0.0781 0.1709 0.2625 0.4063 0.5125
Mushroom 221.84 256.36 330.31 370.59 482.75 4.3825 9.9288 17.876 28.937 37.751
Letter 7189.7 7502.8 7686.7 8015.2 8389.8 83.625 141.25 223.48 295.48 358.87
Shuttle 12968.3 15126.7 17356.1 20123.3 23698.5 775.10 1705.3 2985.3 4101.5 5130.6

Experimental results in Section 6.2 show that, based on the three entropies, the computational time of generating
reduct by using AREDx′ is much shorter than that of CAR.
• The development in the paper may make an important contribution to deal with large-scale dynamic data sets in

applications.
The experimental results show that the efficiency of AREDx′ is obvious in solving large-scale dynamic data sets.

In reality, acquiring knowledge from large-scale complicated data sets is still a challenging issue. It is our wish that
this paper provides new techniques for dealing with large-scale dynamic data sets.

7. Conclusions and future work

Feature selection for dynamic data sets is still a challenging issue in the field of artificial intelligence. In this
paper, based on three representative entropies, an attribute reduction algorithm is proposed to update reduct of data
sets with dynamically varying data values. The experimental results show that, compared with the classic reduction
algorithms based on the three entropies, this algorithm can generate a feasible reduct in a much shorter time. It is our
wish that this study provides new views and thoughts on dealing with large-scale and complicated dynamic data sets
in applications.

It should be pointed out that updating mechanisms of the three entropies introduced in this paper are only appli-
cable when data are varied one by one, whereas many real data may vary in groups in application. This gives rise
to many difficulties for the proposed feature selection algorithm to deal with. Hence, it is expected to carry out the
following work to improve efficiency of selecting useful features in dynamic data sets in the future:
• Developing group updating mechanisms of entropies and relative feature selection algorithms.
• Discernibility matrix is one of key concepts in rough set. Future work may include analyzing discernibility

matrix for data sets with dynamically varying data values.
•Designing efficient feature selection algorithms based on generalized rough set models such as incomplete rough

set model, dominance rough set model and multi-granulation rough set model.
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